Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Track Record on SHOX: From Basic Research to Complex Models and Therapy

Identifieur interne : 000881 ( Pmc/Corpus ); précédent : 000880; suivant : 000882

A Track Record on SHOX: From Basic Research to Complex Models and Therapy

Auteurs : Antonio Marchini ; Tsutomu Ogata ; Gudrun A. Rappold

Source :

RBID : PMC:4971310

Abstract

SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.


Url:
DOI: 10.1210/er.2016-1036
PubMed: 27355317
PubMed Central: 4971310

Links to Exploration step

PMC:4971310

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Track Record on SHOX: From Basic Research to Complex Models and Therapy</title>
<author>
<name sortKey="Marchini, Antonio" sort="Marchini, Antonio" uniqKey="Marchini A" first="Antonio" last="Marchini">Antonio Marchini</name>
</author>
<author>
<name sortKey="Ogata, Tsutomu" sort="Ogata, Tsutomu" uniqKey="Ogata T" first="Tsutomu" last="Ogata">Tsutomu Ogata</name>
</author>
<author>
<name sortKey="Rappold, Gudrun A" sort="Rappold, Gudrun A" uniqKey="Rappold G" first="Gudrun A." last="Rappold">Gudrun A. Rappold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27355317</idno>
<idno type="pmc">4971310</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971310</idno>
<idno type="RBID">PMC:4971310</idno>
<idno type="doi">10.1210/er.2016-1036</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000881</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000881</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Track Record on SHOX: From Basic Research to Complex Models and Therapy</title>
<author>
<name sortKey="Marchini, Antonio" sort="Marchini, Antonio" uniqKey="Marchini A" first="Antonio" last="Marchini">Antonio Marchini</name>
</author>
<author>
<name sortKey="Ogata, Tsutomu" sort="Ogata, Tsutomu" uniqKey="Ogata T" first="Tsutomu" last="Ogata">Tsutomu Ogata</name>
</author>
<author>
<name sortKey="Rappold, Gudrun A" sort="Rappold, Gudrun A" uniqKey="Rappold G" first="Gudrun A." last="Rappold">Gudrun A. Rappold</name>
</author>
</analytic>
<series>
<title level="j">Endocrine Reviews</title>
<idno type="ISSN">0163-769X</idno>
<idno type="eISSN">1945-7189</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene
<italic>SHOX</italic>
, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative
<italic>SHOX</italic>
mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of
<italic>SHOX</italic>
deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranke, Mb" uniqKey="Ranke M">MB Ranke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wit, Jm" uniqKey="Wit J">JM Wit</name>
</author>
<author>
<name sortKey="Oostdijk, W" uniqKey="Oostdijk W">W Oostdijk</name>
</author>
<author>
<name sortKey="Losekoot, M" uniqKey="Losekoot M">M Losekoot</name>
</author>
<author>
<name sortKey="Van Duyvenvoorde, Ha" uniqKey="Van Duyvenvoorde H">HA van Duyvenvoorde</name>
</author>
<author>
<name sortKey="Ruivenkamp, Ca" uniqKey="Ruivenkamp C">CA Ruivenkamp</name>
</author>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
<author>
<name sortKey="S Vendahl, L" uniqKey="S Vendahl L">L Sävendahl</name>
</author>
<author>
<name sortKey="De Luca, F" uniqKey="De Luca F">F De Luca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Naiki, Y" uniqKey="Naiki Y">Y Naiki</name>
</author>
<author>
<name sortKey="Muroya, K" uniqKey="Muroya K">K Muroya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagner, T" uniqKey="Wagner T">T Wagner</name>
</author>
<author>
<name sortKey="Wirth, J" uniqKey="Wirth J">J Wirth</name>
</author>
<author>
<name sortKey="Meyer, J" uniqKey="Meyer J">J Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horton, Wa" uniqKey="Horton W">WA Horton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prinos, P" uniqKey="Prinos P">P Prinos</name>
</author>
<author>
<name sortKey="Costa, T" uniqKey="Costa T">T Costa</name>
</author>
<author>
<name sortKey="Sommer, A" uniqKey="Sommer A">A Sommer</name>
</author>
<author>
<name sortKey="Kilpatrick, Mw" uniqKey="Kilpatrick M">MW Kilpatrick</name>
</author>
<author>
<name sortKey="Tsipouras, P" uniqKey="Tsipouras P">P Tsipouras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoilov, I" uniqKey="Stoilov I">I Stoilov</name>
</author>
<author>
<name sortKey="Kilpatrick, Mw" uniqKey="Kilpatrick M">MW Kilpatrick</name>
</author>
<author>
<name sortKey="Tsipouras, P" uniqKey="Tsipouras P">P Tsipouras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
<author>
<name sortKey="Wit, Jm" uniqKey="Wit J">JM Wit</name>
</author>
<author>
<name sortKey="Breuning, Mh" uniqKey="Breuning M">MH Breuning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wit, Jm" uniqKey="Wit J">JM Wit</name>
</author>
<author>
<name sortKey="Van Duyvenvoorde, Ha" uniqKey="Van Duyvenvoorde H">HA van Duyvenvoorde</name>
</author>
<author>
<name sortKey="Van Klinken, Jb" uniqKey="Van Klinken J">JB van Klinken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Goodfellow, P" uniqKey="Goodfellow P">P Goodfellow</name>
</author>
<author>
<name sortKey="Petit, C" uniqKey="Petit C">C Petit</name>
</author>
<author>
<name sortKey="Aya, M" uniqKey="Aya M">M Aya</name>
</author>
<author>
<name sortKey="Matsuo, N" uniqKey="Matsuo N">N Matsuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Rm" uniqKey="Davis R">RM Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vollrath, D" uniqKey="Vollrath D">D Vollrath</name>
</author>
<author>
<name sortKey="Foote, S" uniqKey="Foote S">S Foote</name>
</author>
<author>
<name sortKey="Hilton, A" uniqKey="Hilton A">A Hilton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Matsuo, N" uniqKey="Matsuo N">N Matsuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="May, Ca" uniqKey="May C">CA May</name>
</author>
<author>
<name sortKey="Shone, Ac" uniqKey="Shone A">AC Shone</name>
</author>
<author>
<name sortKey="Kalaydjieva, L" uniqKey="Kalaydjieva L">L Kalaydjieva</name>
</author>
<author>
<name sortKey="Sajantila, A" uniqKey="Sajantila A">A Sajantila</name>
</author>
<author>
<name sortKey="Jeffreys, Aj" uniqKey="Jeffreys A">AJ Jeffreys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lien, S" uniqKey="Lien S">S Lien</name>
</author>
<author>
<name sortKey="Szyda, J" uniqKey="Szyda J">J Szyda</name>
</author>
<author>
<name sortKey="Schechinger, B" uniqKey="Schechinger B">B Schechinger</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
<author>
<name sortKey="Arnheim, N" uniqKey="Arnheim N">N Arnheim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, E" uniqKey="Rao E">E Rao</name>
</author>
<author>
<name sortKey="Weiss, B" uniqKey="Weiss B">B Weiss</name>
</author>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, E" uniqKey="Rao E">E Rao</name>
</author>
<author>
<name sortKey="Weiss, B" uniqKey="Weiss B">B Weiss</name>
</author>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellison, Jw" uniqKey="Ellison J">JW Ellison</name>
</author>
<author>
<name sortKey="Wardak, Z" uniqKey="Wardak Z">Z Wardak</name>
</author>
<author>
<name sortKey="Young, Mf" uniqKey="Young M">MF Young</name>
</author>
<author>
<name sortKey="Gehron Robey, P" uniqKey="Gehron Robey P">P Gehron Robey</name>
</author>
<author>
<name sortKey="Laig Webster, M" uniqKey="Laig Webster M">M Laig-Webster</name>
</author>
<author>
<name sortKey="Chiong, W" uniqKey="Chiong W">W Chiong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Roeth, R" uniqKey="Roeth R">R Roeth</name>
</author>
<author>
<name sortKey="Dweep, H" uniqKey="Dweep H">H Dweep</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gehring, Wj" uniqKey="Gehring W">WJ Gehring</name>
</author>
<author>
<name sortKey="Affolter, M" uniqKey="Affolter M">M Affolter</name>
</author>
<author>
<name sortKey="Burglin, T" uniqKey="Burglin T">T Bürglin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boncinelli, E" uniqKey="Boncinelli E">E Boncinelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Monaghan, Ap" uniqKey="Monaghan A">AP Monaghan</name>
</author>
<author>
<name sortKey="Schiller, S" uniqKey="Schiller S">S Schiller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clement Jones, M" uniqKey="Clement Jones M">M Clement-Jones</name>
</author>
<author>
<name sortKey="Schiller, S" uniqKey="Schiller S">S Schiller</name>
</author>
<author>
<name sortKey="Rao, E" uniqKey="Rao E">E Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Chen, Ch" uniqKey="Chen C">CH Chen</name>
</author>
<author>
<name sortKey="Espinoza Lewis, Ra" uniqKey="Espinoza Lewis R">RA Espinoza-Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiecke, E" uniqKey="Tiecke E">E Tiecke</name>
</author>
<author>
<name sortKey="Bangs, F" uniqKey="Bangs F">F Bangs</name>
</author>
<author>
<name sortKey="Blaschke, R" uniqKey="Blaschke R">R Blaschke</name>
</author>
<author>
<name sortKey="Farrell, Er" uniqKey="Farrell E">ER Farrell</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
<author>
<name sortKey="Tickle, C" uniqKey="Tickle C">C Tickle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Decker, E" uniqKey="Decker E">E Decker</name>
</author>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Bender, S" uniqKey="Bender S">S Bender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Aza Carmona, M" uniqKey="Aza Carmona M">M Aza-Carmona</name>
</author>
<author>
<name sortKey="Rodriguez Estevez, A" uniqKey="Rodriguez Estevez A">A Rodríguez-Estevez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Bangs, F" uniqKey="Bangs F">F Bangs</name>
</author>
<author>
<name sortKey="Signolet, J" uniqKey="Signolet J">J Signolet</name>
</author>
<author>
<name sortKey="Decker, E" uniqKey="Decker E">E Decker</name>
</author>
<author>
<name sortKey="Tickle, C" uniqKey="Tickle C">C Tickle</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabherwal, N" uniqKey="Sabherwal N">N Sabherwal</name>
</author>
<author>
<name sortKey="Bangs, F" uniqKey="Bangs F">F Bangs</name>
</author>
<author>
<name sortKey="Roth, R" uniqKey="Roth R">R Röth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sawada, R" uniqKey="Sawada R">R Sawada</name>
</author>
<author>
<name sortKey="Kamei, H" uniqKey="Kamei H">H Kamei</name>
</author>
<author>
<name sortKey="Hakuno, F" uniqKey="Hakuno F">F Hakuno</name>
</author>
<author>
<name sortKey="Takahashi, S" uniqKey="Takahashi S">S Takahashi</name>
</author>
<author>
<name sortKey="Shimizu, T" uniqKey="Shimizu T">T Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenyon, Ej" uniqKey="Kenyon E">EJ Kenyon</name>
</author>
<author>
<name sortKey="Mcewen, Gk" uniqKey="Mcewen G">GK McEwen</name>
</author>
<author>
<name sortKey="Callaway, H" uniqKey="Callaway H">H Callaway</name>
</author>
<author>
<name sortKey="Elgar, G" uniqKey="Elgar G">G Elgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
<author>
<name sortKey="Dierich, A" uniqKey="Dierich A">A Dierich</name>
</author>
<author>
<name sortKey="Huss Garcia, Y" uniqKey="Huss Garcia Y">Y Huss-Garcia</name>
</author>
<author>
<name sortKey="Duboule, D" uniqKey="Duboule D">D Duboule</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Hahurij, Nd" uniqKey="Hahurij N">ND Hahurij</name>
</author>
<author>
<name sortKey="Kuijper, S" uniqKey="Kuijper S">S Kuijper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espinoza Lewis, Ra" uniqKey="Espinoza Lewis R">RA Espinoza-Lewis</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="He, F" uniqKey="He F">F He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Gu, S" uniqKey="Gu S">S Gu</name>
</author>
<author>
<name sortKey="Alappat, S" uniqKey="Alappat S">S Alappat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neufeld, Sj" uniqKey="Neufeld S">SJ Neufeld</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bobick, Be" uniqKey="Bobick B">BE Bobick</name>
</author>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vickerman, L" uniqKey="Vickerman L">L Vickerman</name>
</author>
<author>
<name sortKey="Neufeld, S" uniqKey="Neufeld S">S Neufeld</name>
</author>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, S" uniqKey="Gu S">S Gu</name>
</author>
<author>
<name sortKey="Wei, N" uniqKey="Wei N">N Wei</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Fei, J" uniqKey="Fei J">J Fei</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosin, Jm" uniqKey="Rosin J">JM Rosin</name>
</author>
<author>
<name sortKey="Mcallister, Bb" uniqKey="Mcallister B">BB McAllister</name>
</author>
<author>
<name sortKey="Dyck, Rh" uniqKey="Dyck R">RH Dyck</name>
</author>
<author>
<name sortKey="Percival, Cj" uniqKey="Percival C">CJ Percival</name>
</author>
<author>
<name sortKey="Kurrasch, Dm" uniqKey="Kurrasch D">DM Kurrasch</name>
</author>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, A" uniqKey="Scott A">A Scott</name>
</author>
<author>
<name sortKey="Hasegawa, H" uniqKey="Hasegawa H">H Hasegawa</name>
</author>
<author>
<name sortKey="Sakurai, K" uniqKey="Sakurai K">K Sakurai</name>
</author>
<author>
<name sortKey="Yaron, A" uniqKey="Yaron A">A Yaron</name>
</author>
<author>
<name sortKey="Cobb, J" uniqKey="Cobb J">J Cobb</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Ky" uniqKey="Lee K">KY Lee</name>
</author>
<author>
<name sortKey="Yamamoto, Y" uniqKey="Yamamoto Y">Y Yamamoto</name>
</author>
<author>
<name sortKey="Boucher, J" uniqKey="Boucher J">J Boucher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Topfer, C" uniqKey="Topfer C">C Töpfer</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Steinbeisser, H" uniqKey="Steinbeisser H">H Steinbeisser</name>
</author>
<author>
<name sortKey="Janssen, Jw" uniqKey="Janssen J">JW Janssen</name>
</author>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Heyningen, V" uniqKey="Van Heyningen V">V van Heyningen</name>
</author>
<author>
<name sortKey="Bickmore, W" uniqKey="Bickmore W">W Bickmore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pennacchio, La" uniqKey="Pennacchio L">LA Pennacchio</name>
</author>
<author>
<name sortKey="Rubin, Em" uniqKey="Rubin E">EM Rubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleinjan, Da" uniqKey="Kleinjan D">DA Kleinjan</name>
</author>
<author>
<name sortKey="Van Heyningen, V" uniqKey="Van Heyningen V">V van Heyningen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Kato, F" uniqKey="Kato F">F Kato</name>
</author>
<author>
<name sortKey="Tajima, T" uniqKey="Tajima T">T Tajima</name>
</author>
<author>
<name sortKey="Yokoya, S" uniqKey="Yokoya S">S Yokoya</name>
</author>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Royo, Jl" uniqKey="Royo J">JL Royo</name>
</author>
<author>
<name sortKey="Barroso, E" uniqKey="Barroso E">E Barroso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, E" uniqKey="Rao E">E Rao</name>
</author>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Niesler, B" uniqKey="Niesler B">B Niesler</name>
</author>
<author>
<name sortKey="Burnett, M" uniqKey="Burnett M">M Burnett</name>
</author>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolberger, C" uniqKey="Wolberger C">C Wolberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gehring, Wj" uniqKey="Gehring W">WJ Gehring</name>
</author>
<author>
<name sortKey="Qian, Yq" uniqKey="Qian Y">YQ Qian</name>
</author>
<author>
<name sortKey="Billeter, M" uniqKey="Billeter M">M Billeter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belin, V" uniqKey="Belin V">V Belin</name>
</author>
<author>
<name sortKey="Cusin, V" uniqKey="Cusin V">V Cusin</name>
</author>
<author>
<name sortKey="Viot, G" uniqKey="Viot G">G Viot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cormier Daire, V" uniqKey="Cormier Daire V">V Cormier-Daire</name>
</author>
<author>
<name sortKey="Huber, C" uniqKey="Huber C">C Huber</name>
</author>
<author>
<name sortKey="Munnich, A" uniqKey="Munnich A">A Munnich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flanagan, Sf" uniqKey="Flanagan S">SF Flanagan</name>
</author>
<author>
<name sortKey="Munns, Cf" uniqKey="Munns C">CF Munns</name>
</author>
<author>
<name sortKey="Hayes, M" uniqKey="Hayes M">M Hayes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigelioniene, G" uniqKey="Grigelioniene G">G Grigelioniene</name>
</author>
<author>
<name sortKey="Schoumans, J" uniqKey="Schoumans J">J Schoumans</name>
</author>
<author>
<name sortKey="Neumeyer, L" uniqKey="Neumeyer L">L Neumeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Niesler, B" uniqKey="Niesler B">B Niesler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, D" uniqKey="Wilson D">D Wilson</name>
</author>
<author>
<name sortKey="Sheng, G" uniqKey="Sheng G">G Sheng</name>
</author>
<author>
<name sortKey="Lecuit, T" uniqKey="Lecuit T">T Lecuit</name>
</author>
<author>
<name sortKey="Dostatni, N" uniqKey="Dostatni N">N Dostatni</name>
</author>
<author>
<name sortKey="Desplan, C" uniqKey="Desplan C">C Desplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Ds" uniqKey="Wilson D">DS Wilson</name>
</author>
<author>
<name sortKey="Desplan, C" uniqKey="Desplan C">C Desplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneider, Ku" uniqKey="Schneider K">KU Schneider</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Sabherwal, N" uniqKey="Sabherwal N">N Sabherwal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabherwal, N" uniqKey="Sabherwal N">N Sabherwal</name>
</author>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Daeffler, L" uniqKey="Daeffler L">L Daeffler</name>
</author>
<author>
<name sortKey="Marttila, T" uniqKey="Marttila T">T Marttila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huber, C" uniqKey="Huber C">C Huber</name>
</author>
<author>
<name sortKey="Cusin, V" uniqKey="Cusin V">V Cusin</name>
</author>
<author>
<name sortKey="Le Merrer, M" uniqKey="Le Merrer M">M Le Merrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Del Blanco, Dg" uniqKey="Del Blanco D">DG del Blanco</name>
</author>
<author>
<name sortKey="Aza Carmona, M" uniqKey="Aza Carmona M">M Aza-Carmona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shears, Dj" uniqKey="Shears D">DJ Shears</name>
</author>
<author>
<name sortKey="Guillen Navarro, E" uniqKey="Guillen Navarro E">E Guillen-Navarro</name>
</author>
<author>
<name sortKey="Sempere Miralles, M" uniqKey="Sempere Miralles M">M Sempere-Miralles</name>
</author>
<author>
<name sortKey="Domingo Jimenez, R" uniqKey="Domingo Jimenez R">R Domingo-Jimenez</name>
</author>
<author>
<name sortKey="Scambler, Pj" uniqKey="Scambler P">PJ Scambler</name>
</author>
<author>
<name sortKey="Winter, Rm" uniqKey="Winter R">RM Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binder, G" uniqKey="Binder G">G Binder</name>
</author>
<author>
<name sortKey="Renz, A" uniqKey="Renz A">A Renz</name>
</author>
<author>
<name sortKey="Martinez, A" uniqKey="Martinez A">A Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabherwal, N" uniqKey="Sabherwal N">N Sabherwal</name>
</author>
<author>
<name sortKey="Schneider, Ku" uniqKey="Schneider K">KU Schneider</name>
</author>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furukawa, T" uniqKey="Furukawa T">T Furukawa</name>
</author>
<author>
<name sortKey="Kozak, Ca" uniqKey="Kozak C">CA Kozak</name>
</author>
<author>
<name sortKey="Cepko, Cl" uniqKey="Cepko C">CL Cepko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semina, Ev" uniqKey="Semina E">EV Semina</name>
</author>
<author>
<name sortKey="Reiter, R" uniqKey="Reiter R">R Reiter</name>
</author>
<author>
<name sortKey="Leysens, Nj" uniqKey="Leysens N">NJ Leysens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semina, Ev" uniqKey="Semina E">EV Semina</name>
</author>
<author>
<name sortKey="Reiter, Rs" uniqKey="Reiter R">RS Reiter</name>
</author>
<author>
<name sortKey="Murray, Jc" uniqKey="Murray J">JC Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, F" uniqKey="Long F">F Long</name>
</author>
<author>
<name sortKey="Ornitz, Dm" uniqKey="Ornitz D">DM Ornitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kronenberg, Hm" uniqKey="Kronenberg H">HM Kronenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akiyama, H" uniqKey="Akiyama H">H Akiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inada, M" uniqKey="Inada M">M Inada</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Byrne, Mh" uniqKey="Byrne M">MH Byrne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lui, Jc" uniqKey="Lui J">JC Lui</name>
</author>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Chan, Y" uniqKey="Chan Y">Y Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lui, Jc" uniqKey="Lui J">JC Lui</name>
</author>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, Ar" uniqKey="Wood A">AR Wood</name>
</author>
<author>
<name sortKey="Esko, T" uniqKey="Esko T">T Esko</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Mh" uniqKey="Guo M">MH Guo</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Walvoord, Ec" uniqKey="Walvoord E">EC Walvoord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dauber, A" uniqKey="Dauber A">A Dauber</name>
</author>
<author>
<name sortKey="Rosenfeld, Rg" uniqKey="Rosenfeld R">RG Rosenfeld</name>
</author>
<author>
<name sortKey="Hirschhorn, Jn" uniqKey="Hirschhorn J">JN Hirschhorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lango Allen, H" uniqKey="Lango Allen H">H Lango Allen</name>
</author>
<author>
<name sortKey="Estrada, K" uniqKey="Estrada K">K Estrada</name>
</author>
<author>
<name sortKey="Lettre, G" uniqKey="Lettre G">G Lettre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozhemyakina, E" uniqKey="Kozhemyakina E">E Kozhemyakina</name>
</author>
<author>
<name sortKey="Lassar, Ab" uniqKey="Lassar A">AB Lassar</name>
</author>
<author>
<name sortKey="Zelzer, E" uniqKey="Zelzer E">E Zelzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Marino, R" uniqKey="Marino R">R Marino</name>
</author>
<author>
<name sortKey="De Luca, F" uniqKey="De Luca F">F De Luca</name>
</author>
<author>
<name sortKey="Phillip, M" uniqKey="Phillip M">M Phillip</name>
</author>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sederquist, B" uniqKey="Sederquist B">B Sederquist</name>
</author>
<author>
<name sortKey="Fernandez Vojvodich, P" uniqKey="Fernandez Vojvodich P">P Fernandez-Vojvodich</name>
</author>
<author>
<name sortKey="Zaman, F" uniqKey="Zaman F">F Zaman</name>
</author>
<author>
<name sortKey="S Vendahl, L" uniqKey="S Vendahl L">L Sävendahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanderschueren, D" uniqKey="Vanderschueren D">D Vanderschueren</name>
</author>
<author>
<name sortKey="Laurent, Mr" uniqKey="Laurent M">MR Laurent</name>
</author>
<author>
<name sortKey="Claessens, F" uniqKey="Claessens F">F Claessens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Luca, F" uniqKey="De Luca F">F De Luca</name>
</author>
<author>
<name sortKey="Uyeda, Ja" uniqKey="Uyeda J">JA Uyeda</name>
</author>
<author>
<name sortKey="Mericq, V" uniqKey="Mericq V">V Mericq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maes, C" uniqKey="Maes C">C Maes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Luca, F" uniqKey="De Luca F">F De Luca</name>
</author>
<author>
<name sortKey="Barnes, Km" uniqKey="Barnes K">KM Barnes</name>
</author>
<author>
<name sortKey="Uyeda, Ja" uniqKey="Uyeda J">JA Uyeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pogue, R" uniqKey="Pogue R">R Pogue</name>
</author>
<author>
<name sortKey="Lyons, K" uniqKey="Lyons K">K Lyons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrade, Ac" uniqKey="Andrade A">AC Andrade</name>
</author>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Barnes, Km" uniqKey="Barnes K">KM Barnes</name>
</author>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuss, P" uniqKey="Kuss P">P Kuss</name>
</author>
<author>
<name sortKey="Kraft, K" uniqKey="Kraft K">K Kraft</name>
</author>
<author>
<name sortKey="Stumm, J" uniqKey="Stumm J">J Stumm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y" uniqKey="Xie Y">Y Xie</name>
</author>
<author>
<name sortKey="Zhou, S" uniqKey="Zhou S">S Zhou</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Du, X" uniqKey="Du X">X Du</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chusho, H" uniqKey="Chusho H">H Chusho</name>
</author>
<author>
<name sortKey="Tamura, N" uniqKey="Tamura N">N Tamura</name>
</author>
<author>
<name sortKey="Ogawa, Y" uniqKey="Ogawa Y">Y Ogawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mericq, V" uniqKey="Mericq V">V Mericq</name>
</author>
<author>
<name sortKey="Uyeda, Ja" uniqKey="Uyeda J">JA Uyeda</name>
</author>
<author>
<name sortKey="Barnes, Km" uniqKey="Barnes K">KM Barnes</name>
</author>
<author>
<name sortKey="De Luca, F" uniqKey="De Luca F">F De Luca</name>
</author>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pejchalova, K" uniqKey="Pejchalova K">K Pejchalova</name>
</author>
<author>
<name sortKey="Krejci, P" uniqKey="Krejci P">P Krejci</name>
</author>
<author>
<name sortKey="Wilcox, Wr" uniqKey="Wilcox W">WR Wilcox</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Vojvodich, P" uniqKey="Fernandez Vojvodich P">P Fernandez-Vojvodich</name>
</author>
<author>
<name sortKey="Palmblad, K" uniqKey="Palmblad K">K Palmblad</name>
</author>
<author>
<name sortKey="Karimian, E" uniqKey="Karimian E">E Karimian</name>
</author>
<author>
<name sortKey="Andersson, U" uniqKey="Andersson U">U Andersson</name>
</author>
<author>
<name sortKey="S Vendahl, L" uniqKey="S Vendahl L">L Sävendahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jochmann, K" uniqKey="Jochmann K">K Jochmann</name>
</author>
<author>
<name sortKey="Bachvarova, V" uniqKey="Bachvarova V">V Bachvarova</name>
</author>
<author>
<name sortKey="Vortkamp, A" uniqKey="Vortkamp A">A Vortkamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Marttila, T" uniqKey="Marttila T">T Marttila</name>
</author>
<author>
<name sortKey="Winter, A" uniqKey="Winter A">A Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, Cj" uniqKey="Munns C">CJ Munns</name>
</author>
<author>
<name sortKey="Haase, Hr" uniqKey="Haase H">HR Haase</name>
</author>
<author>
<name sortKey="Crowther, Lm" uniqKey="Crowther L">LM Crowther</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, Cf" uniqKey="Munns C">CF Munns</name>
</author>
<author>
<name sortKey="Glass, Ia" uniqKey="Glass I">IA Glass</name>
</author>
<author>
<name sortKey="Labrom, R" uniqKey="Labrom R">R LaBrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hristov, G" uniqKey="Hristov G">G Hristov</name>
</author>
<author>
<name sortKey="Marttila, T" uniqKey="Marttila T">T Marttila</name>
</author>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Niesler, B" uniqKey="Niesler B">B Niesler</name>
</author>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repnik, U" uniqKey="Repnik U">U Repnik</name>
</author>
<author>
<name sortKey="Stoka, V" uniqKey="Stoka V">V Stoka</name>
</author>
<author>
<name sortKey="Turk, V" uniqKey="Turk V">V Turk</name>
</author>
<author>
<name sortKey="Turk, B" uniqKey="Turk B">B Turk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="H Cker, B" uniqKey="H Cker B">B Häcker</name>
</author>
<author>
<name sortKey="Marttila, T" uniqKey="Marttila T">T Marttila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vajo, Z" uniqKey="Vajo Z">Z Vajo</name>
</author>
<author>
<name sortKey="Francomano, Ca" uniqKey="Francomano C">CA Francomano</name>
</author>
<author>
<name sortKey="Wilkin, Dj" uniqKey="Wilkin D">DJ Wilkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
<author>
<name sortKey="Cervenkova, I" uniqKey="Cervenkova I">I Cervenkova</name>
</author>
<author>
<name sortKey="Balek, L" uniqKey="Balek L">L Balek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toydemir, Rm" uniqKey="Toydemir R">RM Toydemir</name>
</author>
<author>
<name sortKey="Brassington, Ae" uniqKey="Brassington A">AE Brassington</name>
</author>
<author>
<name sortKey="Bayrak Toydemir, P" uniqKey="Bayrak Toydemir P">P Bayrak-Toydemir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makrythanasis, P" uniqKey="Makrythanasis P">P Makrythanasis</name>
</author>
<author>
<name sortKey="Temtamy, S" uniqKey="Temtamy S">S Temtamy</name>
</author>
<author>
<name sortKey="Aglan, Ms" uniqKey="Aglan M">MS Aglan</name>
</author>
<author>
<name sortKey="Otaify, Ga" uniqKey="Otaify G">GA Otaify</name>
</author>
<author>
<name sortKey="Hamamy, H" uniqKey="Hamamy H">H Hamamy</name>
</author>
<author>
<name sortKey="Antonarakis, Se" uniqKey="Antonarakis S">SE Antonarakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Adar, R" uniqKey="Adar R">R Adar</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naski, Mc" uniqKey="Naski M">MC Naski</name>
</author>
<author>
<name sortKey="Colvin, Js" uniqKey="Colvin J">JS Colvin</name>
</author>
<author>
<name sortKey="Coffin, Jd" uniqKey="Coffin J">JD Coffin</name>
</author>
<author>
<name sortKey="Ornitz, Dm" uniqKey="Ornitz D">DM Ornitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ornitz, Dm" uniqKey="Ornitz D">DM Ornitz</name>
</author>
<author>
<name sortKey="Marie, Pj" uniqKey="Marie P">PJ Marie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, C" uniqKey="Deng C">C Deng</name>
</author>
<author>
<name sortKey="Wynshaw Boris, A" uniqKey="Wynshaw Boris A">A Wynshaw-Boris</name>
</author>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F Zhou</name>
</author>
<author>
<name sortKey="Kuo, A" uniqKey="Kuo A">A Kuo</name>
</author>
<author>
<name sortKey="Leder, P" uniqKey="Leder P">P Leder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colvin, Js" uniqKey="Colvin J">JS Colvin</name>
</author>
<author>
<name sortKey="Bohne, Ba" uniqKey="Bohne B">BA Bohne</name>
</author>
<author>
<name sortKey="Harding, Gw" uniqKey="Harding G">GW Harding</name>
</author>
<author>
<name sortKey="Mcewen, Dg" uniqKey="Mcewen D">DG McEwen</name>
</author>
<author>
<name sortKey="Ornitz, Dm" uniqKey="Ornitz D">DM Ornitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aza Carmona, M" uniqKey="Aza Carmona M">M Aza-Carmona</name>
</author>
<author>
<name sortKey="Shears, Dj" uniqKey="Shears D">DJ Shears</name>
</author>
<author>
<name sortKey="Yuste Checa, P" uniqKey="Yuste Checa P">P Yuste-Checa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hattori, T" uniqKey="Hattori T">T Hattori</name>
</author>
<author>
<name sortKey="Muller, C" uniqKey="Muller C">C Müller</name>
</author>
<author>
<name sortKey="Gebhard, S" uniqKey="Gebhard S">S Gebhard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mattos, Ep" uniqKey="Mattos E">EP Mattos</name>
</author>
<author>
<name sortKey="Sanseverino, Mt" uniqKey="Sanseverino M">MT Sanseverino</name>
</author>
<author>
<name sortKey="Magalhaes, Ja" uniqKey="Magalhaes J">JA Magalhães</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tompson, Sw" uniqKey="Tompson S">SW Tompson</name>
</author>
<author>
<name sortKey="Merriman, B" uniqKey="Merriman B">B Merriman</name>
</author>
<author>
<name sortKey="Funari, Va" uniqKey="Funari V">VA Funari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, O" uniqKey="Nilsson O">O Nilsson</name>
</author>
<author>
<name sortKey="Guo, Mh" uniqKey="Guo M">MH Guo</name>
</author>
<author>
<name sortKey="Dunbar, N" uniqKey="Dunbar N">N Dunbar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aza Carmona, M" uniqKey="Aza Carmona M">M Aza-Carmona</name>
</author>
<author>
<name sortKey="Barca Tierno, V" uniqKey="Barca Tierno V">V Barca-Tierno</name>
</author>
<author>
<name sortKey="Hisado Oliva, A" uniqKey="Hisado Oliva A">A Hisado-Oliva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beiser, Ku" uniqKey="Beiser K">KU Beiser</name>
</author>
<author>
<name sortKey="Glaser, A" uniqKey="Glaser A">A Glaser</name>
</author>
<author>
<name sortKey="Kleinschmidt, K" uniqKey="Kleinschmidt K">K Kleinschmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohn, Mj" uniqKey="Cohn M">MJ Cohn</name>
</author>
<author>
<name sortKey="Patel, K" uniqKey="Patel K">K Patel</name>
</author>
<author>
<name sortKey="Krumlauf, R" uniqKey="Krumlauf R">R Krumlauf</name>
</author>
<author>
<name sortKey="Wilkinson, Dg" uniqKey="Wilkinson D">DG Wilkinson</name>
</author>
<author>
<name sortKey="Clarke, Jd" uniqKey="Clarke J">JD Clarke</name>
</author>
<author>
<name sortKey="Tickle, C" uniqKey="Tickle C">C Tickle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zakany, J" uniqKey="Zakany J">J Zakany</name>
</author>
<author>
<name sortKey="Duboule, D" uniqKey="Duboule D">D Duboule</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fromental Ramain, C" uniqKey="Fromental Ramain C">C Fromental-Ramain</name>
</author>
<author>
<name sortKey="Warot, X" uniqKey="Warot X">X Warot</name>
</author>
<author>
<name sortKey="Lakkaraju, S" uniqKey="Lakkaraju S">S Lakkaraju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wellik, Dm" uniqKey="Wellik D">DM Wellik</name>
</author>
<author>
<name sortKey="Capecchi, Mr" uniqKey="Capecchi M">MR Capecchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Ap" uniqKey="Davis A">AP Davis</name>
</author>
<author>
<name sortKey="Witte, Dp" uniqKey="Witte D">DP Witte</name>
</author>
<author>
<name sortKey="Hsieh Li, Hm" uniqKey="Hsieh Li H">HM Hsieh-Li</name>
</author>
<author>
<name sortKey="Potter, Ss" uniqKey="Potter S">SS Potter</name>
</author>
<author>
<name sortKey="Capecchi, Mr" uniqKey="Capecchi M">MR Capecchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fromental Ramain, C" uniqKey="Fromental Ramain C">C Fromental-Ramain</name>
</author>
<author>
<name sortKey="Warot, X" uniqKey="Warot X">X Warot</name>
</author>
<author>
<name sortKey="Messadecq, N" uniqKey="Messadecq N">N Messadecq</name>
</author>
<author>
<name sortKey="Lemeur, M" uniqKey="Lemeur M">M LeMeur</name>
</author>
<author>
<name sortKey="Dolle, P" uniqKey="Dolle P">P Dollé</name>
</author>
<author>
<name sortKey="Chambon, P" uniqKey="Chambon P">P Chambon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Decker, E" uniqKey="Decker E">E Decker</name>
</author>
<author>
<name sortKey="Roeth, R" uniqKey="Roeth R">R Roeth</name>
</author>
<author>
<name sortKey="Schneider, Ku" uniqKey="Schneider K">KU Schneider</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Yan, M" uniqKey="Yan M">M Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gross, S" uniqKey="Gross S">S Gross</name>
</author>
<author>
<name sortKey="Krause, Y" uniqKey="Krause Y">Y Krause</name>
</author>
<author>
<name sortKey="Wuelling, M" uniqKey="Wuelling M">M Wuelling</name>
</author>
<author>
<name sortKey="Vortkamp, A" uniqKey="Vortkamp A">A Vortkamp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foldynova Trantirkova, S" uniqKey="Foldynova Trantirkova S">S Foldynova-Trantirkova</name>
</author>
<author>
<name sortKey="Wilcox, Wr" uniqKey="Wilcox W">WR Wilcox</name>
</author>
<author>
<name sortKey="Krejci, P" uniqKey="Krejci P">P Krejci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sahni, M" uniqKey="Sahni M">M Sahni</name>
</author>
<author>
<name sortKey="Ambrosetti, Dc" uniqKey="Ambrosetti D">DC Ambrosetti</name>
</author>
<author>
<name sortKey="Mansukhani, A" uniqKey="Mansukhani A">A Mansukhani</name>
</author>
<author>
<name sortKey="Gertner, R" uniqKey="Gertner R">R Gertner</name>
</author>
<author>
<name sortKey="Levy, D" uniqKey="Levy D">D Levy</name>
</author>
<author>
<name sortKey="Basilico, C" uniqKey="Basilico C">C Basilico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishikimi, T" uniqKey="Nishikimi T">T Nishikimi</name>
</author>
<author>
<name sortKey="Kuwahara, K" uniqKey="Kuwahara K">K Kuwahara</name>
</author>
<author>
<name sortKey="Nakao, K" uniqKey="Nakao K">K Nakao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volpe, M" uniqKey="Volpe M">M Volpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, S" uniqKey="Suzuki S">S Suzuki</name>
</author>
<author>
<name sortKey="Yoshimura, M" uniqKey="Yoshimura M">M Yoshimura</name>
</author>
<author>
<name sortKey="Nakayama, M" uniqKey="Nakayama M">M Nakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, N" uniqKey="Tamura N">N Tamura</name>
</author>
<author>
<name sortKey="Doolittle, Lk" uniqKey="Doolittle L">LK Doolittle</name>
</author>
<author>
<name sortKey="Hammer, Re" uniqKey="Hammer R">RE Hammer</name>
</author>
<author>
<name sortKey="Shelton, Jm" uniqKey="Shelton J">JM Shelton</name>
</author>
<author>
<name sortKey="Richardson, Ja" uniqKey="Richardson J">JA Richardson</name>
</author>
<author>
<name sortKey="Garbers, Dl" uniqKey="Garbers D">DL Garbers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yasoda, A" uniqKey="Yasoda A">A Yasoda</name>
</author>
<author>
<name sortKey="Komatsu, Y" uniqKey="Komatsu Y">Y Komatsu</name>
</author>
<author>
<name sortKey="Chusho, H" uniqKey="Chusho H">H Chusho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartels, Cf" uniqKey="Bartels C">CF Bartels</name>
</author>
<author>
<name sortKey="Bukulmez, H" uniqKey="Bukulmez H">H Bükülmez</name>
</author>
<author>
<name sortKey="Padayatti, P" uniqKey="Padayatti P">P Padayatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hachiya, R" uniqKey="Hachiya R">R Hachiya</name>
</author>
<author>
<name sortKey="Ohashi, Y" uniqKey="Ohashi Y">Y Ohashi</name>
</author>
<author>
<name sortKey="Kamei, Y" uniqKey="Kamei Y">Y Kamei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moncla, A" uniqKey="Moncla A">A Moncla</name>
</author>
<author>
<name sortKey="Missirian, C" uniqKey="Missirian C">C Missirian</name>
</author>
<author>
<name sortKey="Cacciagli, P" uniqKey="Cacciagli P">P Cacciagli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bocciardi, R" uniqKey="Bocciardi R">R Bocciardi</name>
</author>
<author>
<name sortKey="Giorda, R" uniqKey="Giorda R">R Giorda</name>
</author>
<author>
<name sortKey="Buttgereit, J" uniqKey="Buttgereit J">J Buttgereit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Iwata, T" uniqKey="Iwata T">T Iwata</name>
</author>
<author>
<name sortKey="Kitagawa, M" uniqKey="Kitagawa M">M Kitagawa</name>
</author>
<author>
<name sortKey="Fu, Xy" uniqKey="Fu X">XY Fu</name>
</author>
<author>
<name sortKey="Deng, Cx" uniqKey="Deng C">CX Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dailey, L" uniqKey="Dailey L">L Dailey</name>
</author>
<author>
<name sortKey="Laplantine, E" uniqKey="Laplantine E">E Laplantine</name>
</author>
<author>
<name sortKey="Priore, R" uniqKey="Priore R">R Priore</name>
</author>
<author>
<name sortKey="Basilico, C" uniqKey="Basilico C">C Basilico</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suda, M" uniqKey="Suda M">M Suda</name>
</author>
<author>
<name sortKey="Ogawa, Y" uniqKey="Ogawa Y">Y Ogawa</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, N" uniqKey="Tamura N">N Tamura</name>
</author>
<author>
<name sortKey="Ogawa, Y" uniqKey="Ogawa Y">Y Ogawa</name>
</author>
<author>
<name sortKey="Chusho, H" uniqKey="Chusho H">H Chusho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hisado Oliva, A" uniqKey="Hisado Oliva A">A Hisado-Oliva</name>
</author>
<author>
<name sortKey="Garre Vazquez, Ai" uniqKey="Garre Vazquez A">AI Garre-Vázquez</name>
</author>
<author>
<name sortKey="Santaolalla Caballero, F" uniqKey="Santaolalla Caballero F">F Santaolalla-Caballero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vasques, Ga" uniqKey="Vasques G">GA Vasques</name>
</author>
<author>
<name sortKey="Amano, N" uniqKey="Amano N">N Amano</name>
</author>
<author>
<name sortKey="Docko, Aj" uniqKey="Docko A">AJ Docko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Sr" uniqKey="Wang S">SR Wang</name>
</author>
<author>
<name sortKey="Jacobsen, Cm" uniqKey="Jacobsen C">CM Jacobsen</name>
</author>
<author>
<name sortKey="Carmichael, H" uniqKey="Carmichael H">H Carmichael</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sybert, Vp" uniqKey="Sybert V">VP Sybert</name>
</author>
<author>
<name sortKey="Mccauley, E" uniqKey="Mccauley E">E McCauley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roach, Hi" uniqKey="Roach H">HI Roach</name>
</author>
<author>
<name sortKey="Aigner, T" uniqKey="Aigner T">T Aigner</name>
</author>
<author>
<name sortKey="Kouri, Jb" uniqKey="Kouri J">JB Kouri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morita, K" uniqKey="Morita K">K Morita</name>
</author>
<author>
<name sortKey="Miyamoto, T" uniqKey="Miyamoto T">T Miyamoto</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N Fujita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teixeira, Cc" uniqKey="Teixeira C">CC Teixeira</name>
</author>
<author>
<name sortKey="Mansfield, K" uniqKey="Mansfield K">K Mansfield</name>
</author>
<author>
<name sortKey="Hertkorn, C" uniqKey="Hertkorn C">C Hertkorn</name>
</author>
<author>
<name sortKey="Ischiropoulos, H" uniqKey="Ischiropoulos H">H Ischiropoulos</name>
</author>
<author>
<name sortKey="Shapiro, Im" uniqKey="Shapiro I">IM Shapiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajpurohit, R" uniqKey="Rajpurohit R">R Rajpurohit</name>
</author>
<author>
<name sortKey="Mansfield, K" uniqKey="Mansfield K">K Mansfield</name>
</author>
<author>
<name sortKey="Ohyama, K" uniqKey="Ohyama K">K Ohyama</name>
</author>
<author>
<name sortKey="Ewert, D" uniqKey="Ewert D">D Ewert</name>
</author>
<author>
<name sortKey="Shapiro, Im" uniqKey="Shapiro I">IM Shapiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teixeira, Cc" uniqKey="Teixeira C">CC Teixeira</name>
</author>
<author>
<name sortKey="Costas, Ap" uniqKey="Costas A">AP Costas</name>
</author>
<author>
<name sortKey="Nemelivsky, Y" uniqKey="Nemelivsky Y">Y Nemelivsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soderstrom, M" uniqKey="Soderstrom M">M Söderström</name>
</author>
<author>
<name sortKey="Salminen, H" uniqKey="Salminen H">H Salminen</name>
</author>
<author>
<name sortKey="Glumoff, V" uniqKey="Glumoff V">V Glumoff</name>
</author>
<author>
<name sortKey="Kirschke, H" uniqKey="Kirschke H">H Kirschke</name>
</author>
<author>
<name sortKey="Aro, H" uniqKey="Aro H">H Aro</name>
</author>
<author>
<name sortKey="Vuorio, E" uniqKey="Vuorio E">E Vuorio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohsawa, Y" uniqKey="Ohsawa Y">Y Ohsawa</name>
</author>
<author>
<name sortKey="Nitatori, T" uniqKey="Nitatori T">T Nitatori</name>
</author>
<author>
<name sortKey="Higuchi, S" uniqKey="Higuchi S">S Higuchi</name>
</author>
<author>
<name sortKey="Kominami, E" uniqKey="Kominami E">E Kominami</name>
</author>
<author>
<name sortKey="Uchiyama, Y" uniqKey="Uchiyama Y">Y Uchiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goto, T" uniqKey="Goto T">T Goto</name>
</author>
<author>
<name sortKey="Kiyoshima, T" uniqKey="Kiyoshima T">T Kiyoshima</name>
</author>
<author>
<name sortKey="Moroi, R" uniqKey="Moroi R">R Moroi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, Pa" uniqKey="Hill P">PA Hill</name>
</author>
<author>
<name sortKey="Buttle, Dj" uniqKey="Buttle D">DJ Buttle</name>
</author>
<author>
<name sortKey="Jones, Sj" uniqKey="Jones S">SJ Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shears, Dj" uniqKey="Shears D">DJ Shears</name>
</author>
<author>
<name sortKey="Vassal, Hj" uniqKey="Vassal H">HJ Vassal</name>
</author>
<author>
<name sortKey="Goodman, Fr" uniqKey="Goodman F">FR Goodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zinn, Ar" uniqKey="Zinn A">AR Zinn</name>
</author>
<author>
<name sortKey="Ross, Jl" uniqKey="Ross J">JL Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, Sp" uniqKey="Robertson S">SP Robertson</name>
</author>
<author>
<name sortKey="Shears, Dj" uniqKey="Shears D">DJ Shears</name>
</author>
<author>
<name sortKey="Oei, P" uniqKey="Oei P">P Oei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Matsuo, N" uniqKey="Matsuo N">N Matsuo</name>
</author>
<author>
<name sortKey="Nishimura, G" uniqKey="Nishimura G">G Nishimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binder, G" uniqKey="Binder G">G Binder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Wildhardt, G" uniqKey="Wildhardt G">G Wildhardt</name>
</author>
<author>
<name sortKey="Zhong, Z" uniqKey="Zhong Z">Z Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Dateki, S" uniqKey="Dateki S">S Dateki</name>
</author>
<author>
<name sortKey="Kato, F" uniqKey="Kato F">F Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
<author>
<name sortKey="Schneider, Ku" uniqKey="Schneider K">KU Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Barroso, E" uniqKey="Barroso E">E Barroso</name>
</author>
<author>
<name sortKey="Heine Su Er, D" uniqKey="Heine Su Er D">D Heine-Suñer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sandoval, Gt" uniqKey="Sandoval G">GT Sandoval</name>
</author>
<author>
<name sortKey="Jaimes, Gc" uniqKey="Jaimes G">GC Jaimes</name>
</author>
<author>
<name sortKey="Barrios, Mc" uniqKey="Barrios M">MC Barrios</name>
</author>
<author>
<name sortKey="Cespedes, C" uniqKey="Cespedes C">C Cespedes</name>
</author>
<author>
<name sortKey="Velasco, Hm" uniqKey="Velasco H">HM Velasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Duyvenvoorde, Ha" uniqKey="Van Duyvenvoorde H">HA van Duyvenvoorde</name>
</author>
<author>
<name sortKey="Lui, Jc" uniqKey="Lui J">JC Lui</name>
</author>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gervasini, C" uniqKey="Gervasini C">C Gervasini</name>
</author>
<author>
<name sortKey="Grati, Fr" uniqKey="Grati F">FR Grati</name>
</author>
<author>
<name sortKey="Lalatta, F" uniqKey="Lalatta F">F Lalatta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bunyan, Dj" uniqKey="Bunyan D">DJ Bunyan</name>
</author>
<author>
<name sortKey="Baffico, M" uniqKey="Baffico M">M Baffico</name>
</author>
<author>
<name sortKey="Capone, L" uniqKey="Capone L">L Capone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tropeano, M" uniqKey="Tropeano M">M Tropeano</name>
</author>
<author>
<name sortKey="Howley, D" uniqKey="Howley D">D Howley</name>
</author>
<author>
<name sortKey="Gazzellone, Mj" uniqKey="Gazzellone M">MJ Gazzellone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niesler, B" uniqKey="Niesler B">B Niesler</name>
</author>
<author>
<name sortKey="Roth, R" uniqKey="Roth R">R Röth</name>
</author>
<author>
<name sortKey="Wilke, S" uniqKey="Wilke S">S Wilke</name>
</author>
<author>
<name sortKey="Fujimura, F" uniqKey="Fujimura F">F Fujimura</name>
</author>
<author>
<name sortKey="Fischer, C" uniqKey="Fischer C">C Fischer</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blaschke, Rj" uniqKey="Blaschke R">RJ Blaschke</name>
</author>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huber, C" uniqKey="Huber C">C Huber</name>
</author>
<author>
<name sortKey="Rosilio, M" uniqKey="Rosilio M">M Rosilio</name>
</author>
<author>
<name sortKey="Munnich, A" uniqKey="Munnich A">A Munnich</name>
</author>
<author>
<name sortKey="Cormier Daire, V" uniqKey="Cormier Daire V">V Cormier-Daire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballabio, A" uniqKey="Ballabio A">A Ballabio</name>
</author>
<author>
<name sortKey="Bardoni, B" uniqKey="Bardoni B">B Bardoni</name>
</author>
<author>
<name sortKey="Carrozzo, R" uniqKey="Carrozzo R">R Carrozzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leri, A" uniqKey="Leri A">A Léri</name>
</author>
<author>
<name sortKey="Weill, J" uniqKey="Weill J">J Weill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seki, A" uniqKey="Seki A">A Seki</name>
</author>
<author>
<name sortKey="Jinno, T" uniqKey="Jinno T">T Jinno</name>
</author>
<author>
<name sortKey="Suzuki, E" uniqKey="Suzuki E">E Suzuki</name>
</author>
<author>
<name sortKey="Takayama, S" uniqKey="Takayama S">S Takayama</name>
</author>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigelioniene, G" uniqKey="Grigelioniene G">G Grigelioniene</name>
</author>
<author>
<name sortKey="Eklof, O" uniqKey="Eklof O">O Eklöf</name>
</author>
<author>
<name sortKey="Ivarsson, Sa" uniqKey="Ivarsson S">SA Ivarsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorge, Aa" uniqKey="Jorge A">AA Jorge</name>
</author>
<author>
<name sortKey="Souza, Sc" uniqKey="Souza S">SC Souza</name>
</author>
<author>
<name sortKey="Nishi, My" uniqKey="Nishi M">MY Nishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
<author>
<name sortKey="Blum, Wf" uniqKey="Blum W">WF Blum</name>
</author>
<author>
<name sortKey="Shavrikova, Ep" uniqKey="Shavrikova E">EP Shavrikova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Jl" uniqKey="Ross J">JL Ross</name>
</author>
<author>
<name sortKey="Scott, C" uniqKey="Scott C">C Scott</name>
</author>
<author>
<name sortKey="Marttila, P" uniqKey="Marttila P">P Marttila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiller, S" uniqKey="Schiller S">S Schiller</name>
</author>
<author>
<name sortKey="Spranger, S" uniqKey="Spranger S">S Spranger</name>
</author>
<author>
<name sortKey="Schechinger, B" uniqKey="Schechinger B">B Schechinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falcinelli, C" uniqKey="Falcinelli C">C Falcinelli</name>
</author>
<author>
<name sortKey="Iughetti, L" uniqKey="Iughetti L">L Iughetti</name>
</author>
<author>
<name sortKey="Percesepe, A" uniqKey="Percesepe A">A Percesepe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binder, G" uniqKey="Binder G">G Binder</name>
</author>
<author>
<name sortKey="Ranke, Mb" uniqKey="Ranke M">MB Ranke</name>
</author>
<author>
<name sortKey="Martin, Dd" uniqKey="Martin D">DD Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
<author>
<name sortKey="Thomas, Ns" uniqKey="Thomas N">NS Thomas</name>
</author>
<author>
<name sortKey="Huber, C" uniqKey="Huber C">C Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosilio, M" uniqKey="Rosilio M">M Rosilio</name>
</author>
<author>
<name sortKey="Huber Lequesne, C" uniqKey="Huber Lequesne C">C Huber-Lequesne</name>
</author>
<author>
<name sortKey="Sapin, H" uniqKey="Sapin H">H Sapin</name>
</author>
<author>
<name sortKey="Carel, Jc" uniqKey="Carel J">JC Carel</name>
</author>
<author>
<name sortKey="Blum, Wf" uniqKey="Blum W">WF Blum</name>
</author>
<author>
<name sortKey="Cormier Daire, V" uniqKey="Cormier Daire V">V Cormier-Daire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
<author>
<name sortKey="Van Der Kamp, Hj" uniqKey="Van Der Kamp H">HJ van der Kamp</name>
</author>
<author>
<name sortKey="Kriek, M" uniqKey="Kriek M">M Kriek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langer, Lo" uniqKey="Langer L">LO Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Okuyama, T" uniqKey="Okuyama T">T Okuyama</name>
</author>
<author>
<name sortKey="Yamamori, S" uniqKey="Yamamori S">S Yamamori</name>
</author>
<author>
<name sortKey="Nishimura, G" uniqKey="Nishimura G">G Nishimura</name>
</author>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Ns" uniqKey="Thomas N">NS Thomas</name>
</author>
<author>
<name sortKey="Maloney, V" uniqKey="Maloney V">V Maloney</name>
</author>
<author>
<name sortKey="Bass, P" uniqKey="Bass P">P Bass</name>
</author>
<author>
<name sortKey="Mulik, V" uniqKey="Mulik V">V Mulik</name>
</author>
<author>
<name sortKey="Wellesley, D" uniqKey="Wellesley D">D Wellesley</name>
</author>
<author>
<name sortKey="Castle, B" uniqKey="Castle B">B Castle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zinn, Ar" uniqKey="Zinn A">AR Zinn</name>
</author>
<author>
<name sortKey="Wei, F" uniqKey="Wei F">F Wei</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, Hh" uniqKey="Turner H">HH Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ullrich, O" uniqKey="Ullrich O">O Ullrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saenger, P" uniqKey="Saenger P">P Saenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranke, Mb" uniqKey="Ranke M">MB Ranke</name>
</author>
<author>
<name sortKey="Saenger, P" uniqKey="Saenger P">P Saenger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saenger, P" uniqKey="Saenger P">P Saenger</name>
</author>
<author>
<name sortKey="Wikland, Ka" uniqKey="Wikland K">KA Wikland</name>
</author>
<author>
<name sortKey="Conway, Gs" uniqKey="Conway G">GS Conway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rovet, Jf" uniqKey="Rovet J">JF Rovet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosho, T" uniqKey="Kosho T">T Kosho</name>
</author>
<author>
<name sortKey="Muroya, K" uniqKey="Muroya K">K Muroya</name>
</author>
<author>
<name sortKey="Nagai, T" uniqKey="Nagai T">T Nagai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faienza, Mf" uniqKey="Faienza M">MF Faienza</name>
</author>
<author>
<name sortKey="Ventura, A" uniqKey="Ventura A">A Ventura</name>
</author>
<author>
<name sortKey="Colucci, S" uniqKey="Colucci S">S Colucci</name>
</author>
<author>
<name sortKey="Cavallo, L" uniqKey="Cavallo L">L Cavallo</name>
</author>
<author>
<name sortKey="Grano, M" uniqKey="Grano M">M Grano</name>
</author>
<author>
<name sortKey="Brunetti, G" uniqKey="Brunetti G">G Brunetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakalov, Vk" uniqKey="Bakalov V">VK Bakalov</name>
</author>
<author>
<name sortKey="Axelrod, L" uniqKey="Axelrod L">L Axelrod</name>
</author>
<author>
<name sortKey="Baron, J" uniqKey="Baron J">J Baron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ottesen, Am" uniqKey="Ottesen A">AM Ottesen</name>
</author>
<author>
<name sortKey="Aksglaede, L" uniqKey="Aksglaede L">L Aksglaede</name>
</author>
<author>
<name sortKey="Garn, I" uniqKey="Garn I">I Garn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Matsuo, N" uniqKey="Matsuo N">N Matsuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilbert, Ef" uniqKey="Gilbert E">EF Gilbert</name>
</author>
<author>
<name sortKey="Opitz, Jm" uniqKey="Opitz J">JM Opitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Epstein, Cj" uniqKey="Epstein C">CJ Epstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binder, G" uniqKey="Binder G">G Binder</name>
</author>
<author>
<name sortKey="Schwarze, Cp" uniqKey="Schwarze C">CP Schwarze</name>
</author>
<author>
<name sortKey="Ranke, Mb" uniqKey="Ranke M">MB Ranke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calabrese, G" uniqKey="Calabrese G">G Calabrese</name>
</author>
<author>
<name sortKey="Fischetto, R" uniqKey="Fischetto R">R Fischetto</name>
</author>
<author>
<name sortKey="Stuppia, L" uniqKey="Stuppia L">L Stuppia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirschfeldova, K" uniqKey="Hirschfeldova K">K Hirschfeldova</name>
</author>
<author>
<name sortKey="Solc, R" uniqKey="Solc R">R Solc</name>
</author>
<author>
<name sortKey="Baxova, A" uniqKey="Baxova A">A Baxova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tauber, M" uniqKey="Tauber M">M Tauber</name>
</author>
<author>
<name sortKey="Lounis, N" uniqKey="Lounis N">N Lounis</name>
</author>
<author>
<name sortKey="Coulet, J" uniqKey="Coulet J">J Coulet</name>
</author>
<author>
<name sortKey="Baunin, C" uniqKey="Baunin C">C Baunin</name>
</author>
<author>
<name sortKey="Cahuzac, Jp" uniqKey="Cahuzac J">JP Cahuzac</name>
</author>
<author>
<name sortKey="Rochiccioli, P" uniqKey="Rochiccioli P">P Rochiccioli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuppia, L" uniqKey="Stuppia L">L Stuppia</name>
</author>
<author>
<name sortKey="Calabrese, G" uniqKey="Calabrese G">G Calabrese</name>
</author>
<author>
<name sortKey="Gatta, V" uniqKey="Gatta V">V Gatta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poggi, H" uniqKey="Poggi H">H Poggi</name>
</author>
<author>
<name sortKey="Vera, A" uniqKey="Vera A">A Vera</name>
</author>
<author>
<name sortKey="Avalos, C" uniqKey="Avalos C">C Avalos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funari, Mf" uniqKey="Funari M">MF Funari</name>
</author>
<author>
<name sortKey="Jorge, Aa" uniqKey="Jorge A">AA Jorge</name>
</author>
<author>
<name sortKey="Souza, Sc" uniqKey="Souza S">SC Souza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donze, Sh" uniqKey="Donze S">SH Donze</name>
</author>
<author>
<name sortKey="Meijer, Cr" uniqKey="Meijer C">CR Meijer</name>
</author>
<author>
<name sortKey="Kant, Sg" uniqKey="Kant S">SG Kant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bunyan, Dj" uniqKey="Bunyan D">DJ Bunyan</name>
</author>
<author>
<name sortKey="Baker, Kr" uniqKey="Baker K">KR Baker</name>
</author>
<author>
<name sortKey="Harvey, Jf" uniqKey="Harvey J">JF Harvey</name>
</author>
<author>
<name sortKey="Thomas, Ns" uniqKey="Thomas N">NS Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verdin, H" uniqKey="Verdin H">H Verdin</name>
</author>
<author>
<name sortKey="Fernandez Mi N, A" uniqKey="Fernandez Mi N A">A Fernández-Miñán</name>
</author>
<author>
<name sortKey="Benito Sanz, S" uniqKey="Benito Sanz S">S Benito-Sanz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bunyan, Dj" uniqKey="Bunyan D">DJ Bunyan</name>
</author>
<author>
<name sortKey="Taylor, Ej" uniqKey="Taylor E">EJ Taylor</name>
</author>
<author>
<name sortKey="Maloney, Vk" uniqKey="Maloney V">VK Maloney</name>
</author>
<author>
<name sortKey="Blyth, M" uniqKey="Blyth M">M Blyth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuchiya, T" uniqKey="Tsuchiya T">T Tsuchiya</name>
</author>
<author>
<name sortKey="Shibata, M" uniqKey="Shibata M">M Shibata</name>
</author>
<author>
<name sortKey="Numabe, H" uniqKey="Numabe H">H Numabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blum, Wf" uniqKey="Blum W">WF Blum</name>
</author>
<author>
<name sortKey="Crowe, Bj" uniqKey="Crowe B">BJ Crowe</name>
</author>
<author>
<name sortKey="Quigley, Ca" uniqKey="Quigley C">CA Quigley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Child, Cj" uniqKey="Child C">CJ Child</name>
</author>
<author>
<name sortKey="Kalifa, G" uniqKey="Kalifa G">G Kalifa</name>
</author>
<author>
<name sortKey="Jones, C" uniqKey="Jones C">C Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blum, Wf" uniqKey="Blum W">WF Blum</name>
</author>
<author>
<name sortKey="Ross, Jl" uniqKey="Ross J">JL Ross</name>
</author>
<author>
<name sortKey="Zimmermann, Ag" uniqKey="Zimmermann A">AG Zimmermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogata, T" uniqKey="Ogata T">T Ogata</name>
</author>
<author>
<name sortKey="Onigata, K" uniqKey="Onigata K">K Onigata</name>
</author>
<author>
<name sortKey="Hotsubo, T" uniqKey="Hotsubo T">T Hotsubo</name>
</author>
<author>
<name sortKey="Matsuo, N" uniqKey="Matsuo N">N Matsuo</name>
</author>
<author>
<name sortKey="Rappold, G" uniqKey="Rappold G">G Rappold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scalco, Rc" uniqKey="Scalco R">RC Scalco</name>
</author>
<author>
<name sortKey="Melo, Ss" uniqKey="Melo S">SS Melo</name>
</author>
<author>
<name sortKey="Pugliese Pires, Pn" uniqKey="Pugliese Pires P">PN Pugliese-Pires</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Gool, Sa" uniqKey="Van Gool S">SA van Gool</name>
</author>
<author>
<name sortKey="Kamp, Ga" uniqKey="Kamp G">GA Kamp</name>
</author>
<author>
<name sortKey="Visser Van Balen, H" uniqKey="Visser Van Balen H">H Visser-van Balen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lem, Aj" uniqKey="Lem A">AJ Lem</name>
</author>
<author>
<name sortKey="Van Der Kaay, Dc" uniqKey="Van Der Kaay D">DC van der Kaay</name>
</author>
<author>
<name sortKey="De Ridder, Ma" uniqKey="De Ridder M">MA de Ridder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wit, Jm" uniqKey="Wit J">JM Wit</name>
</author>
<author>
<name sortKey="Hero, M" uniqKey="Hero M">M Hero</name>
</author>
<author>
<name sortKey="Nunez, Sb" uniqKey="Nunez S">SB Nunez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranke, Mb" uniqKey="Ranke M">MB Ranke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunkel, L" uniqKey="Dunkel L">L Dunkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geffner, Me" uniqKey="Geffner M">ME Geffner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rappold, Ga" uniqKey="Rappold G">GA Rappold</name>
</author>
<author>
<name sortKey="Durand, C" uniqKey="Durand C">C Durand</name>
</author>
<author>
<name sortKey="Decker, E" uniqKey="Decker E">E Decker</name>
</author>
<author>
<name sortKey="Marchini, A" uniqKey="Marchini A">A Marchini</name>
</author>
<author>
<name sortKey="Schneider, Ku" uniqKey="Schneider K">KU Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukami, M" uniqKey="Fukami M">M Fukami</name>
</author>
<author>
<name sortKey="Nishi, Y" uniqKey="Nishi Y">Y Nishi</name>
</author>
<author>
<name sortKey="Hasegawa, Y" uniqKey="Hasegawa Y">Y Hasegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosowicz, J" uniqKey="Kosowicz J">J Kosowicz</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Endocr Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">Endocr. Rev</journal-id>
<journal-id journal-id-type="hwp">edrv</journal-id>
<journal-id journal-id-type="publisher-id">endre</journal-id>
<journal-id journal-id-type="pmc">edrv</journal-id>
<journal-id journal-id-type="publisher-id">edrv</journal-id>
<journal-title-group>
<journal-title>Endocrine Reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">0163-769X</issn>
<issn pub-type="epub">1945-7189</issn>
<publisher>
<publisher-name>Endocrine Society</publisher-name>
<publisher-loc>Washington, DC</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27355317</article-id>
<article-id pub-id-type="pmc">4971310</article-id>
<article-id pub-id-type="publisher-id">ER-16-1036</article-id>
<article-id pub-id-type="doi">10.1210/er.2016-1036</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Track Record on SHOX: From Basic Research to Complex Models and Therapy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Marchini</surname>
<given-names>Antonio</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ogata</surname>
<given-names>Tsutomu</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Rappold</surname>
<given-names>Gudrun A.</given-names>
</name>
</contrib>
<aff>Tumour Virology Division F010 (A.M.), German Cancer Research Center, 69120 Heidelberg, Germany; Department of Oncology (A.M.), Luxembourg Institute of Health 84, rue Val Fleuri L-1526, Luxembourg; Department of Pediatrics (T.O.), Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; and Department of Human Molecular Genetics (G.A.R.), Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany</aff>
</contrib-group>
<author-notes>
<corresp>Address all correspondence and requests for reprints to: Gudrun Rappold, PhD,
<addr-line>Institute of Human Genetics, Heidelberg University Hospital, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.</addr-line>
E-mail:
<email>gudrun_rappold@med.uni-heidelberg.de</email>
.</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>29</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>37</volume>
<issue>4</issue>
<fpage>417</fpage>
<lpage>448</lpage>
<history>
<date date-type="received">
<day>31</day>
<month>3</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>6</month>
<year>2016</year>
</date>
</history>
<permissions>
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by-nc/4.0">
<license-p>This article is published under the terms of the Creative Commons Attribution-Non Commercial License (CC-BY-NC;
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by-nc/4.0/">https://creativecommons.org/licenses/by-nc/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zef00416000417.pdf"></self-uri>
<abstract>
<p>SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene
<italic>SHOX</italic>
, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative
<italic>SHOX</italic>
mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of
<italic>SHOX</italic>
deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.</p>
</abstract>
</article-meta>
</front>
<body>
<p>
<list list-type="roman-upper">
<list-item>
<p>Introduction</p>
</list-item>
<list-item>
<p>The
<italic>SHOX</italic>
Gene</p>
<list list-type="alpha-upper">
<list-item>
<p>Identification of
<italic>SHOX</italic>
</p>
</list-item>
<list-item>
<p>
<italic>SHOX</italic>
gene structure</p>
</list-item>
<list-item>
<p>
<italic>SHOX</italic>
gene expression</p>
</list-item>
<list-item>
<p>Mechanisms underlying
<italic>SHOX</italic>
regulation at the transcriptional and post-transcriptional level</p>
</list-item>
</list>
</list-item>
<list-item>
<p>The SHOX Protein</p>
<list list-type="alpha-upper">
<list-item>
<p>SHOX is a transcription factor</p>
</list-item>
<list-item>
<p>SHOX functional domains</p>
</list-item>
</list>
</list-item>
<list-item>
<p>SHOX-Related Pathways</p>
<list list-type="alpha-upper">
<list-item>
<p>SHOX is expressed in the growth plate</p>
</list-item>
<list-item>
<p>SHOX is a modulator of cell proliferation and apoptosis</p>
</list-item>
<list-item>
<p>Transcriptional targets</p>
</list-item>
<list-item>
<p>Upstream regulators</p>
</list-item>
<list-item>
<p>Possible roles of SHOX in bone development</p>
</list-item>
</list>
</list-item>
<list-item>
<p>Clinical Implications of SHOX Deficiency</p>
<list list-type="alpha-upper">
<list-item>
<p>Léri-Weill dyschondrosteosis</p>
</list-item>
<list-item>
<p>Langer mesomelic dysplasia</p>
</list-item>
<list-item>
<p>Turner syndrome</p>
</list-item>
<list-item>
<p>Sex chromosome aneuploidies</p>
</list-item>
<list-item>
<p>Idiopathic short stature</p>
</list-item>
<list-item>
<p>
<italic>SHOX</italic>
enhancer deletions in LWD and ISS</p>
</list-item>
<list-item>
<p>Treatment of SHOX deficiency</p>
</list-item>
<list-item>
<p>Clinical indicators of SHOX deficiency</p>
</list-item>
</list>
</list-item>
<list-item>
<p>Conclusions</p>
</list-item>
</list>
</p>
<sec>
<title>I. Introduction</title>
<p>Adult body height depends substantially on the length of the long bones. Bone development and longitudinal growth are highly complex developmental processes that are influenced by multiple environmental and genetic factors. For example, malnutrition and untreated infectious disease hinder growth. However, environmental factors account for a relatively small percentage of the height variation within a population. Instead, most of the variation is due to genetic and possibly epigenetic factors. Not surprisingly, defects in the genes involved in bone development can produce diseases with varied skeletal defects, altered bone growth, and stature below or above the mean.</p>
<p>Short stature is a descriptive term indicating height that is significantly below the average of the general population for that person's age and sex. More precisely, short stature is statistically defined as 2 SD below the mean population height for age and sex (less than the third percentile) or, when evaluating shortness in relation to family background, more than 2 SD below the midparental height (
<xref rid="B1" ref-type="bibr">1</xref>
). It affects approximately 3% of children worldwide and is therefore a condition for which clinical attention is frequently sought during childhood. This is appropriate because growth failure may be an early sign of serious renal, gastrointestinal, endocrine, or genetic disease.</p>
<p>More than 150 genes are known to be involved in the etiology of syndromes characterized by short stature (
<xref rid="B2" ref-type="bibr">2</xref>
<xref ref-type="bibr" rid="B3"></xref>
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B81" ref-type="bibr">81</xref>
). Genetic abnormalities associated with short stature include major chromosomal rearrangements, large-scale deletions or loss of a whole chromosome, and point mutations, small deletions or insertions, or copy number variation in key genes involved in bone development. Examples include mutations to SOX9 (MIM: 608160) (
<xref rid="B6" ref-type="bibr">6</xref>
), COL2A1 (
<xref rid="B7" ref-type="bibr">7</xref>
), and FGFR3 (MIM: 134934) (
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
). (For a list of genes whose mutations are associated with short stature, we redirect the reader to the following reviews: Refs.
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
, and
<xref rid="B11" ref-type="bibr">11</xref>
.) However, such known mutations appear to explain only a small percentage of growth failure cases; a high percentage of clinical conditions with short stature cases remains idiopathic. The identification of underlying gene defects in such cases will be crucial for more accurate diagnosis of growth disorders and for the development of novel tailored clinical interventions.</p>
</sec>
<sec>
<title>II. The
<italic>SHOX</italic>
Gene</title>
<sec>
<title>A. Identification of
<italic>SHOX</italic>
</title>
<p>Numerous studies indicate a fundamental role of human sex chromosomes in height determination. For example, complete loss of the X chromosome causes the short stature and other abnormalities found in patients with Turner syndrome (TS) (MIM: 313000) (
<xref rid="B12" ref-type="bibr">12</xref>
). Deletions of the short arm of the X chromosome and the short arm of the Y chromosome (
<xref rid="B12" ref-type="bibr">12</xref>
<xref ref-type="bibr" rid="B13"></xref>
<xref rid="B14" ref-type="bibr">14</xref>
) including the pseudoautosomal region 1 (PAR1) have also been consistently linked with short stature (
<xref rid="B15" ref-type="bibr">15</xref>
).</p>
<p>On the basis of these studies, PAR1 was proposed as a candidate region containing a key genetic locus involved in growth determination. Recombination frequency in this region in males is very high (
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
). Genes residing in this region escape X inactivation (the process by which one of the X chromosomes is rendered genetically silent), and therefore two active copies of the genes are required for normal physiological function. Consequently, short stature phenotypes were considered to arise as a result of haploinsufficiency of the critical short stature gene in PAR1 (
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B15" ref-type="bibr">15</xref>
). Deletion mapping of short stature patients with chromosomal aberrations narrowed down a critical interval, in proximity to the telomeric end of the short arms of the sex chromosomes, that was deleted in these patients (
<xref rid="B18" ref-type="bibr">18</xref>
). Subsequent cDNA and exon amplification within this region identified a novel homeobox gene, which was termed
<italic>SHOX</italic>
(MIM: 312865) for short stature homeobox-containing gene on chromosome X, and suggested to segregate with the short stature phenotype observed in these patients (
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
). At about the same time, another group independently identified the same gene using a complementary approach based on a yeast artificial chromosome encompassing the 700-kb critical interval. The gene was named
<italic>PHOG</italic>
, for pseudoautosomal homeobox-containing osteogenic gene (
<xref rid="B20" ref-type="bibr">20</xref>
). Rao et al (
<xref rid="B19" ref-type="bibr">19</xref>
) provided the final proof for a role of
<italic>SHOX</italic>
in linear growth by screening individuals with idiopathic short stature (ISS) and identifying a point mutation (c.583CvT) leading to a premature stop codon (p.Arg195*) in exon 5 of
<italic>SHOX</italic>
in one patient. Pedigree analysis of the patient's family showed that the mutation cosegregated with the short stature phenotype in all affected members of the family (
<xref rid="B19" ref-type="bibr">19</xref>
).</p>
<p>After its discovery, a number of studies linked
<italic>SHOX</italic>
mutations to the short stature and the skeletal defects associated with Léri-Weill dyschondrosteosis (LWD) (MIM: 127300), Langer mesomelic dysplasia (MIM: 249700), and TS (MIM: 313000). Moreover, the association between SHOX deficiency and the short stature phenotype in a significant fraction of short individuals previously described as idiopathic became apparent, making mutations of this gene the most common genetic defect leading to short stature in humans. The clinical implication of
<italic>SHOX</italic>
mutations, therapeutic interventions, and clinical indicators of SHOX deficiency will be discussed in more detail below.</p>
</sec>
<sec>
<title>B. SHOX gene structure</title>
<p>The
<italic>SHOX</italic>
gene (MIM: 312865) spans approximately 40 kb, about 500 kb from the telomeres of sex chromosomes. Initial characterization of
<italic>SHOX</italic>
revealed seven exons encoding two alternatively spliced transcripts termed
<italic>SHOXa</italic>
and
<italic>SHOXb</italic>
. The two transcripts, which are identical at the 5′ end but differ in the final exon (6a vs 6b) at the 3′ end (
<xref rid="B19" ref-type="bibr">19</xref>
), are translated into distinct protein isoforms of 292 (SHOXa) and 225 (SHOXb) amino acids. However, the
<italic>SHOX</italic>
genomic structure has been extended recently to include four additional exons (2a, 7–1, 7–2, and 7–3) that encode novel SHOX isoforms (
<xref ref-type="fig" rid="F1">Figure 1</xref>
and below) (
<xref rid="B21" ref-type="bibr">21</xref>
).</p>
<fig id="F1" position="float">
<label>Figure 1.</label>
<caption>
<p>The
<italic>SHOX</italic>
gene. The
<italic>SHOX</italic>
gene maps to 505–527 kb from the telomere of the sex chromosomes on Xp22.33 and Yp11.32 and spans approximately 40 kb. It is composed of nine exons that produce two main transcripts,
<italic>SHOXa</italic>
and
<italic>SHOXb</italic>
, of different length. The two transcripts contain a DNA sequence called a homeobox that encodes the homeodomain, a conserved DNA-binding domain that characterizes the family of the homeodomain-containing transcription factors. Alternative SHOX isoforms are also formed by alternative splicing of the exons. The function of these isoforms is not entirely clear, but they may be involved in the spatiotemporal regulation of
<italic>SHOX</italic>
expression and activity (see also Section II C). Exon 7 variants are found to be exclusively expressed in fetal neuro-tissues arguing for a specific role of these variants during brain development. The different mRNAs are predicted to lead to peptides of different length. Tel, telomere.</p>
</caption>
<graphic xlink:href="zef0041629290001"></graphic>
</fig>
<p>Sequence alignments identified
<italic>SHOX</italic>
as a member of the
<italic>Paired</italic>
-like homeobox-containing genes (
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B20" ref-type="bibr">20</xref>
). This family codes for transcription factors containing a characteristic 60-amino acid DNA-binding domain called the homeodomain. Homeobox genes regulate pattern formation and organogenesis during both vertebrate and invertebrate embryogenesis and development (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B23" ref-type="bibr">23</xref>
). They can function as both transcriptional activators and repressors in regulating the temporal and spatial expression of different target genes.
<italic>SHOX</italic>
has high similarity to the human
<italic>SHOX2</italic>
gene and its mouse ortholog
<italic>Shox2</italic>
(
<xref rid="B24" ref-type="bibr">24</xref>
).
<italic>SHOX</italic>
is present in most vertebrate species including chimpanzee, dog, chicken, frog, and fish, with the notable exception of rodents, where the gene was lost during evolution (
<xref rid="B25" ref-type="bibr">25</xref>
).</p>
</sec>
<sec>
<title>C.
<italic>SHOX</italic>
gene expression</title>
<sec>
<title>1. Human</title>
<p>Expression studies revealed a clear difference in the expression pattern of the
<italic>SHOX a</italic>
and
<italic>b</italic>
isoforms. Whereas both are expressed predominantly in bone marrow fibroblasts,
<italic>SHOXa</italic>
is also expressed in several other tissues (
<xref rid="B19" ref-type="bibr">19</xref>
). More recently, analysis of the
<italic>SHOX</italic>
expression pattern in embryonic, fetal, and adult tissues—by real-time PCR (RT-PCR) coupled with sequence validation—revealed
<italic>SHOX</italic>
expression in multiple fetal (muscle, skin, intestine, eye, brain, spinal cord) and adult tissues, with the strongest expression in placenta, skeletal muscle, bone marrow, and adipose tissue (
<xref rid="B21" ref-type="bibr">21</xref>
). In addition, weak expression was detected in fetal and adult brain regions including the cerebellum, thalamus, and basal ganglia, implying a yet uncharacterized role for SHOX in brain development (
<xref rid="B21" ref-type="bibr">21</xref>
). In particular, the newly identified exon 2a was detected in several fetal and adult brain tissues, with the strongest expression in fetal eye and brain, and in adult bone marrow and skeletal muscle, whereas the three exon 7-containing splice variants were only detected at higher abundance in fetal brain tissues. The exact role of these novel SHOX isoforms remains to be deciphered, but their involvement has been postulated in the developmental and tissue-specific regulation of
<italic>SHOX</italic>
expression (
<xref rid="B21" ref-type="bibr">21</xref>
).</p>
<p>In situ hybridization studies on human embryos revealed a spatiotemporally restricted expression pattern of
<italic>SHOX</italic>
. Expression in the developing limbs is detected at Carnegie stage (CS) 14 as a broad band across the middle part of the limb (CS14 roughly corresponds to 5 weeks after conception). During condensation and chondrification, the expression becomes more pronounced around the precartilaginous anlagen of the elbow. When the various bones of the arm can be identified (at CS21),
<italic>SHOX</italic>
expression is still mainly confined to the middle portion of the arm, around the distal ends of the humerus, radius, and ulna, and in a few bones of the wrist. Analogously, the results of
<italic>SHOX</italic>
in situ hybridization on the lower limbs resembled the expression pattern described for the upper limb development.
<italic>SHOX</italic>
is also present in the first and second pharyngeal arches (
<xref rid="B25" ref-type="bibr">25</xref>
) that give rise to the maxilla, mandible, and some bones of the ear. Remarkably, TS and LWD patients with SHOX deficiency display skeletal defects in the same anatomical structures in which
<italic>SHOX</italic>
is expressed—forearm and lower legs as well as the maxilla, mandible, and external ear tract—providing clinical evidence for the role of SHOX in development of these structures (
<xref rid="B25" ref-type="bibr">25</xref>
).
<italic>SHOX2</italic>
is also expressed in limbs, but in a more proximal position than
<italic>SHOX</italic>
(
<xref rid="B25" ref-type="bibr">25</xref>
). In addition,
<italic>SHOX2</italic>
transcripts are detected in the developing heart (
<xref rid="B24" ref-type="bibr">24</xref>
<xref ref-type="bibr" rid="B25"></xref>
<xref rid="B26" ref-type="bibr">26</xref>
).</p>
</sec>
<sec>
<title>2. Chicken</title>
<p>Similar to the human embryo expression pattern, chicken embryo
<italic>Shox</italic>
expression is observed in the central regions of early limb buds and is restricted to the distal two-thirds of the limb in later stages of development (
<xref rid="B27" ref-type="bibr">27</xref>
). These areas correspond to those affected in humans with SHOX deficiency.
<italic>Shox</italic>
is also expressed in connective tissue around cartilage and muscle, in a layer of cells below the dermis, and in the branchial arches, nervous system, and vasculature. The expression pattern of
<italic>Shox2</italic>
in chicken limb buds also resembles that in humans and is confined mostly to the proximal third of the limb bud. Also similar to human embryos, chicken embryo
<italic>Shox2</italic>
expression overlaps that of
<italic>Shox</italic>
only in the proximal limb bud (
<xref rid="B27" ref-type="bibr">27</xref>
). Given these similarities, the chick embryo has become a model system for studying the functions of both
<italic>Shox</italic>
and
<italic>Shox2</italic>
in limb development (
<xref rid="B28" ref-type="bibr">28</xref>
<xref ref-type="bibr" rid="B29"></xref>
<xref rid="B31" ref-type="bibr">31</xref>
).</p>
</sec>
<sec>
<title>3. Zebrafish</title>
<p>Studies on zebrafish, which also express both
<italic>Shox</italic>
and
<italic>Shox2</italic>
, confirmed an important role for
<italic>Shox</italic>
in embryonic growth and bone formation because morpholino-mediated silencing of
<italic>Shox</italic>
resulted in significant growth retardation (reduced somite number and body length) and decreased ossification in anterior vertebrae and a subset of craniofacial bones (
<xref rid="B32" ref-type="bibr">32</xref>
).
<italic>Shox</italic>
was expressed in a variety of zebrafish tissues and organs from embryonic to adult stage, including blood, heart, hatching gland, pharyngeal arch, olfactory epithelium, and fin bud. The predominant domains of
<italic>Shox</italic>
expression were mandibular arch, pectoral fins, anterior notochord, rhombencephalon, and mesencephalon, suggesting that Shox is involved in both bone and neural development (
<xref rid="B32" ref-type="bibr">32</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
). Given that the osteogenic role of
<italic>Shox</italic>
appears to be conserved throughout evolution from fish to human, the zebrafish model may be a valuable tool to characterize SHOX functions by facilitating identification of
<italic>SHOX</italic>
gene expression regulators, SHOX-interacting proteins, and SHOX target genes and should therefore be explored further.</p>
</sec>
<sec>
<title>4. Rodents</title>
<p>
<italic>Shox</italic>
does not exist in rodents. Because rodents do not harbor
<italic>Shox</italic>
, but harbor only
<italic>Shox2</italic>
,
<italic>Shox2</italic>
may have assumed the functions of both
<italic>SHOX</italic>
and
<italic>SHOX2</italic>
(MIM: 602504) in these animals (
<xref rid="B34" ref-type="bibr">34</xref>
). Mice homozygous for the deleted
<italic>Shox2</italic>
allele die during embryogenesis between embryonic day 11.5 (E11.5) and E14.5 (
<xref rid="B35" ref-type="bibr">35</xref>
,
<xref rid="B36" ref-type="bibr">36</xref>
) or at E17.5 (
<xref rid="B37" ref-type="bibr">37</xref>
) due to aberrant formation of the sinoatrial node. These abnormalities lead to cardiovascular defects such as severe pacemaking and conduction deficiencies, indicating that Shox2 plays a critical role in heart development. The lethal mouse phenotype caused by
<italic>Shox2</italic>
deletion provides a potential explanation for why homozygous SHOX2 deficiency has not been observed in any known human syndrome. Studies with conditional
<italic>Shox2</italic>
knockout mouse models revealed that Shox2 also plays a critical role in the normal development of the proximal vertebrate limb because its genetic ablation results in severe shortened stylopodial elements (humerus and femur) (
<xref rid="B34" ref-type="bibr">34</xref>
).
<italic>Shox2</italic>
is expressed in growth plate chondrocytes and in the perichondrium, and its removal from limb results in delayed chondrogenesis responsible for the dwarf phenotype observed (
<xref rid="B38" ref-type="bibr">38</xref>
). Shox2 regulates chondrocyte maturation by modulating
<italic>Runx2</italic>
transcription (
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
), a function that exerts in concert with Hox family members (
<xref rid="B38" ref-type="bibr">38</xref>
) (see also section IV D).</p>
<p>
<italic>Shox2/SHOX2</italic>
expression in chicken and human is mainly found to the stylopodial elements and juxtaposes the expression pattern of
<italic>Shox/SHOX</italic>
that is instead mainly found in the zeugopodial elements (radius/ulna and fibula/tibia) (
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B27" ref-type="bibr">27</xref>
).
<italic>Shox2</italic>
in mice is instead expressed in both the developing stylopodial and zeugopodial elements (
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
). Therefore, it has been proposed that the extended expression of
<italic>Shox2</italic>
is one of the mechanisms that mice have evolved to compensate for the lack of
<italic>Shox</italic>
in the developing forelimb (
<xref rid="B38" ref-type="bibr">38</xref>
).</p>
<p>A number of studies indicate that Shox2 is also required for the control of other development processes, including the development of nerves and muscles in the forelimb (
<xref rid="B40" ref-type="bibr">40</xref>
), palate (
<xref rid="B37" ref-type="bibr">37</xref>
), temporomandibular joint (
<xref rid="B41" ref-type="bibr">41</xref>
), facial motor nucleus and facial nerves (
<xref rid="B42" ref-type="bibr">42</xref>
), mechanosensory neurons of the dorsal root ganglia (
<xref rid="B43" ref-type="bibr">43</xref>
), and dorsal cerebellum (
<xref rid="B42" ref-type="bibr">42</xref>
). In addition,
<italic>SHOX2</italic>
is also expressed in human and mouse sc adipocytes, where it is involved in the regulation of lipolysis by controlling the expression of the β3 adrenergic receptor encoding gene. Specific disruption of
<italic>Shox2</italic>
in adypocytes protected mice from high fat diet-induced obesity (
<xref rid="B44" ref-type="bibr">44</xref>
).</p>
</sec>
</sec>
<sec>
<title>D. Mechanisms underlying
<italic>SHOX</italic>
regulation at the transcriptional and post-transcriptional level</title>
<p>
<italic>SHOX</italic>
expression is restricted to certain compartments during specific phases of development, implying a tight spatiotemporal regulation. Several layers of complexity have emerged for regulating
<italic>SHOX</italic>
gene expression, including alternative promoters, alternative exons, and cis-regulatory sequences (enhancers) positioned up- and downstream of the transcription unit.</p>
<sec>
<title>1. Alternative promoters</title>
<p>Two alternative promoters, P1 and P2, were reported to control
<italic>SHOX</italic>
expression at the transcriptional level. The two promoters generate two classes of mRNA that encode identical proteins but differ in their 5′ untranslated region (UTR) by the presence of seven AUG codons upstream of the SHOX open reading frame. The transcripts containing these seven AUG elements are translated with reduced efficiency, providing an interesting mechanism of regulation of SHOX protein levels not only at the transcriptional but also at the translational level (
<xref rid="B45" ref-type="bibr">45</xref>
). The two promoters may be alternatively used in response to different physiological situations, thereby contributing to the fine-tuned regulation of the levels and tissue specificity of SHOX expression. However, the circumstances under which one promoter is preferred over the other and the molecular mechanisms controlling their individual activity remain to be deciphered.</p>
</sec>
<sec>
<title>2. Enhancer elements</title>
<p>Cis-acting regulatory elements often influence the spatiotemporal expression of genes involved in embryonic development and differentiation. These noncoding DNA sequences enhance or repress gene transcription and may be located near the protein-coding region or at a considerable distance from it (up to 2 million base pairs away) (
<xref rid="B46" ref-type="bibr">46</xref>
). Generally, these regulatory elements are conserved throughout evolution because of their importance in transcriptional regulation (
<xref rid="B47" ref-type="bibr">47</xref>
). Disruption leading to haploinsufficiency has been reported in a number of human syndromes (
<xref rid="B48" ref-type="bibr">48</xref>
). Several conserved noncoding elements (CNEs), four downstream (
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
) and three upstream (with a distance of 200 and 250 kb of the
<italic>SHOX</italic>
gene, respectively) (
<xref rid="B30" ref-type="bibr">30</xref>
), have been identified within PAR1 (
<xref ref-type="fig" rid="F2">Figure 2</xref>
). These elements are conserved in all species in which
<italic>SHOX</italic>
is present. CNE-4 and CNE-5 also reside near the
<italic>SHOX</italic>
paralog
<italic>SHOX2</italic>
and were presumably duplicated together with the coding sequence (
<xref rid="B33" ref-type="bibr">33</xref>
). They already exist in fugu, the most evolutionary distant vertebrate, suggesting functional significance.</p>
<fig id="F2" position="float">
<label>Figure 2.</label>
<caption>
<p>Mechanisms regulating SHOX gene expression. A, Alternative promoters. Two promoters, P1 and P2, control
<italic>SHOX</italic>
expression. These promoters produce transcripts that differ in their 5′-UTR: P1 produces transcripts containing seven untranslated AUG codons, whereas P2 transcripts lack these regulative elements. The two types of mRNA are translated with different efficiency, thereby contributing to the fine-tuned regulation of the levels and tissue specificity of SHOX expression. B, Enhancer elements. Evolutionarily conserved regions in PAR1 identified in different studies. CNE, highly evolutionarily conserved noncoding DNA elements (
<xref rid="B30" ref-type="bibr">30</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
); ECR, evolutionarily conserved sequence (
<xref rid="B29" ref-type="bibr">29</xref>
); ECS, evolutionarily conserved sequence (
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B49" ref-type="bibr">49</xref>
). The upper horizontal line indicates the physical distance from Xp/Yp telomere (Tel;hg19,build37). Genomic positions: SHOXa (NM_000451.3), chrX:585, 079-607558; CNE-2, chrX:516, 610-517229; CNE-3, chrX:460, 279-460664; CNE-5, chrX:398, 357-398906; CNE-4, chrX:714, 085-714740; CNE-5, chrX:750, 825-751850; ECR1, xhrX:780, 580-781235; and CNE-9/ECS4, chrX:834, 746-835548 (Tel;hg19,build37). C, Splice variants. Different isoforms are generated by the
<italic>SHOX</italic>
gene through alternative splicing. Addition of exon 7 can be either attached directly to exon 5 and therefore become a part of the open reading frame or elongates the 3′-UTR of the SHOX transcript. The different 3′-UTR may be subjected to alternative microRNA-mediated regulation. Insertion of exon 2a leads to a premature stop codon in exon 3, which could lead to mRNA degradation. Exon III and IV contain the homeobox. Light gray boxes indicate untranslated regions; dark gray boxes depict open reading frame.</p>
</caption>
<graphic xlink:href="zef0041629290002"></graphic>
</fig>
<p>The function of these CNEs as enhancers of
<italic>SHOX</italic>
transcription has been demonstrated in human cells (
<xref rid="B49" ref-type="bibr">49</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
), in chicken limb buds (
<xref rid="B30" ref-type="bibr">30</xref>
,
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
), and in zebrafish (
<xref rid="B33" ref-type="bibr">33</xref>
), suggesting that they may play a similar role in the regulation of
<italic>SHOX</italic>
expression during bone development in different species. In addition, several CNEs have also been shown to regulate
<italic>shox</italic>
expression in zebrafish brain and muscle tissue (
<xref rid="B33" ref-type="bibr">33</xref>
). In
<italic>Section V.E</italic>
, we will discuss the involvement of these regions in
<italic>SHOX</italic>
-related diseases.</p>
</sec>
<sec>
<title>3. Alternative exons</title>
<p>We have already cited the existence of several SHOX splice variants generated by alternative usage of
<italic>SHOX</italic>
exons. The mRNAs encoding these SHOX isoforms differ in the 3′-UTR region, and therefore their expression may be subject to diverse microRNA regulation. In addition, they encode SHOX isoforms (eg, SHOXb) that contain the same homeodomain of SHOXa but lack the protein transactivation domain (encoded by exon 6a) and are therefore unable to activate transcription. These isoforms might act as negative regulators of SHOXa by competing for the same DNA consensus sequences or by dimerizing with the active protein. The mechanisms regulating
<italic>SHOX</italic>
gene expression are summarized in
<xref ref-type="fig" rid="F2">Figure 2</xref>
.</p>
</sec>
</sec>
</sec>
<sec>
<title>III. The SHOX Protein</title>
<p>The two proteins, SHOXa and SHOXb, share many of the features described below because SHOXb is identical to SHOXa in its first 211 amino acids and lacks only the C-terminal portion. Because all functional studies performed on SHOX so far have focused on SHOXa, this section refers to this isoform (hereafter referred to as SHOX).</p>
<sec>
<title>A. SHOX is a transcription factor</title>
<p>SHOX is characterized by the presence of a homeodomain that is identical to the homeodomains of both SHOX2 and its mouse ortholog Shox2 (
<xref rid="B24" ref-type="bibr">24</xref>
). The homeodomain is composed of three helices. Helices I and II are antiparallel to each other, and helices II and III form a helix-turn-helix motif that is separated from helix I by a loop (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B51" ref-type="bibr">51</xref>
). Helix III of the homeodomain (also called the recognition helix) contacts the DNA major groove, whereas its flexible N terminus inserts into the minor DNA groove (
<xref rid="B22" ref-type="bibr">22</xref>
,
<xref rid="B52" ref-type="bibr">52</xref>
,
<xref rid="B53" ref-type="bibr">53</xref>
).</p>
<p>First insights into the biological role of SHOX derived from studies of osteogenic (U2OS-TRex) and embryonic kidney (HEK 293-TRex) stable cell lines in which SHOX expression was under a Tet-on/Tet-off inducible system. The activities of wild-type SHOX were compared with those of a C-terminally truncated version (SHOX L185X, termed SHOX-STM) that resembled a SHOX mutant previously identified in individuals with LWD or ISS (c.583C>T) (
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B54" ref-type="bibr">54</xref>
<xref ref-type="bibr" rid="B55"></xref>
<xref rid="B58" ref-type="bibr">58</xref>
).</p>
<p>Transient transfection experiments showed that both wild-type SHOX and SHOX-STM localized in an unevenly distributed focal pattern within the nucleus of all cell lines analyzed (human U2OS and HEK-293, simian Cos7, and murine NIH 3T3) (
<xref rid="B51" ref-type="bibr">51</xref>
). Within the nucleus, colocalization studies indicated that SHOX did not colocalize with nucleoli, centromeres, or the basic transcription factor TFIIH. Therefore, the nature and composition of SHOX foci remain to be characterized. Experiments with a green fluorescent protein (GFP)-tagged version of
<italic>SHOX</italic>
(
<italic>SHOX-GFP</italic>
) also confirmed SHOX nuclear localization, which is consistent with its role as a transcription factor.</p>
<p>After screening an oligonucleotide random library (using systematic evolution of ligands by exponential enrichment), putative SHOX recognition sequences were isolated and amplified using PCR. SHOX binding to these DNA sequences was confirmed by electromobility shift assays. Similar to other paired-like homeodomain proteins (
<xref rid="B59" ref-type="bibr">59</xref>
), SHOX preferentially binds to palindromic motifs of the type 5′-TAAT(N)
<sub>2–3</sub>
ATTA, referred to as P2 or P3 elements, according to the number of nucleotides that separate the palindromic half-sites. Many homeodomain proteins, especially those of the paired-like class, exert their function by a cooperative dimerization during DNA binding (
<xref rid="B60" ref-type="bibr">60</xref>
). Consistent with this, SHOX is able to bind to DNA as both a monomer and a homodimer (
<xref rid="B51" ref-type="bibr">51</xref>
). The formation of SHOX homodimers was also confirmed by yeast two-hybrid system studies using SHOX as both bait and prey (
<xref rid="B51" ref-type="bibr">51</xref>
). Finally, SHOX-responsive elements were cloned in front of a Simian virus 40 minimal promoter that controlled expression of a luciferase reporter gene. Transient transfection of this plasmid in SHOX or SHOX-STM U2OS and HEK293 stable cell lines demonstrated that SHOX acts as a transcriptional activator of the luciferase reporter gene in osteosarcoma U2OS cells but not in HEK293 cells, suggesting that cell type-specific cofactors present in osteogenic cells are required for the transcriptional activity of SHOX (
<xref rid="B51" ref-type="bibr">51</xref>
).</p>
</sec>
<sec>
<title>B. SHOX functional domains</title>
<p>Missense mutations within the homeodomain that lead to amino-acid substitutions have been described in individuals with LWD or ISS. Nine different SHOX missense mutations within the homeodomain of LWD or ISS patients were analyzed functionally and shown to cause decreased SHOX biological function by affecting DNA binding, dimerization, and/or nuclear translocation (
<xref rid="B61" ref-type="bibr">61</xref>
). These studies helped to unravel important functional domains of the SHOX protein (
<xref ref-type="fig" rid="F3">Figure 3</xref>
A) and provided an explanation at the molecular level for the clinical conditions present in patients with LWD and ISS (
<xref rid="B61" ref-type="bibr">61</xref>
<xref ref-type="bibr" rid="B62"></xref>
<xref rid="B63" ref-type="bibr">63</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3.</label>
<caption>
<p>SHOX at a glance. A, Functional domains. Schematic view of the SHOX protein and its main functional domains. HD, homeodomain; NLS, nuclear localization signal; OAR, transactivation domain; N, N terminus; C, C terminus. B, SHOX interactome. The cellular factors known to interact with SHOX or mediate its cellular functions are depicted as a network.</p>
</caption>
<graphic xlink:href="zef0041629290003"></graphic>
</fig>
<sec>
<title>1. Nuclear localization signal</title>
<p>Mutations in the amino acids A170 and R173 (p.A170P, p.R173C, and p.R173H), which have been found in three different families with LWD (
<xref rid="B61" ref-type="bibr">61</xref>
,
<xref rid="B62" ref-type="bibr">62</xref>
,
<xref rid="B64" ref-type="bibr">64</xref>
<xref ref-type="bibr" rid="B65"></xref>
<xref rid="B67" ref-type="bibr">67</xref>
), resulted in an aberrant localization of SHOX in the cytoplasm (
<xref rid="B61" ref-type="bibr">61</xref>
,
<xref rid="B68" ref-type="bibr">68</xref>
). Study of these mutant SHOX proteins led to discovery of the SHOX nuclear localization signal, which resides within the recognition helix of the homeodomain and represents a basic, nonclassical signal defined by the five amino acids AKCRK (
<xref rid="B68" ref-type="bibr">68</xref>
). All three LWD missense mutations altered this SHOX nuclear localization signal. Insertion of the AKCRK motif adjacent to the mutated amino acids restored the ability of SHOX proteins to translocate into the nucleus. Because SHOX must first translocate into the nucleus to exert its function as a transcription factor, these studies establish the impairment of nuclear localization as a mechanism underlying SHOX-related diseases (
<xref rid="B68" ref-type="bibr">68</xref>
).</p>
</sec>
<sec>
<title>2. SHOX dimerization domain</title>
<p>Several different SHOX homeodomain missense mutations found in patients with LWD and ISS were shown to diminish the dimerization ability of the SHOX protein (ie, p.L132V, p.R168W, p.A170P, and p.R173H), thus indicating involvement of the homeodomain in dimerization (
<xref rid="B61" ref-type="bibr">61</xref>
). Such mutations are thought to impair SHOX transcriptional activity by impairing the ability of the protein to form dimers.</p>
</sec>
<sec>
<title>3. SHOX transactivation domain</title>
<p>A truncated version of the SHOX protein (p.L185X) was unable to activate transcription in osteosarcoma U2OS cells, indicating that the C-terminal portion of the protein, which harbors an OAR (otp, aristaless, and rax) transactivation domain (
<xref rid="B69" ref-type="bibr">69</xref>
<xref ref-type="bibr" rid="B70"></xref>
<xref rid="B71" ref-type="bibr">71</xref>
), is necessary for the transcriptional activity of SHOX. Because the SHOXb isoform lacks this region, it was suggested that this protein is inactive as a transcriptional activator. On the other hand, by sharing the same homeodomain, SHOXb can bind to the same DNA sequences as SHOXa and may therefore form heterodimers with SHOXa and modulate its activity (
<xref rid="B51" ref-type="bibr">51</xref>
).</p>
<p>In addition, one SHOX missense mutation within the homeodomain (p.R153L), which was reported to segregate with disease in at least four independent families, was also unable to activate transcription despite the mutated protein's ability to enter the nucleus, bind to DNA, and dimerize with similar efficiency to wild-type protein (
<xref rid="B61" ref-type="bibr">61</xref>
). These results suggest that the homeodomain itself contributes to the transactivation activity of SHOX.</p>
</sec>
<sec>
<title>4. SHOX phosphorylation site</title>
<p>SHOX is multiphosphorylated in vivo exclusively on serine residues, with Ser106 being the major SHOX phosphorylation site (
<xref rid="B63" ref-type="bibr">63</xref>
). Phosphorylation modulates the biological function of SHOX because substitution of A at S106 impaired its transcriptional activation capacity without affecting its nuclear localization and DNA-binding ability (
<xref rid="B63" ref-type="bibr">63</xref>
).</p>
<p>Ser106 and its adjacent residues Glu107, Asp108, and Glu109 represent a canonical phosphorylation consensus site (SEDE) of casein kinase II (CKII) that preferentially phosphorylates serine in acidic residue-rich regions. Consistent with this observation, CKII was shown to be involved in SHOX phosphorylation because the kinase efficiently phosphorylated SHOX on Ser106 in vitro and CKII-specific inhibitors strongly reduced SHOX phosphorylation in SHOX-expressing cells in vivo. Two SHOX variants harboring missense mutations in Ser106 (c.317>G leading to p.S106W) or in the CKII phosphorylation consensus site (c.325G>T leading to p.E109Q) have been detected in LWD individuals (
<ext-link ext-link-type="uri" xlink:href="http://www.shox.uni-hd.de">http://www.shox.uni-hd.de</ext-link>
). Most likely these mutants are defective in phosphorylation and thereby transcriptionally inactive.</p>
</sec>
</sec>
</sec>
<sec>
<title>IV. SHOX-Related Pathways</title>
<sec>
<title>A. SHOX is expressed in the growth plate</title>
<p>Adult body height depends substantially on the length of the long bones. Long bone elongation occurs in the growth plate, a thin layer of cartilage entrapped between the epiphyseal and metaphyseal bone surrounded by the perichondrium, a layer of dense connective tissue that separates the developing skeletal elements from the surrounding mesenchyme (
<xref rid="B72" ref-type="bibr">72</xref>
).</p>
<p>The growth plate is a highly organized structure that can be subdivided into three distinct layers: the resting, proliferative, and hypertrophic zones (
<xref rid="B73" ref-type="bibr">73</xref>
). Each zone contains chondrocytes at a different stage of differentiation. The resting zone closest to the epiphysis consists of undifferentiated resting chondrocytes, directly derived from mesenchymal stem cells, displaying a typically round phenotype. These cells are rich in lipid, implying nutrient storage potential. They border the proliferative zone and function as precursor cells, generating new clones of rapidly proliferating chondrocytes that undergo several rounds of cell division in a column-wise orientation along the longitudinal axis of the growth plate. Proliferating chondrocytes secrete large amounts of matrix components, such as collagen type II, IX, and XI (MIM: 120140, 120120, 120280), and the proteoglycan aggrecan (MIM: 155760), whose formation is stimulated by up-regulation of the transcription factor SOX9 (MIM: 608160) (
<xref rid="B74" ref-type="bibr">74</xref>
).</p>
<p>At a certain stage, chondrocytes of the proliferative zone stop dividing and become hypertrophic, increasing their size 6- to 10-fold. They secrete large amounts of extracellular matrix rich in type X collagen (MIM: 120110) (
<xref rid="B72" ref-type="bibr">72</xref>
). Furthermore, these terminally differentiated chondrocytes express additional molecular markers such as vascular endothelial growth factor (MIM: 192240) and matrix metalloproteinase 13 (MIM: 600108). Vascular endothelial growth factor stimulates vascularization, whereas matrix metalloproteinase 13 serves to degrade the extracellular matrix proteins, thus facilitating vascular invasion (
<xref rid="B75" ref-type="bibr">75</xref>
).</p>
<p>The growth plate is the engine of longitudinal bone elongation—a coordinated process of mesenchymal condensation and chondrocyte proliferation, maturation, and hypertrophy, followed by vascular invasion and migration into the growth plate of osteoblasts and other bone marrow cell types, which together produce longitudinal bone growth (
<xref rid="B73" ref-type="bibr">73</xref>
). The list of factors that regulate growth plate physiology has been greatly enlarged, along with the fast technological development of the recent years in particular with the introduction of whole-genome single nucleotide polymorphism (SNP) arrays, array-comparative genomic hybridization, and whole-exome sequencing for the detection of gene variants that affect bone development and linear growth (
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B76" ref-type="bibr">76</xref>
<xref ref-type="bibr" rid="B77"></xref>
<xref rid="B81" ref-type="bibr">81</xref>
). Studies of transgenic mice have provided functional insights into the role of some of these factors as molecular drivers of endochondral bone ossification. Multiple hormones, paracrine factors, extracellular matrix molecules, and intracellular proteins govern in a coordinated fashion the activity of growth plate chondrocytes through a wide variety of mechanisms. In this section, we will mainly focus on those factors and mechanisms that have been directly or indirectly linked with SHOX and SHOX pathways (
<xref ref-type="fig" rid="F3">Figure 3</xref>
B and
<xref ref-type="table" rid="T1">Table 1</xref>
). For other regulatory systems and signaling cascades that regulate the complex process of endochondral ossification, we redirect the readers to excellent reviews on this topic (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B73" ref-type="bibr">73</xref>
,
<xref rid="B77" ref-type="bibr">77</xref>
,
<xref rid="B82" ref-type="bibr">82</xref>
). In general, among the hormones that modulate linear growth are the GH, IGFs, thyroid hormone, glucocorticoids, estrogens, and androgens (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B83" ref-type="bibr">83</xref>
<xref ref-type="bibr" rid="B84"></xref>
<xref rid="B85" ref-type="bibr">85</xref>
). Chondrocytes in the growth plate and to a lesser extent cells in the adjacent perichondrium modulate longitudinal bone growth by secreting an array of paracrine signaling molecules—such as retinoic acid (RA) (
<xref rid="B86" ref-type="bibr">86</xref>
), Indian hedgehog (MIM: 600726) (
<xref rid="B73" ref-type="bibr">73</xref>
,
<xref rid="B87" ref-type="bibr">87</xref>
), PTHrP (MIM: 158470) (
<xref rid="B73" ref-type="bibr">73</xref>
), bone morphogenetic proteins (BMPs) (MIM: 604444) (
<xref rid="B88" ref-type="bibr">88</xref>
,
<xref rid="B89" ref-type="bibr">89</xref>
), wingless-type mouse mammary tumor virus (MMTV)-integration site family members (
<xref rid="B90" ref-type="bibr">90</xref>
,
<xref rid="B91" ref-type="bibr">91</xref>
), fibroblast growth factors (FGFs) (
<xref rid="B92" ref-type="bibr">92</xref>
), C-type natriuretic peptide (CNP) (MIM: 600296) (
<xref rid="B93" ref-type="bibr">93</xref>
<xref ref-type="bibr" rid="B94"></xref>
<xref rid="B95" ref-type="bibr">95</xref>
), and proinflammatory cytokines such as TNF, IL-1β, and IL-6 (
<xref rid="B84" ref-type="bibr">84</xref>
,
<xref rid="B96" ref-type="bibr">96</xref>
). These molecules, together with their receptors, control growth plate physiology by activating multiple signaling pathways (
<xref rid="B82" ref-type="bibr">82</xref>
). Furthermore, chondrocytes secrete cartilage extracellular matrix rich of collagens (eg, collagen type II and X), noncollagenous proteins (eg, byclan and decorin), and proteoglycans (eg, aggrecan), which also play important roles in growth plate regulation (
<xref rid="B97" ref-type="bibr">97</xref>
). A variety of transcription factors are also pivotal for chondrocyte differentiation (
<xref rid="B82" ref-type="bibr">82</xref>
). Notable examples include: SRY (sex-determining region Y) (MIM: 480000), SRY-box 9 (SOX9) (MIM: 608160), runt-related transcription factor 2 (RUNX2) (MIM: 600201), forkhead box A2 (FOXA2) (MIM: 600288), and members of the nuclear factor κB family (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B73" ref-type="bibr">73</xref>
,
<xref rid="B82" ref-type="bibr">82</xref>
). The coordinated network of signaling cascades that govern the temporal- and site-specific expression of these genes is only beginning to be elucidated (
<xref rid="B82" ref-type="bibr">82</xref>
). Not surprisingly, alterations of many of the genes involved in growth plate regulation can produce diseases characterized by skeletal defects, altered bone growth, and stature below or above the mean, indicating that linear growth disorders are disorders of growth plate chondrocytes recently reviewed in Baron et al (
<xref rid="B4" ref-type="bibr">4</xref>
) and Wit et al (
<xref rid="B3" ref-type="bibr">3</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1.</label>
<caption>
<p>SHOX Interacting Proteins, Cellular Targets, and Modulators of Activity</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th align="left" rowspan="1" colspan="1">Category</th>
<th align="left" rowspan="1" colspan="1">Gene/Cell Factor</th>
<th align="left" rowspan="1" colspan="1">Abbreviation</th>
<th align="left" rowspan="1" colspan="1">Model System</th>
<th align="left" rowspan="1" colspan="1">Interaction With SHOX</th>
<th align="left" rowspan="1" colspan="1">First Author, Year (Ref.)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" rowspan="1" colspan="1">Upstream regulators</td>
<td align="left" rowspan="1" colspan="1">Retinoic acid</td>
<td align="left" rowspan="1" colspan="1">RA</td>
<td align="left" rowspan="1" colspan="1">Chicken embryos</td>
<td align="left" rowspan="1" colspan="1">Regulates
<italic>Shox</italic>
expression negatively</td>
<td align="left" rowspan="1" colspan="1">Tiecke, 2006 (
<xref rid="B27" ref-type="bibr">27</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Bone morphogenetic protein 4</td>
<td align="left" rowspan="1" colspan="1">BMP4</td>
<td align="left" rowspan="1" colspan="1">Chicken embryos</td>
<td align="left" rowspan="1" colspan="1">Regulates
<italic>Shox</italic>
expression negatively</td>
<td align="left" rowspan="1" colspan="1">Tiecke, 2006 (
<xref rid="B27" ref-type="bibr">27</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Fibroblast growth factor 1</td>
<td align="left" rowspan="1" colspan="1">FGF1</td>
<td align="left" rowspan="1" colspan="1">Chicken embryos</td>
<td align="left" rowspan="1" colspan="1">Regulates
<italic>Shox</italic>
expression negatively</td>
<td align="left" rowspan="1" colspan="1">Tiecke, 2006 (
<xref rid="B27" ref-type="bibr">27</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Homeobox A9</td>
<td align="left" rowspan="1" colspan="1">HOXA9</td>
<td align="left" rowspan="1" colspan="1">Human cell lines, chicken micromass chicken buds</td>
<td align="left" rowspan="1" colspan="1">Binds to the
<italic>SHOX</italic>
promoter, regulates expression negatively</td>
<td align="left" rowspan="1" colspan="1">Durand, 2012 (
<xref rid="B126" ref-type="bibr">126</xref>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Physical interacting proteins</td>
<td align="left" rowspan="1" colspan="1">Casein kinase 2, α 1 polypeptide</td>
<td align="left" rowspan="1" colspan="1">CSNK2A1</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Involved in SHOX phosphorylation</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2006 (
<xref rid="B63" ref-type="bibr">63</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">SRY (sex determining region Y)-box 5</td>
<td align="left" rowspan="1" colspan="1">SOX 5</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and growth plate</td>
<td align="left" rowspan="1" colspan="1">Forms a complex with SHOX together with SOX6 and SOX9</td>
<td align="left" rowspan="1" colspan="1">Aza-Carmona, 2011 (
<xref rid="B113" ref-type="bibr">113</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">SRY (sex determining region Y)-box 6</td>
<td align="left" rowspan="1" colspan="1">SOX6</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and growth plate</td>
<td align="left" rowspan="1" colspan="1">Forms a complex with SHOX together with SOX5 and SOX9</td>
<td align="left" rowspan="1" colspan="1">Aza-Carmona, 2011 (
<xref rid="B113" ref-type="bibr">113</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">SRY (sex determining region Y)-box 9</td>
<td align="left" rowspan="1" colspan="1">SOX9</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and growth plate</td>
<td align="left" rowspan="1" colspan="1">Forms a complex with SHOX together with SOX5 and SOX6</td>
<td align="left" rowspan="1" colspan="1">Aza-Carmona, 2011 (
<xref rid="B113" ref-type="bibr">113</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Short stature homeobox 2</td>
<td align="left" rowspan="1" colspan="1">SHOX2</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Forms heterodimers with SHOX</td>
<td align="left" rowspan="1" colspan="1">Aza-Carmona, 2014 (
<xref rid="B118" ref-type="bibr">118</xref>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Transcriptional direct targets</td>
<td align="left" rowspan="1" colspan="1">Natriuretic peptide B</td>
<td align="left" rowspan="1" colspan="1">NPPB</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and growth plate</td>
<td align="left" rowspan="1" colspan="1">Up-regulated by SHOX, co-expression</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2007 (
<xref rid="B103" ref-type="bibr">103</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Fibroblast growth factor receptor 3</td>
<td align="left" rowspan="1" colspan="1">FGFR3</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and chicken micromass</td>
<td align="left" rowspan="1" colspan="1">Down-regulated</td>
<td align="left" rowspan="1" colspan="1">Decker, 2011 (
<xref rid="B28" ref-type="bibr">28</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Connective tissue growth factor</td>
<td align="left" rowspan="1" colspan="1">CTGF</td>
<td align="left" rowspan="1" colspan="1">Human cell lines and growth plate</td>
<td align="left" rowspan="1" colspan="1">Up-regulated, co-expression</td>
<td align="left" rowspan="1" colspan="1">Beiser, 2014 (
<xref rid="B119" ref-type="bibr">119</xref>
)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cellular mediators</td>
<td align="left" rowspan="1" colspan="1">Cyclin-dependent kinase inhibitor 1A (p21, Cip1)</td>
<td align="left" rowspan="1" colspan="1">CDKN1A</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Up-regulated in SHOX-expressing cells; involved in SHOX-induced cell cycle arrest</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2004 (
<xref rid="B98" ref-type="bibr">98</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Cyclin-dependent kinase inhibitor 1B (p27, Kip1)</td>
<td align="left" rowspan="1" colspan="1">CDKN1B</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Up-regulated in SHOX-expressing cells; involved in SHOX-induced cell cycle arrest</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2004 (
<xref rid="B98" ref-type="bibr">98</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Tumor protein p53</td>
<td align="left" rowspan="1" colspan="1">TP53</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Up-regulated in SHOX-expressing cells</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2004 (
<xref rid="B98" ref-type="bibr">98</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Retinoblastoma-like2 (p130)</td>
<td align="left" rowspan="1" colspan="1">RBL2</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Up-regulated in SHOX-expressing cells</td>
<td align="left" rowspan="1" colspan="1">Marchini, 2004 (
<xref rid="B98" ref-type="bibr">98</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Cathepsin B</td>
<td align="left" rowspan="1" colspan="1">CTSB</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Mediators of SHOX-induced cell death</td>
<td align="left" rowspan="1" colspan="1">Hristov, 2014 (
<xref rid="B101" ref-type="bibr">101</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Reactive oxygen species</td>
<td align="left" rowspan="1" colspan="1">ROS</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Mediators of SHOX-induced cell death</td>
<td align="left" rowspan="1" colspan="1">Hristov, 2014 (
<xref rid="B101" ref-type="bibr">101</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Reactive nitrogen species</td>
<td align="left" rowspan="1" colspan="1">RNS</td>
<td align="left" rowspan="1" colspan="1">Human cell lines</td>
<td align="left" rowspan="1" colspan="1">Mediators of SHOX-induced cell death</td>
<td align="left" rowspan="1" colspan="1">Hristov, 2014 (
<xref rid="B101" ref-type="bibr">101</xref>
)</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>To provide further direct evidence of an involvement of SHOX in human bone development, the SHOX expression pattern in fetal (22 weeks gestation) and pubertal (12, 13, and 15 years) human growth plate sections was analyzed by immunohistochemistry. SHOX was detected in the growth plate, particularly in terminally differentiated hypertrophic chondrocytes and, to a lesser extent, in chondrocytes of the resting and proliferative zones. In contrast, SHOX was not expressed in osteoblasts and osteoclasts, suggesting that it does not play a role in these bone cells (
<xref rid="B98" ref-type="bibr">98</xref>
). Munns et al (
<xref rid="B99" ref-type="bibr">99</xref>
) also observed SHOX in human growth plate chondrocytes from 12 weeks gestation until late childhood. These same authors described a highly disordered organization of radial growth plates in LWD patients undergoing surgery for Madelung deformity with disruption of the normal parallel columnar arrangement of chondrocytes (
<xref rid="B100" ref-type="bibr">100</xref>
), indicating abnormal endochondral ossification.</p>
<p>The presence of SHOX in the human growth plate, and in particular in chondrocytes of the hypertrophic region, suggests that SHOX may be involved in the developmental pathway that regulates chondrocyte proliferation and maturation.</p>
</sec>
<sec>
<title>B. SHOX is a modulator of cell proliferation and apoptosis</title>
<p>The first hints at the in vivo function of SHOX came from cell culture studies. In human osteosarcoma U2OS stable cell lines expressing SHOX in an inducible manner, SHOX-expressing cells were observed to grow more slowly than noninduced cells and stopped proliferating 4 days after SHOX induction. SHOX-expressing cells displayed dramatic morphological changes such as an enlarged and more differentiated phenotype with typical protrusions and multinucleation; a large fraction of cells contained two or more nuclei of equal size, most likely due to defective cytokinesis. After prolonged SHOX expression, a consistent fraction of cells detached from the culture dish and died. Flow cytometry analysis showed that SHOX-expressing U2OS cells were arrested in the G2/M phase of the cell cycle. This cell cycle arrest was associated with increased levels of the cyclin kinase inhibitors p21
<sup>Cip1</sup>
and p27
<sup>Kip1</sup>
and with alterations in the expression of other cell cycle regulatory factors such as p53, pRB, p107, and p130 (
<xref rid="B98" ref-type="bibr">98</xref>
).</p>
<p>The reduction in cell number after prolonged SHOX expression indicates that SHOX negatively affects cell viability. SHOX expression in U2OS cells triggers the intrinsic pathway of apoptosis characterized by mitochondrial outer membrane polarization (MOMP) and caspase activation (
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
).</p>
<p>SHOX-induced cell cycle arrest and apoptosis were also confirmed in the pRB- and p53-deficient osteosarcoma Saos-2 cell line, indicating that these two proteins are not required for SHOX-induced cell cycle arrest and apoptosis (our unpublished results). Similar results were also obtained using normal nontransformed human cell cultures such as primary oral fibroblasts and primary chondrocytes. Conversely, the overexpression of SHOX harboring a missense mutation (p.R153L, detected in LWD), a C-terminal deletion (p.R185X, resembling a mutated SHOX found in LWD and ISS patients), or mutation within the phosphorylation site (p.S106A phosphorylation-defective mutant) did not affect cell viability. Because these three mutants are also inefficient in transcriptional activation, SHOX-mediated gene transcription was postulated to be necessary to trigger cell cycle arrest and apoptosis (
<xref rid="B61" ref-type="bibr">61</xref>
,
<xref rid="B63" ref-type="bibr">63</xref>
,
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B101" ref-type="bibr">101</xref>
).</p>
<p>In addition to triggering the intrinsic pathway of apoptosis, which is characterized by MOMP and caspase activation, SHOX expression was also associated with more acidic vesicles, and particularly lysosomes. SHOX induced partial rupture of lysosomal membrane integrity, leading to relocation of the active proteolytic form of cathepsin B from lysosomes to cytoplasm. Large amounts of cathepsin B (MIM: 116810) were also found in the culture medium, suggesting active secretion of the protease. By contrast, cathepsin L protein levels did not vary upon SHOX induction (
<xref rid="B101" ref-type="bibr">101</xref>
). Treatment of the cells with a specific cathepsin inhibitor (Ca074-Me) significantly protected the cells from SHOX-induced apoptosis, strongly suggesting that cathepsins (in particular cathepsin B) play a key role in this event. This finding is in agreement with other studies showing that cathepsins may participate in the induction of apoptosis (
<xref rid="B102" ref-type="bibr">102</xref>
). Furthermore, SHOX expression was found to be associated with oxidative stress characterized by intracellular accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS are important mediators of SHOX-induced cell death because antioxidant treatment with N-acetyl-L-cysteine, reduced glutathione, or FeTPPS significantly reduced both SHOX-mediated lysosomal instability and SHOX-induced cell death. The mechanisms through which SHOX induces oxidative stress remain to be elucidated.</p>
</sec>
<sec>
<title>C. Transcriptional targets</title>
<p>To shed light on the transcriptional targets of SHOX, gene expression profiling studies of U2OS cells expressing SHOX or not (induced or not induced U2OS-SHOX stable cell line) were conducted. The most significantly up-regulated gene in SHOX-expressing cells was
<italic>NPBB</italic>
, which encodes brain natriuretic peptide (BNP) (MIM: 600295) (17-fold increase 24 hours after SHOX induction). SHOX activated the
<italic>NPBB</italic>
promoter in a dual luciferase reporter gene assay by binding specific SHOX-responsive elements within the regulatory region of the
<italic>NPBB</italic>
gene. Chromatin immunoprecipitation (ChIP) assay confirmed the direct binding of SHOX to the
<italic>NPBB</italic>
regulatory region. Furthermore, SHOX and BNP were coexpressed in the hypertrophic zone of human growth plate chondrocytes. Together, these results provided evidence that BNP is a downstream target of SHOX and may play an important role as a mediator of SHOX cellular functions in the growth plate (
<xref rid="B103" ref-type="bibr">103</xref>
) (discussed in section IV E).</p>
<p>After the initial discovery of
<italic>NPBB</italic>
as a cellular target of SHOX, other studies have sought to characterize the pathways and networks through which SHOX regulates bone growth. Using a similar approach to that for the discovery of
<italic>NPBB</italic>
—gene expression profiling of SHOX-expressing cell lines—Decker et al (
<xref rid="B28" ref-type="bibr">28</xref>
) identified
<italic>FGFR3</italic>
as a direct SHOX target gene. Numerous studies have demonstrated that FGF/FGF receptor (FGFR) signaling pathways play a critical role in regulating bone development, controlling the function of basically all skeletal cells, including chondrocytes, osteoblasts, and osteoclasts. They exert their activity closely interacting with other signaling pathways involved in the control of skeletal development and homeostasis, including Indian hedgehog, BMPs, CNP, PTHrP, wingless-related integration site proteins, SOXs, and RUNX2 pathways. These studies have been recently reviewed and therefore will not be covered here (
<xref rid="B92" ref-type="bibr">92</xref>
). The finding that SHOX takes part in the regulation of
<italic>FGFR3</italic>
transcription places SHOX at the center of this network of factors controlling bone growth.</p>
<p>It is known that gain-of-function mutations in
<italic>FGFR3</italic>
cause distinct skeletal syndromes including achondroplasia, hypochondroplasia, and thanatophoric dysplasia—all of which are marked by rhizomelic shortening of the limbs (
<xref rid="B92" ref-type="bibr">92</xref>
,
<xref rid="B104" ref-type="bibr">104</xref>
) due to dysregulated endochondral ossification. Furthermore, Kant et al (
<xref rid="B105" ref-type="bibr">105</xref>
) have recently reported on a novel mutation in
<italic>FGFR3</italic>
causing proportionate short stature. On the contrary, heterozygous (
<xref rid="B106" ref-type="bibr">106</xref>
) and homozygous (
<xref rid="B107" ref-type="bibr">107</xref>
) inactivating
<italic>FGFR3</italic>
mutations cause tall stature associated with skeletal and nonskeletal defects. In agreement with these results, transgenic mice overexpressing activated
<italic>Fgfr3</italic>
mutants in the growth plate present severe dwarfism with decreased chondrocyte proliferation, disorganized chondrocyte columns, and narrowed hypertrophic zone (
<xref rid="B77" ref-type="bibr">77</xref>
,
<xref rid="B92" ref-type="bibr">92</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
<xref ref-type="bibr" rid="B109"></xref>
<xref rid="B110" ref-type="bibr">110</xref>
). Conversely,
<italic>Fgfr3</italic>
knockout mice have been shown to display long bone elongation that correlates with increased chondrocyte proliferation and an elongated growth plate hypertrophic zone (
<xref rid="B111" ref-type="bibr">111</xref>
,
<xref rid="B112" ref-type="bibr">112</xref>
). Taken together, these results indicate that FGFR3 signaling negatively regulates bone growth by decreasing chondrocyte proliferation, accelerating the onset of hypertrophic differentiation, and decreasing the height of the hypertrophic zone in the postnatal growth plate.</p>
<p>Luciferase reporter assays, ChIP sequencing, and ChIP and electromobility band shift experiments together provided evidence that
<italic>FGFR3</italic>
represents a direct target of SHOX. In agreement with this, several SHOX consensus sites were identified within the
<italic>FGFR3</italic>
promoter region. Using limb bud-derived chicken micromass cultures as a model, Decker et al (
<xref rid="B28" ref-type="bibr">28</xref>
) demonstrated, by quantitative real-time-PCR and in situ hybridization, that retrovirus-mediated SHOX gene transfer down-regulates
<italic>FGFR3</italic>
expression. The fact that SHOX represses FGFR3 promoter activity may explain the almost mutually exclusive expression patterns of
<italic>Fgfr3</italic>
and
<italic>Shox</italic>
in embryonic chicken limbs.</p>
<p>Further involvement of SHOX in bone development was supported by the discovery that SHOX interacts with the SOX trio (SOX9, SOX5, and SOX6) transcription factors (
<xref rid="B113" ref-type="bibr">113</xref>
). SOX9, together with SOX5 and SOX6, is a master regulator of chondrocyte differentiation.
<italic>SOX9</italic>
is expressed in resting, proliferative, and prehypertrophic chondrocytes, but not in hypertrophic chondrocytes (
<xref rid="B114" ref-type="bibr">114</xref>
). In the proliferative zone, Sox9 regulates the transcription of multiple genes, including the activation of
<italic>Col2a1</italic>
and aggrecan (
<italic>ACAN</italic>
) and the repression of
<italic>Col10a1</italic>
and
<italic>Runx2</italic>
, thereby sustaining chondrocyte survival and preventing chondrocyte hypertrophy. In prehypertrophic chondrocytes, instead, Sox9 is responsible for the activation of
<italic>Col10a1</italic>
, thereby initiating the onset of hypertrophy (
<xref rid="B82" ref-type="bibr">82</xref>
). Mutations of
<italic>SOX9</italic>
have been associated with campomelic dysplasia, a severe skeletal dysplasia characterized by congenital bowing and angulation of long bones and other skeletal and extraskeletal defects (
<xref rid="B115" ref-type="bibr">115</xref>
).</p>
<p>By interacting with the SOX trio, SHOX regulates the expression of
<italic>ACAN</italic>
, which encodes aggregan, a major component of the cartilage extracellular matrix.
<italic>ACAN</italic>
plays an important role in normal growth plate function, as exemplified by the fact that homozygous mutations in
<italic>ACAN</italic>
are responsible of a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia aggrecan type (
<xref rid="B116" ref-type="bibr">116</xref>
), whereas heterozygous mutations cause a milder skeletal dysplasia, spondyloepimetaphyseal dysplasia, Kimberley type, or short stature without evident radiographic signs of dysplasia (
<xref rid="B117" ref-type="bibr">117</xref>
).</p>
<p>SHOX was shown to bind SOX6 through its homeodomain. Different SHOX missense mutations, which had been described in individuals with LWD or ISS, failed to interact with the SOX trio. Immunohistochemistry of human fetal growth plates demonstrated that SHOX is coexpressed with SOX5, SOX6, and SOX9 (
<xref rid="B113" ref-type="bibr">113</xref>
). More recently, SHOX2 has been shown to dimerize with SHOX and, similarly to SHOX, to activate expression of
<italic>NPBB</italic>
and
<italic>ACAN</italic>
(
<xref rid="B118" ref-type="bibr">118</xref>
). Because SHOX and SHOX2 are homologous (80%) proteins that share the same homeodomain, the two proteins may cooperate, by forming heterodimers, in modulating expression of a similar subset of genes in limb development (eg,
<italic>NPBB</italic>
) and in other tissues and organs.</p>
<p>More recently, transgenic mice, in which
<italic>SHOX</italic>
expression was under the control of a murine Col2a1 promoter and enhancer region resulting in SHOX expression in chondrocytes, were used to study SHOX cellular activities (
<xref rid="B119" ref-type="bibr">119</xref>
). No major skeletal anomalies were seen in these transgenic mice; however, statistically significant up-regulation of several cartilage and bone markers during embryonic phase E12.5 to E14.5 was observed by gene expression profiling in transgenic vs wild-type limb RNA. Up-regulated genes included
<italic>connective tissue growth factor (Ctgf), periostin, asporin, EGF-containing fibulin-like extracellular matrix protein 1,</italic>
and
<italic>matrilin 4</italic>
, all genes known to be involved in limb development, extracellular matrix, or skeletal pathways. To confirm these results, U2OS and normal human dermal fibroblast cell lines were used that expressed either the wild-type or the transcriptionally defective Y141D mutant SHOX. Wild-type SHOX, but not the Y141D mutant, significantly up-regulated the
<italic>Ctgf/CTGF</italic>
target gene.</p>
<p>Further evidence for
<italic>Ctgf</italic>
as a direct target of SHOX was derived from ChIP sequencing data using chicken micromass cultures in which SHOX was introduced retrovirally. With this approach, several SHOX-binding sites in the
<italic>Ctgf</italic>
upstream region were identified. Accordingly, in silico analysis showed that the human
<italic>CTGF</italic>
5′-regulatory region contains more than 40 potential consensus sequences for SHOX. Luciferase gene reporter and electromobility shift assays demonstrated that SHOX specifically binds to these sequences. Finally, SHOX and CTGF coexpression was detected in the hypertrophic zone of the growth plate. Together, these results strongly suggest that SHOX regulates
<italic>CTGF</italic>
expression in the developing limbs (
<xref rid="B119" ref-type="bibr">119</xref>
).</p>
</sec>
<sec>
<title>D. Upstream regulators</title>
<p>Clustered genes from the Hox family of transcription factors (Hox A/D 9–13) have been shown to perform pivotal roles during limb development and axial skeletal patterning (
<xref rid="B120" ref-type="bibr">120</xref>
,
<xref rid="B121" ref-type="bibr">121</xref>
). For instance, ablation of
<italic>Hox9</italic>
and
<italic>Hox10</italic>
gene clusters in mice leads to shortened stylopodal elements (humerus and femur) (
<xref rid="B122" ref-type="bibr">122</xref>
,
<xref rid="B123" ref-type="bibr">123</xref>
), and loss of
<italic>Hox11</italic>
results in truncated zeugopodial elements (radius/ulna and fibula/tibia) (
<xref rid="B124" ref-type="bibr">124</xref>
), whereas deletion of
<italic>Hox13</italic>
leads to reduced formation of the autopod (metacarpals/metatarses) (
<xref rid="B125" ref-type="bibr">125</xref>
).</p>
<p>HOXA9 has been identified as the first upstream regulator of SHOX expression (
<xref rid="B126" ref-type="bibr">126</xref>
). By use of luciferase assays, ChIP, and electromobility shift assay, a HOXA9 binding site, consisting of two 31 nucleotide-long AT-rich sequences, was identified within the SHOX promoter 2. Virus-induced Hoxa9 overexpression in a chicken micromass model was associated with down-regulation of
<italic>Shox</italic>
. Because
<italic>Hoxa9</italic>
and
<italic>Shox</italic>
were expressed in the same regions of developing limb buds, a regulatory relationship has been proposed between
<italic>Hoxa9</italic>
and
<italic>Shox</italic>
during limb development (
<xref rid="B126" ref-type="bibr">126</xref>
).</p>
<p>Further evidence of interactions between the
<italic>Hox</italic>
and
<italic>SHOX</italic>
families derived from elegant studies in mice in which the effects of
<italic>Shox2</italic>
dosage variations were examined in the context of different HoxA/D cluster deletion background (
<xref rid="B38" ref-type="bibr">38</xref>
).
<italic>Shox2</italic>
was found to be coexpressed in the proximal limb with
<italic>Hoxd9</italic>
and
<italic>Hoxa11</italic>
during embryonic limb development.
<italic>Shox2</italic>
overexpression could partly compensate for
<italic>Hox</italic>
gene loss. It was shown that both
<italic>Shox2</italic>
and
<italic>Hox</italic>
genes functionally interact in regulating cartilage maturation by modulating the expression levels of
<italic>Runx2</italic>
in the stylopodal and zeugopodal elements of vertebrate limbs (
<xref rid="B38" ref-type="bibr">38</xref>
). Shox2
<sup>c/−</sup>
animals do not display changes in the expression levels of
<italic>Hox</italic>
genes, indicating that Shox2 does not regulate
<italic>Hox</italic>
gene transcription (
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B127" ref-type="bibr">127</xref>
). Conversely,
<italic>Hox11</italic>
genes seem to be required for
<italic>Shox2</italic>
expression in the proliferating chondrocytes of the zeugopodal elements (
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B128" ref-type="bibr">128</xref>
), although this observation is still under debate (
<xref rid="B38" ref-type="bibr">38</xref>
). Interestingly,
<italic>Hox</italic>
genes regulate
<italic>Shox2</italic>
expression in the perichondrium because their deletion results in the complete loss of Shox2 in this structure (
<xref rid="B38" ref-type="bibr">38</xref>
). Together, these results provide the first evidence of a mutual interaction between
<italic>SHOX</italic>
and
<italic>HOX</italic>
genes.</p>
<p>In chicken embryos,
<italic>Shox</italic>
is expressed in the medial, proximal portion of limb buds and promotes chondrogenesis. Graft experiments with soaked beads in chicken embryos indicated that
<italic>Shox</italic>
expression is negatively regulated by Bmp4, Fgf4, and Fgf8 distally and RA proximally (
<xref rid="B27" ref-type="bibr">27</xref>
). How these signaling pathways contribute to the regulation of SHOX expression during chondrogenesis remains to be elucidated. SHOX overexpression in chicken has had no detectable effect on the proximal-distal pattern of skeletal elements, but it increases the length of the skeletal elements, and occasionally the timing of ossification is altered.</p>
</sec>
<sec>
<title>E. Possible roles of SHOX in bone development</title>
<sec>
<title>1. SHOX as a regulator of chondrocyte hypertrophy</title>
<p>As will be discussed in section V, SHOX deficiency is implicated in short stature syndromes characterized by skeletal defects as well as in nonsyndromic ISS. SHOX expression in the growth plate implies a role of SHOX in this structure. However, the exact role of SHOX in the growth plate is only beginning to be elucidated. The results described above in osteosarcoma cell lines and primary cultures indicate that ectopic expression of
<italic>SHOX</italic>
induces cell cycle arrest and apoptosis, suggesting that the protein may also control proliferation of chondrocytes in the growth plate and promote their maturation. Multiple signaling pathways have been described to control chondrocyte maturation in the growth plate (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B72" ref-type="bibr">72</xref>
,
<xref rid="B73" ref-type="bibr">73</xref>
,
<xref rid="B77" ref-type="bibr">77</xref>
,
<xref rid="B82" ref-type="bibr">82</xref>
). In this section, based on the results described above and current knowledge of endochondral ossification, we propose a model of SHOX involvement in some of the signaling pathways that control proliferation and maturation of growth plate chondrocytes during bone elongation (see also
<xref ref-type="table" rid="T1">Table 1</xref>
and
<xref ref-type="fig" rid="F3">Figure 3</xref>
B for cellular factors interconnected with SHOX).</p>
</sec>
<sec>
<title>2. Influence of SHOX on FGFR3 signaling</title>
<p>
<italic>FGFR3</italic>
is a negative regulator of chondrocyte proliferation and differentiation (
<xref rid="B92" ref-type="bibr">92</xref>
). In the growth plate, FGFR3 is expressed in proliferating chondrocytes but is down-regulated in the hypertrophic zone—a pattern complementary to that of SHOX and supporting the concept that SHOX represses
<italic>FGFR3</italic>
transcription (
<xref ref-type="fig" rid="F4">Figure 4</xref>
A). A number of pathways have been found to act downstream of FGFR3 activation (
<xref rid="B92" ref-type="bibr">92</xref>
,
<xref rid="B129" ref-type="bibr">129</xref>
), including, but not limited to, the Janus kinase-signal transducer and activator of transcription (JAK-STAT) and MAPK pathways, which inhibit chondrocyte proliferation and differentiation (
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B92" ref-type="bibr">92</xref>
,
<xref rid="B130" ref-type="bibr">130</xref>
). SHOX, by repressing FGFR3 transcription, may therefore impact on these pathways; eg, SHOX-mediated
<italic>FGFR3</italic>
down-regulation may result in inactivation of the JAK-STAT and MAPK pathways, allowing normal chondrocyte proliferation and maturation (
<xref ref-type="fig" rid="F4">Figure 4</xref>
B). Clarification on how SHOX-mediated down-regulation of
<italic>FGFR3</italic>
influences FGFR3 signaling and other regulative pathways involved in bone formation is an important area for future research.</p>
<fig id="F4" position="float">
<label>Figure 4.</label>
<caption>
<p>SHOX as a regulator of endochondral ossification. A, Expression pattern of cellular factors involved in growth plate regulation interacting with SHOX. A schematic representation of the mouse long bone growth plate at E15.5-E16.5 is displayed. The growth plate is subdivided into different zones that contain chondrocytes at different stages of maturation. Chondrocytes at the end of their differentiation process undergo cell death and are replaced by bone. The expression pattern of FGFR3, BNP, NPR2, NPR3, and RUNX2 is illustrated according to Kozhemyakina et al (
<xref rid="B82" ref-type="bibr">82</xref>
). SHOX is not expressed in mice, but the mouse genome contains the closely related SHOX2 gene. Here we speculate that SHOX2 and BNP in mouse growth plate have similar expression patterns to those found for SHOX and BNP in human growth plate specimens (
<xref rid="B98" ref-type="bibr">98</xref>
,
<xref rid="B103" ref-type="bibr">103</xref>
). Expression patterns of SHOX/Shox2 target genes are depicted in green (up-regulated) or in red (down-regulated). B, Tentative model illustrating the involvement of SHOX in pathways regulating chondrocyte proliferation and maturation in the growth plate. SHOX-mediated down-regulation of FGFR3 may repress FGFR3 signaling, whereas up-regulation of the
<italic>NPPB</italic>
gene may stimulate the CNP/NPR2 pathway. This results in the repression of JAK-STAT and MAPK signaling pathways, which negatively regulate chondrocyte proliferation and maturation, respectively. Note that FGFR3 and CNP/NPR2 signaling pathways converge in the regulation of the levels of activated MAPK, which blocks the initiation of chondrocyte hypertrophy (FGFR3 signaling being an activator and CNP/NPR2 signaling being an inhibitor of the MAPK pathway). It has been shown that through the repression of BMP4 signaling, SHOX2 may regulate the levels of RUNX2, a master regulator of chondrocyte hypertrophy. Although a similar role of SHOX in activating RUNX2 remains to be demonstrated, this is hypothesized in the model, given the high homology and functional redundancy between the two homeodomain proteins. Depicted in green are pathways promoting chondrocyte hypertrophy, whereas in red are those having a negative impact. Plus and minus signs indicate the possible effects in response to SHOX/SHOX2 expression.</p>
</caption>
<graphic xlink:href="zef0041629290004"></graphic>
</fig>
<p>As discussed above,
<italic>Fgfr3</italic>
and
<italic>Shox</italic>
have almost mutually exclusive expression patterns in embryonic chicken limbs (
<xref rid="B28" ref-type="bibr">28</xref>
). These results provide an intriguing hypothesis for the rhizomelic short stature seen in
<italic>FGFR3</italic>
-mutated achondroplasia patients and its potential interrelationship with SHOX. The presence of SHOX in the mesomelic bone segments, by blocking
<italic>FGFR3</italic>
mutant expression, may allow normal development of these bones, whereas the lack of SHOX in the rhizomelic portion, by allowing
<italic>FGFR3</italic>
mutant expression, may account for the rhizomelic phenotype (
<xref rid="B28" ref-type="bibr">28</xref>
).</p>
</sec>
<sec>
<title>3. Influence of SHOX on CNP/Npr2 signaling</title>
<p>In addition to
<italic>FGFR3</italic>
, the activity of SHOX may be mediated, at least in part, by its cellular target gene natriuretic peptide B (
<italic>NPPB</italic>
).
<italic>NPPB</italic>
encodes BNP, a member of the natriuretic peptide family that also includes the related atrial natriuretic peptide (ANP) and CNP. Three receptors mediate the activity of these peptides: natriuretic peptide receptor (NPR) 1, NPR2, and NPR3 (also called guanylyl cyclase A, B, and C, respectively). NPR1 recognizes ANP and BNP, whereas NPR2 is specific for CNP. NPR3 is a decoy/clearance receptor that regulates the levels of natriuretic peptides available for interaction with NPR1 and NPR2. ANP and BNP, which function as cardiac hormones, are produced primarily by the atrium and ventricle of the heart, respectively (
<xref rid="B131" ref-type="bibr">131</xref>
). Together with their receptor NPR1, ANP and BNP are involved mainly in cardiovascular homeostasis by regulating blood pressure and body fluid volume. They are used as serum markers of disease severity in heart failure, myocardial infarction, cardiac hypertrophy, and hypertension (
<xref rid="B131" ref-type="bibr">131</xref>
<xref ref-type="bibr" rid="B132"></xref>
<xref rid="B133" ref-type="bibr">133</xref>
). Importantly, ANP and BNP are used clinically in the treatment of heart failure (
<xref rid="B132" ref-type="bibr">132</xref>
).</p>
<p>CNP is produced mainly in the brain, where it is thought to act as a neuropeptide. However, studies in genetically engineered mice indicate that CNP and its receptor Npr2 are also expressed in growth plate, where they are implicated primarily in regulating endochondral bone growth (
<xref rid="B82" ref-type="bibr">82</xref>
) (
<xref ref-type="fig" rid="F4">Figure 4</xref>
A). CNP-deficient mice exhibit severe dwarfism, with a 50–80% reduction in the length of endochondral bones such as the femur, tibia, and vertebrae. Histological studies in these mice show decreased growth plate width due to smaller proliferative and hypertrophic zones (
<xref rid="B93" ref-type="bibr">93</xref>
). A similar phenotype was observed in
<italic>Npr2</italic>
(CNP receptor)-deficient mice (
<xref rid="B134" ref-type="bibr">134</xref>
). Conversely, CNP transgenic mice and
<italic>Npr3</italic>
(clearance receptor)-deficient mice exhibit prominent bone elongation with extended growth plate proliferative and hypertrophic zones (
<xref rid="B135" ref-type="bibr">135</xref>
). In humans, loss-of-function mutations in the
<italic>NPR2</italic>
gene cause acromesomelic dysplasia type Maroteaux, characterized by severe dwarfism (
<xref rid="B136" ref-type="bibr">136</xref>
,
<xref rid="B137" ref-type="bibr">137</xref>
). By contrast, an
<italic>NPR2</italic>
gain-of-function mutation has been identified in three individuals with skeletal overgrowth (
<xref rid="B138" ref-type="bibr">138</xref>
,
<xref rid="B139" ref-type="bibr">139</xref>
). Thus, the CNP/NPR2 signaling pathway regulates bone growth in both humans and mice. CNP increases chondrocyte hypertrophy by opposing FGF signaling via MAPK pathway repression (
<xref rid="B82" ref-type="bibr">82</xref>
,
<xref rid="B108" ref-type="bibr">108</xref>
,
<xref rid="B140" ref-type="bibr">140</xref>
,
<xref rid="B141" ref-type="bibr">141</xref>
). Consistent with the above findings, targeted expression of CNP in the growth plate—or systemic administration of synthetic CNP-22—ameliorated both the skeletal defects and the growth deficit in a mouse model of achondroplasia (
<xref rid="B135" ref-type="bibr">135</xref>
), thus providing preclinical proof-of-concept that CNP may be useful for the treatment of achondroplasia in humans.</p>
<p>The role of BNP in endochondral bone ossification is less well-defined than that of CNP. Despite marked skeletal overgrowth in BNP transgenic mice (
<xref rid="B142" ref-type="bibr">142</xref>
), resembling the phenotype of CNP transgenic mice, BNP knockout animals do not exhibit skeletal or growth abnormalities but instead exhibit only cardiovascular defects (
<xref rid="B143" ref-type="bibr">143</xref>
). Therefore, the overgrowth phenotype in BNP transgenic mice has been proposed to represent unphysiologically high levels of BNP that either cross-reacted with NPR2 or saturated the NPR3 clearance receptor, causing reduced clearance of CNP. The resulting increased concentration of growth plate CNP could augment endochondral bone growth, thereby accounting for the overgrowth phenotype in BNP transgenic animals.</p>
<p>However, the discovery that BNP is a cellular target of SHOX and that the two proteins are coexpressed in the growth plate hypertrophic zone (
<xref rid="B103" ref-type="bibr">103</xref>
) argues for an important but as yet uncharacterized physiological role for BNP in growth plate regulation, for example, by offsetting FGF signaling. Recently,
<italic>NPR2</italic>
mutations have been associated with disproportionate short stature (similar to LWD but without Madelung deformity) in patients in whom no mutations were detected in
<italic>SHOX</italic>
or its enhancer regions (
<xref rid="B144" ref-type="bibr">144</xref>
<xref ref-type="bibr" rid="B145"></xref>
<xref rid="B146" ref-type="bibr">146</xref>
). Conceivably, SHOX-mediated BNP expression may increase CNP/
<italic>NPR2</italic>
signaling, perhaps by competing with CNP for the NPR3 clearance receptor and thereby increasing CNP half-life and its stimulatory effect upon the growth plate (
<xref ref-type="fig" rid="F4">Figure 4</xref>
B). Further studies are required to shed light on such a potential physiological role of BNP in bone elongation.</p>
<p>Because of the role of BNP in body fluid and blood pressure homeostasis, the common occurrence of hypertension and varied cardiovascular and renal anomalies in SHOX-deficient girls with TS is noteworthy (
<xref rid="B147" ref-type="bibr">147</xref>
). Hypothetically, these defects may be due to reduced circulating BNP levels as a consequence of SHOX deficiency.</p>
</sec>
<sec>
<title>4. Influence of SHOX on Bmp4 signaling and RUNX activity</title>
<p>In addition to the above pathways, SHOX may act in concert with RUNX2 and RUNX3 to trigger chondrocyte hypertrophy. As described above, a
<italic>SHOX</italic>
ortholog does not exist in mice, but the mouse genome does contain the
<italic>SHOX</italic>
-related gene
<italic>Shox2</italic>
, which also plays a central role in skeletal development.</p>
<p>Specifically, conditional deletion of the
<italic>Shox2</italic>
gene in embryonic limb mesenchyme (
<italic>Prx1–Cre–Shox2</italic>
, in which
<italic>Shox2</italic>
deletion was dependent on activation of the limb-specific
<italic>Prx1</italic>
promoter) produced animals displaying severely shortened limbs due to the nearly complete absence of humerus and femur (
<xref rid="B34" ref-type="bibr">34</xref>
). A significant delay in chondrocyte maturation—due to a down-regulation of
<italic>Runx2</italic>
(
<xref rid="B34" ref-type="bibr">34</xref>
) or up-regulation of
<italic>Bmp4</italic>
(
<xref rid="B127" ref-type="bibr">127</xref>
)—underlies the observed phenotype. Because BMP4 functions as a repressor of
<italic>Runx2</italic>
gene expression, it was proposed that Shox2 regulates
<italic>Runx2</italic>
expression via Bmp4 (
<xref rid="B127" ref-type="bibr">127</xref>
) (
<xref ref-type="fig" rid="F4">Figure 4</xref>
B).</p>
<p>
<italic>Col2a1–Cre</italic>
-driven conditional
<italic>Shox2</italic>
deletion in chondrocytes also causes significant shortening of humerus and femur (
<xref rid="B39" ref-type="bibr">39</xref>
). However, this rhizomelia is caused by precocious hypertrophic differentiation of stylopodial chondrocytes rather than the delayed maturation observed in
<italic>Prx1–Cre–Shox2</italic>
animals. This apparent inconsistency may have its explanation in the higher levels of Bmp4 found in
<italic>Col2a1–Cre–Shox2</italic>
chondrocytes than in
<italic>Prx1–Cre–Shox2</italic>
chondrocytes (
<xref rid="B39" ref-type="bibr">39</xref>
). If expressed at very high levels, Bmp4 would trigger accelerated chondrocyte hypertrophy, whereas at lower levels it would be sufficient only to promote early chondrogenesis. Together, these results suggest that
<italic>Shox2</italic>
may act as a regulator of chondrogenesis in mouse limb development by repressing the expression of
<italic>Bmp4</italic>
(
<xref rid="B39" ref-type="bibr">39</xref>
). Supportive of this hypothesis is the discovery that decreased
<italic>Shox2</italic>
expression correlates with a concomitant increase in
<italic>Bmp4</italic>
expression during normal mouse endochondral ossification in two different phases: first, during the initial differentiation of the stylopodial cartilage anlage; and second, during final chondrocyte maturation and hypertrophy (
<xref rid="B39" ref-type="bibr">39</xref>
).</p>
<p>Interestingly, experiments in mice demonstrated partial functional redundancy between human
<italic>SHOX</italic>
and mouse
<italic>Shox2</italic>
genes because SHOX can rescue both defective sinoatrial node formation (by restabilizing normal pacemaking function) and forelimb stylopodial shortening (
<xref rid="B26" ref-type="bibr">26</xref>
). Furthermore, by sharing the same homeodomain, SHOX and SHOX2 may regulate the same subset of genes (
<xref rid="B118" ref-type="bibr">118</xref>
). The fact that
<italic>Shox2</italic>
conditional knockout animals have severe shortening of the stylopods (humerus and femur), whereas individuals with SHOX deficiency have defects primarily in zeugopods (radius and ulna in the forelimb, and tibia and fibula in the hindlimb), suggests that
<italic>hSHOX</italic>
and
<italic>hSHOX2</italic>
may have similar roles in limb development but in different proximodistal segments. This hypothesis is consistent with in situ hybridization studies showing that the two genes exhibit a distinct, partially overlapping expression pattern in human embryos (
<xref rid="B25" ref-type="bibr">25</xref>
).</p>
</sec>
<sec>
<title>5. SHOX as regulator of the terminal phase of chondrocyte hypertrophy</title>
<p>At the end of their differentiation, hypertrophic chondrocytes undergo cell death and are replaced by bone cells. The intracellular signaling pathway(s) that governs cell death in growth plate chondrocytes remains largely unknown.</p>
<p>The chondrocyte cell death process itself presents a unique combination of both apoptotic and nonapoptotic morphological changes. Roach et al (
<xref rid="B148" ref-type="bibr">148</xref>
) proposed the term chondroptosis to highlight the unique features of this nonclassical apoptosis. Initially, the process involves enlargement of endoplasmic reticulum and Golgi apparatus—reflecting an increase in protein synthesis—followed by digestion of cellular material within autophagic vacuoles and chondrocyte self-destruction. These authors have proposed that lysosomal proteases are at least as important as caspases in chondroptosis (
<xref rid="B148" ref-type="bibr">148</xref>
).</p>
<p>Four major components characterize the SHOX-induced cell death mechanism in the U2OS osteosarcoma cell line: 1) initial oxidative stress with intracellular accumulation of ROS and RNS; 2) an increase in the number of acidic lysosome vesicles and a strong up-regulation of cathepsin B expression; 3) lysosomal membrane permeabilization with relocation of activated lysosomal cathepsin B into the cytoplasm, where it participates in cell death via MOMP and caspase activation; and 4) substantial release of cathepsin B outside the cells.</p>
<p>Accumulating evidence indicates important roles of ROS, RNS, and cathepsin B in the growth plate. For instance, increased ROS levels in hypertrophic chondrocytes inhibit proliferation and promote hypertrophic differentiation (
<xref rid="B149" ref-type="bibr">149</xref>
) (
<xref ref-type="fig" rid="F4">Figure 4</xref>
A). Nitric oxide production and elevated extracellular inorganic phosphate levels are also known to be involved in chondrocyte hypertrophy (
<xref rid="B150" ref-type="bibr">150</xref>
<xref ref-type="bibr" rid="B151"></xref>
<xref rid="B152" ref-type="bibr">152</xref>
). Cathepsin B is highly expressed in the growth plate (
<xref rid="B153" ref-type="bibr">153</xref>
,
<xref rid="B154" ref-type="bibr">154</xref>
), where it is hypothesized to participate in degradation of extracellular matrix components (
<xref rid="B155" ref-type="bibr">155</xref>
,
<xref rid="B156" ref-type="bibr">156</xref>
). Notably, although U2OS cells do not replicate the complex physiological and cellular interactions of the growth plate, SHOX is able to induce a cell death process in U2OS cells that is reminiscent of that seen physiologically in the growth plate. These findings should propel further investigations to understand how closely SHOX-induced cell death in U2OS cells reflects SHOX-induced events in growth plate chondrocytes. For example, characterization of the ability of SHOX to trigger oxidative stress and up-regulation of cathepsin B in growth plate may provide new insights into the cell death process that occurs during endochondral ossification.</p>
<p>In conclusion, the observations described above suggest that SHOX is one of several critical factors regulating chondrocyte hypertrophy. SHOX positively regulates chondrocyte differentiation through down-regulation of
<italic>FGFR3</italic>
and up-regulation of
<italic>NPPB</italic>
, thereby inhibiting FGFR3 signaling and activating CNP/NPR2 signaling, respectively. Furthermore, as suggested by experiments in mouse, SHOX/SHOX2 may also affect chondrocyte maturation by activating RUNX2 through down-regulation of BMP4 signaling. Finally, based upon in vitro data in osteosarcoma cell lines, SHOX may activate the chondrocyte cell death pathway through increased ROS production (
<xref ref-type="fig" rid="F4">Figure 4</xref>
B).</p>
</sec>
<sec>
<title>6. SHOX functions in pattern formation</title>
<p>In human patients with SHOX deficiency, mainly forearms and lower legs are affected, suggesting that SHOX is expressed in some but not all growth plates. Experiments in chicken limb buds indicate that Bmps, Fgfs, and RA signaling are involved in restricting the spatiotemporal expression of
<italic>shox</italic>
to the proximal-medial region of the early limb bud; RA inhibits
<italic>Shox</italic>
expression proximally, whereas Bmp and Fgf signal distally. However, it remains to be elucidated whether mechanisms similar to those in chick embryo govern
<italic>SHOX</italic>
expression during human embryogenesis. Furthermore, in addition to the previously described mechanisms regulating
<italic>SHOX</italic>
gene expression (
<xref ref-type="fig" rid="F2">Figure 2</xref>
), some evidence indicates that
<italic>HOX</italic>
genes may play a role in determining SHOX expression pattern (
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B126" ref-type="bibr">126</xref>
) .</p>
<p>SHOX functions during embryogenesis may differ from those exerted by the protein in postnatal growth plate. This is suggested by the fact that some of the effects of SHOX deficiency in humans manifest only in middle to late childhood.</p>
</sec>
</sec>
</sec>
<sec>
<title>V. Clinical Implications of SHOX Deficiency</title>
<p>After identification of the
<italic>SHOX</italic>
gene as a cause of short stature (
<xref rid="B19" ref-type="bibr">19</xref>
), SHOX mutation screening studies linked mutations or deletions in one copy of the SHOX gene (as well as in its extragenic enhancer regulatory regions) with the short stature phenotype and the skeletal deformities found in patients with LWD (
<xref rid="B54" ref-type="bibr">54</xref>
,
<xref rid="B157" ref-type="bibr">157</xref>
). Homozygous loss of the
<italic>SHOX</italic>
gene was shown to cause Langer dysplasia (LD) (
<xref rid="B66" ref-type="bibr">66</xref>
,
<xref rid="B158" ref-type="bibr">158</xref>
,
<xref rid="B159" ref-type="bibr">159</xref>
), a rare syndrome characterized by more severe growth retardation and some skeletal abnormalities. SHOX overdose in contrast usually leads to long limbs and tall stature (
<xref rid="B160" ref-type="bibr">160</xref>
).</p>
<p>With a combination of multiplex ligation-dependent probe amplification (MLPA) analysis and sequencing, SHOX defects have been found in approximately 10% of children with previously unexplainable short stature in the absence of other symptoms (ISS;
<xref ref-type="table" rid="T2">Table 2</xref>
). This makes SHOX deficiency the most frequent monogenic cause of short stature, with an incidence of up to 1:300 in the total population. In adults with SHOX deficiency, the proportion of LWD vs short stature without features of LWD is not well defined. Approximately 80% of detected
<italic>SHOX</italic>
mutations are deletions of different size encompassing the entire gene or its extragenic enhancer regions (
<xref rid="B161" ref-type="bibr">161</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
). Microdeletions encompassing only single or multiple exons are rare and occur in approximately 5% of cases (data compiled from 134 individuals) (
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
,
<xref rid="B163" ref-type="bibr">163</xref>
). Missense or nonsense mutations are also found randomly, distributed throughout the gene but with a higher frequency in exons 3 and 4, which encompass the homeobox region encoding the DNA-binding homeodomain (
<xref rid="B164" ref-type="bibr">164</xref>
) (
<xref ref-type="fig" rid="F5">Figure 5</xref>
). Duplications of the
<italic>SHOX</italic>
gene have also been reported in patients with short stature (
<xref rid="B11" ref-type="bibr">11</xref>
,
<xref rid="B165" ref-type="bibr">165</xref>
<xref ref-type="bibr" rid="B166"></xref>
<xref rid="B169" ref-type="bibr">169</xref>
). These duplications seem to reduce
<italic>SHOX</italic>
gene expression by disrupting gene organization, particularly the proper distance between the promoter and the enhancer regions. Microduplications at the SHOX locus have also recently been suggested as low penetrance risk factors for autism spectrum disorder, and the SHOX isoforms 7–1, 7–2, and 7–3 (
<xref ref-type="fig" rid="F1">Figure 1</xref>
) (
<xref rid="B21" ref-type="bibr">21</xref>
) with a restricted expression in embryonic and fetal brain have been suggested to play a role in this (
<xref rid="B170" ref-type="bibr">170</xref>
). As of May 2016, 229 unique DNA sequence variants of SHOX have been identified in short stature patients. An updated and complete list of these allelic variants of
<italic>SHOX</italic>
can be found in the SHOX database at
<ext-link ext-link-type="uri" xlink:href="http://www.shox.uni-hd.de">http://www.shox.uni-hd.de</ext-link>
(
<xref rid="B171" ref-type="bibr">171</xref>
).</p>
<table-wrap id="T2" position="float">
<label>Table 2.</label>
<caption>
<p>SHOX Gene Mutations in Idiopathic Short Stature</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th align="left" rowspan="2" colspan="1">First Author, Year (Ref.)</th>
<th align="left" rowspan="2" colspan="1">Nationality</th>
<th align="left" rowspan="2" colspan="1">Methodology</th>
<th align="left" colspan="3" rowspan="1">SHOX Defect
<hr></hr>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">Deletion</th>
<th align="left" rowspan="1" colspan="1">Point Mutation</th>
<th align="left" rowspan="1" colspan="1">Overall Frequency, %</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" rowspan="1" colspan="1">Rao, 1997 (
<xref rid="B19" ref-type="bibr">19</xref>
)</td>
<td align="left" rowspan="1" colspan="1">German</td>
<td align="left" rowspan="1" colspan="1">SSCP</td>
<td align="left" rowspan="1" colspan="1">0/91</td>
<td align="left" rowspan="1" colspan="1">1/91</td>
<td align="left" rowspan="1" colspan="1">1.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Binder, 2000 (
<xref rid="B205" ref-type="bibr">205</xref>
)</td>
<td align="left" rowspan="1" colspan="1">German</td>
<td align="left" rowspan="1" colspan="1">MS (2)</td>
<td align="left" rowspan="1" colspan="1">3/68</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">2.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rappold, 2002 (
<xref rid="B58" ref-type="bibr">58</xref>
)</td>
<td align="left" rowspan="1" colspan="1">German/Japanese</td>
<td align="left" rowspan="1" colspan="1">SSCP + FISH</td>
<td align="left" rowspan="1" colspan="1">3/150</td>
<td align="left" rowspan="1" colspan="1">3/750</td>
<td align="left" rowspan="1" colspan="1">2.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Binder, 2003 (
<xref rid="B184" ref-type="bibr">184</xref>
)</td>
<td align="left" rowspan="1" colspan="1">German</td>
<td align="left" rowspan="1" colspan="1">MS (2)</td>
<td align="left" rowspan="1" colspan="1">3–11/140</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">2.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Stuppia, 2003 (
<xref rid="B209" ref-type="bibr">209</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Italian</td>
<td align="left" rowspan="1" colspan="1">S + FISH</td>
<td align="left" rowspan="1" colspan="1">3/56</td>
<td align="left" rowspan="1" colspan="1">4/46</td>
<td align="left" rowspan="1" colspan="1">12.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Huber, 2006 (
<xref rid="B174" ref-type="bibr">174</xref>
)</td>
<td align="left" rowspan="1" colspan="1">French</td>
<td align="left" rowspan="1" colspan="1">S + MS* (20) + SNP (49)</td>
<td align="left" rowspan="1" colspan="1">8/84</td>
<td align="left" rowspan="1" colspan="1">4/84</td>
<td align="left" rowspan="1" colspan="1">14.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rappold, 2007 (
<xref rid="B180" ref-type="bibr">180</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Different nations</td>
<td align="left" rowspan="1" colspan="1">SSCP + MS (3) + (FISH)</td>
<td align="left" rowspan="1" colspan="1">22/1534</td>
<td align="left" rowspan="1" colspan="1">8/1553</td>
<td align="left" rowspan="1" colspan="1">2.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Jorge, 2007 (
<xref rid="B179" ref-type="bibr">179</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Brazilian</td>
<td align="left" rowspan="1" colspan="1">S + MS + FISH</td>
<td align="left" rowspan="1" colspan="1">0/63</td>
<td align="left" rowspan="1" colspan="1">2/36</td>
<td align="left" rowspan="1" colspan="1">3.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Funari, 2010 (
<xref rid="B211" ref-type="bibr">211</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Brazilian</td>
<td align="left" rowspan="1" colspan="1">MLPA + FISH</td>
<td align="left" rowspan="1" colspan="1">4/36</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">11.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Benito-Sanz, 2012 (
<xref rid="B50" ref-type="bibr">50</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Spanish</td>
<td align="left" rowspan="1" colspan="1">MLPA (only for 47 kb)</td>
<td align="left" rowspan="1" colspan="1">11/576</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">1.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hirschfeldova, 2012 (
<xref rid="B207" ref-type="bibr">207</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Czech</td>
<td align="left" rowspan="1" colspan="1">MLPA</td>
<td align="left" rowspan="1" colspan="1">4/51</td>
<td align="left" rowspan="1" colspan="1">2/51</td>
<td align="left" rowspan="1" colspan="1">11.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rosilio, 2012 (
<xref rid="B186" ref-type="bibr">186</xref>
)</td>
<td align="left" rowspan="1" colspan="1">French</td>
<td align="left" rowspan="1" colspan="1">MLPA + S</td>
<td align="left" rowspan="1" colspan="1">49/290</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">16.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sandoval, 2014 (
<xref rid="B166" ref-type="bibr">166</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Colombian</td>
<td align="left" rowspan="1" colspan="1">MLPA</td>
<td align="left" rowspan="1" colspan="1">5/62</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">8.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">van Duyvenvoorde, 2014 (
<xref rid="B167" ref-type="bibr">167</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Dutch</td>
<td align="left" rowspan="1" colspan="1">CNV</td>
<td align="left" rowspan="1" colspan="1">4/149</td>
<td align="left" rowspan="1" colspan="1">Not analyzed</td>
<td align="left" rowspan="1" colspan="1">2.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Poggi, 2015 (
<xref rid="B210" ref-type="bibr">210</xref>
)</td>
<td align="left" rowspan="1" colspan="1">Chilean</td>
<td align="left" rowspan="1" colspan="1">MLPA + S</td>
<td align="left" rowspan="1" colspan="1">4/18</td>
<td align="left" rowspan="1" colspan="1">0/18</td>
<td align="left" rowspan="1" colspan="1">22.2</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn fn-type="abbr">
<p>Abbreviations: CNV, copy number variation (SNP arrays); FISH, fluorescence in situ hybridization (detects deletions >20 kb using cosmid probes); MS*, study of many microsatellite markers (can give good indication of whether a deletion exists or not, but requires parental DNA); MS, study of only a few microsatellite markers (can give indication of whether a deletion exists or not, but requires parental DNA); S, sequencing; SNP, single nucleotide polymorphism analysis (can detect deletions including enhancer deletions; parental DNA is needed); SSCP, single-strand conformation polymorphism (detects 70% of all intragenic mutations). Several of these technologies are no longer in use, eg, SSCP, SNP, MS.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="F5" position="float">
<label>Figure 5.</label>
<caption>
<p>Summary of 230 exonic SHOX mutations. Data were extracted by the SHOX database (
<ext-link ext-link-type="uri" xlink:href="http://www.shox.uni-hd.de">www.shox.uni-hd.de</ext-link>
). Exon 2 encloses part of the 5′-UTR, and exons 6a and 6b enclose part of the 3′-UTR; exon 1 only encloses 5′ untranslated sequences and is usually not screened in a diagnostic analysis. The homeobox resides in exon 3 and exon 4. The most frequent recurrent mutations are pArg147 in exon 3 (seven times) and pArg195 in exon 5 (10 times). Stops occurring in exons 2 to 6a are frameshift mutations. No stops were identified in exon 6b. Blue indicates unique mutations, and red indicates total mutations in the respective exon/region. Ex, exon; HB, homeobox region.</p>
</caption>
<graphic xlink:href="zef0041629290005"></graphic>
</fig>
<p>SHOX mutations cause short stature with a high phenotypic heterogeneity (
<xref rid="B161" ref-type="bibr">161</xref>
,
<xref rid="B172" ref-type="bibr">172</xref>
). However, no correlation between the severity of the phenotype and the underlying SHOX mutation has been found so far. Identical SHOX mutations can produce either LWD or ISS, probably depending on the genetic background of the individual (
<xref rid="B173" ref-type="bibr">173</xref>
). In some families, individuals carrying the same mutation can even be asymptomatic with normal height (
<xref rid="B174" ref-type="bibr">174</xref>
) (W. Blum, personal communication). The size of a deletion is also not related to severity of the clinical phenotype; however, if large deletions extend beyond the pseudoautosomal region, a contiguous gene syndrome can result in males, with variable combinations of short stature, chondrodysplasia punctata, intellectual disability, ichthyosis, Kallman syndrome, and ocular albinism (
<xref rid="B175" ref-type="bibr">175</xref>
).</p>
<p>Haploinsufficiency implies that one allele of a gene is mutated, whereas the other functional allele, while intact, does not produce enough of the protein to bring about a wild-type condition, leading to an abnormal or diseased state. According to this concept,
<italic>SHOX</italic>
gene function is dosage-dependent. In patients with one mutated copy of
<italic>SHOX</italic>
, there could be variations in the expression levels of the other remaining functional
<italic>SHOX</italic>
allele that would lead to different degrees of SHOX deficiency and thus result in a more or less severe clinical phenotype. Alternatively, variants in other growth-regulating genes may affect
<italic>SHOX</italic>
gene functions, either as direct or indirect regulators of
<italic>SHOX</italic>
or by exerting additive effects. Below we provide a brief overview of SHOX-related disorders.</p>
<sec>
<title>A. Léri-Weill dyschondrosteosis</title>
<p>Léri-Weill dyschondrosteosis (MIM: 127300), also called Léri-Weill syndrome, was first described by André Léri and Jean Weill and is characterized by mesomelic short stature and Madelung deformity (
<xref rid="B176" ref-type="bibr">176</xref>
). Mesomelic short stature is a type of disproportionate short stature, due to symmetric shortening of the forearms and lower legs. Madelung deformity of the wrist and forearm denotes a bilateral shortening and bowing of the radius, distal dislocation of the ulna, and wedged carpal bones (
<xref rid="B177" ref-type="bibr">177</xref>
) (
<xref ref-type="fig" rid="F6">Figure 6</xref>
A). The primary lesion of Madelung deformity appears to be a premature fusion of the distal radial epiphysis, which possibly results in an aberrant cell death process in the growth plate. This skeletal anomaly is sometimes associated with pain and often with a limited wrist movement. Different operative procedures have been attempted to decrease pain and restore the wrist function. Short stature in LWD is variable; the height of affected adults ranges from 135 cm to normal height. The reason for this variability is not known.</p>
<fig id="F6" position="float">
<label>Figure 6.</label>
<caption>
<p>Skeletal defects associated with SHOX deficiency. A, Madelung deformity in a patient with LWD. The 19-year-old female with a 46,XX karyotype harbors a paternally inherited heterozygous microdeletion involving the SHOX coding region and the 3′ enhancer region. She shows severe short stature (−3.7 SD) and full pubertal development with regular menses. B, Hypoplasia of the ulna and fibula and severe shortening of the radius and tibia in an individual with Langer mesomelic dysplasia. The 19-month-old girl has a 45,X[191]/46,X,r(X)(p22.3q24)[
<xref rid="B9" ref-type="bibr">9</xref>
] karyotype. The ring X chromosome missing SHOX is formed as a de novo event in the X chromosome of paternal origin, whereas the structurally normal X chromosome harboring a microdeletion involving the SHOX enhancer(s) at the 3′ region is derived from the mother with subtle but SHOX-haploinsufficiency compatible skeletal features. The upper, middle, and lower images represent the roentgenograms of the right arm, the left arm, and the lower legs, respectively. C, Short metacarpal in a patient with TS (lower panel) compared to normal metacarpal (upper panel). Shown in the upper panel is an apparently normal hand roentgenogram of a 14-year and 7-month-old female with 45,X[15]/46,X,idic(X)(p11.2)[
<xref rid="B15" ref-type="bibr">15</xref>
] TS. She has been placed on GH treatment since 8 years and 9 months of age and on sex steroid supplementation therapy since 13 years and 8 months of age. Shown in the lower panel is the hand roentgenogram of a 13-year-old female with 45,X TS, showing a short fourth metacarpal associated with premature fusion of the growth plate. D, Radial bowing with decreased carpal angle. Forearm roentgenograms in an 11-year and 6-month-old girl (proband) with apparent ISS and her parents. The proband has a 46,XX karyotype and a paternally derived microdeletion affecting the SHOX 3′ enhancer region. She exhibits mild mesomelic short stature (−2.3 SD) and Tanner 3 breast development. Radial bowing, epiphyseal hypoplasia of the medial side of the distal radius, and decreased carpal angle are observed. The father with the same microdeletion shows mildly decreased carpal angle as the sole recognizable abnormality. His height remains within the normal range (−1.9 SD). This indicates that SHOX haploinsufficiency can permit an apparently normal phenotype as well as an ISS phenotype. The mother is free from discernible genetic and clinical abnormality.</p>
</caption>
<graphic xlink:href="zef0041629290006"></graphic>
</fig>
<p>SHOX deficiency has been described as the cause of LWD (
<xref rid="B54" ref-type="bibr">54</xref>
,
<xref rid="B157" ref-type="bibr">157</xref>
); SHOX mutations have been found in approximately 70–90% of patients with LWD, suggesting that either unknown genes or unknown regulatory mechanisms may contribute to this disorder (
<xref rid="B54" ref-type="bibr">54</xref>
,
<xref rid="B55" ref-type="bibr">55</xref>
,
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B67" ref-type="bibr">67</xref>
,
<xref rid="B157" ref-type="bibr">157</xref>
,
<xref rid="B173" ref-type="bibr">173</xref>
,
<xref rid="B174" ref-type="bibr">174</xref>
,
<xref rid="B178" ref-type="bibr">178</xref>
<xref ref-type="bibr" rid="B179"></xref>
<xref rid="B182" ref-type="bibr">182</xref>
).</p>
<p>Approximately 80% of patients have complete or partial gene or enhancer deletions, with the remaining 20% having missense mutations (
<xref rid="B55" ref-type="bibr">55</xref>
<xref ref-type="bibr" rid="B56"></xref>
<xref rid="B58" ref-type="bibr">58</xref>
,
<xref rid="B64" ref-type="bibr">64</xref>
,
<xref rid="B181" ref-type="bibr">181</xref>
,
<xref rid="B183" ref-type="bibr">183</xref>
,
<xref rid="B184" ref-type="bibr">184</xref>
). Deletions of the enhancer elements are quite common, occurring in roughly 15- 40% of individuals with LWD (see
<xref ref-type="table" rid="T3">Table 3</xref>
and next paragraph) (
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B65" ref-type="bibr">65</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
,
<xref rid="B174" ref-type="bibr">174</xref>
,
<xref rid="B185" ref-type="bibr">185</xref>
,
<xref rid="B186" ref-type="bibr">186</xref>
). This represents the highest known rate of enhancer element deletions in any disease. The high frequency of crossovers within PAR1 of the sex chromosomes may explain this peculiarity (
<xref rid="B187" ref-type="bibr">187</xref>
).</p>
<table-wrap id="T3" position="float">
<label>Table 3.</label>
<caption>
<p>SHOX Enhancer Deletions in LWD and ISS</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th align="left" rowspan="1" colspan="1">First Author, Year (Ref.)</th>
<th align="left" rowspan="1" colspan="1">No. of Patients</th>
<th align="left" rowspan="1" colspan="1">Nationality</th>
<th align="left" rowspan="1" colspan="1">Methodology</th>
<th align="left" colspan="3" rowspan="1">Frequencies</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" rowspan="1" colspan="1">Benito-Sanz, 2005 (
<xref rid="B185" ref-type="bibr">185</xref>
)</td>
<td align="left" rowspan="1" colspan="1">80 LWD</td>
<td align="left" rowspan="1" colspan="1">French, Spanish, British</td>
<td align="left" rowspan="1" colspan="1">SNP analysis</td>
<td align="left" rowspan="1" colspan="1">12/80</td>
<td align="left" rowspan="1" colspan="1">15%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Microsatellite</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Benito-Sanz, 2006 (
<xref rid="B65" ref-type="bibr">65</xref>
)</td>
<td align="left" rowspan="1" colspan="1">26 LWD</td>
<td align="left" rowspan="1" colspan="1">Spanish</td>
<td align="left" rowspan="1" colspan="1">SNP analysis</td>
<td align="left" rowspan="1" colspan="1">10/26</td>
<td align="left" rowspan="1" colspan="1">38%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Microsatellite, MLPA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Huber, 2006 (
<xref rid="B174" ref-type="bibr">174</xref>
)</td>
<td align="left" rowspan="1" colspan="1">56 LWD</td>
<td align="left" rowspan="1" colspan="1">French</td>
<td align="left" rowspan="1" colspan="1">SNP analysis</td>
<td align="left" rowspan="1" colspan="1">9/140</td>
<td align="left" rowspan="1" colspan="1">6.4%</td>
<td align="left" rowspan="1" colspan="1">LWD/ISS</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">84 ISS</td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Microsatellite</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sabherwal, 2007 (
<xref rid="B31" ref-type="bibr">31</xref>
)</td>
<td align="left" rowspan="1" colspan="1">122 LWD</td>
<td align="left" rowspan="1" colspan="1">Various</td>
<td align="left" rowspan="1" colspan="1">FISH with SHOX adjacent cosmid G0411; then SNP + microsatellite analysis</td>
<td align="left" rowspan="1" colspan="1">4/122</td>
<td align="left" rowspan="1" colspan="1">3.3%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chen, 2009 (
<xref rid="B162" ref-type="bibr">162</xref>
)</td>
<td align="left" rowspan="1" colspan="1">58 LWD</td>
<td align="left" rowspan="1" colspan="1">Various</td>
<td align="left" rowspan="1" colspan="1">Microsatellite, sequencing FISH</td>
<td align="left" rowspan="1" colspan="1">29/58</td>
<td align="left" rowspan="1" colspan="1">50%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">735 ISS</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">31/735</td>
<td align="left" rowspan="1" colspan="1">4.2%</td>
<td align="left" rowspan="1" colspan="1">ISS</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rosilio, 2012 (
<xref rid="B186" ref-type="bibr">186</xref>
)</td>
<td align="left" rowspan="1" colspan="1">178 LWD</td>
<td align="left" rowspan="1" colspan="1">Mainly French</td>
<td align="left" rowspan="1" colspan="1">MLPA, FISH, sequencing</td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">31%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">290 ISS</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">59%</td>
<td align="left" rowspan="1" colspan="1">ISS</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">69 DSS</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Benito-Sanz, 2012 (
<xref rid="B50" ref-type="bibr">50</xref>
)</td>
<td align="left" rowspan="1" colspan="1">124 LWD</td>
<td align="left" rowspan="1" colspan="1">Mainly Spanish</td>
<td align="left" rowspan="1" colspan="1">MLPA–47 kb del</td>
<td align="left" rowspan="1" colspan="1">19/124</td>
<td align="left" rowspan="1" colspan="1">15.3%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">576 ISS</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">11/576</td>
<td align="left" rowspan="1" colspan="1">1.9%</td>
<td align="left" rowspan="1" colspan="1">ISS</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bunyan, 2013 (
<xref rid="B213" ref-type="bibr">213</xref>
)</td>
<td align="left" rowspan="1" colspan="1">377 LWD/ISS</td>
<td align="left" rowspan="1" colspan="1">English</td>
<td align="left" rowspan="1" colspan="1">MLPA–47 kb del</td>
<td align="left" rowspan="1" colspan="1">17/377</td>
<td align="left" rowspan="1" colspan="1">12%</td>
<td align="left" rowspan="1" colspan="1">LWD</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">4.5%</td>
<td align="left" rowspan="1" colspan="1">LWD/ISS</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Donze, 2015 (
<xref rid="B212" ref-type="bibr">212</xref>
)</td>
<td align="left" rowspan="1" colspan="1">233 LWD/ISS</td>
<td align="left" rowspan="1" colspan="1">Dutch</td>
<td align="left" rowspan="1" colspan="1">MLPA, Sequencing</td>
<td align="left" rowspan="1" colspan="1">44/233</td>
<td align="left" rowspan="1" colspan="1">18%</td>
<td align="left" rowspan="1" colspan="1">LWD/ISS</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn fn-type="abbr">
<p>Abbreviation: DSS, disproportionate short stature.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>LWD typically develops in middle to late childhood, with a 4-fold higher prevalence in females than in males, and higher estrogen levels have been proposed as a mechanism for the more severe symptoms in girls vs boys (
<xref rid="B160" ref-type="bibr">160</xref>
,
<xref rid="B161" ref-type="bibr">161</xref>
). It has been suggested that gonadal estrogens exert a maturational effect on skeletal tissues that are susceptible to unbalanced premature growth plate fusion and skeletal maturation because of SHOX haploinsufficiency, facilitating the development of skeletal lesions in a female-dominant and pubertal tempo-influenced fashion.</p>
<p>It is still under debate whether patients with typical features of SHOX deficiency but without any apparent mutations in the
<italic>SHOX</italic>
gene have yet uncharacterized mutations in SHOX regulatory regions further apart from the gene or in another yet unknown gene involved in the etiology of LWD. Recently 173 individuals, with suspected LWD (but no Madelung deformity) without evident defects in
<italic>SHOX</italic>
, were screened for mutations in the
<italic>NPR2</italic>
gene, which encodes an important regulator of bone development. Alterations in
<italic>NPR2</italic>
affecting receptor activity were found in 3% of these patients; however, the archetypal sign of this syndrome, Madelung deformity, was not present (
<xref rid="B144" ref-type="bibr">144</xref>
). It is intriguing to think that SHOX may be indirectly affecting the activity of this receptor via up-regulation of the
<italic>NPPB</italic>
gene (encoding the BNP).</p>
</sec>
<sec>
<title>B. Langer mesomelic dysplasia</title>
<p>Leonard Langer Jr. first described what is now termed Langer mesomelic dysplasia (LD) (MIM: 249700) (
<xref rid="B188" ref-type="bibr">188</xref>
). It is a rare disorder characterized by more extreme short stature and skeletal dysplasia than LWD, with height ranging from −5.5 to −8.9 SDS (
<xref rid="B189" ref-type="bibr">189</xref>
). Several couples in which both members are affected with LWD have had offspring with LD (
<xref rid="B66" ref-type="bibr">66</xref>
,
<xref rid="B190" ref-type="bibr">190</xref>
). In particular, individuals with LD present an aplasia or marked hypoplasia of the ulna and/or fibula and severe shortening of the radius and tibia (
<xref ref-type="fig" rid="F6">Figure 6</xref>
B). Other features include hypoplasia of the mandible and micrognathia; typically Madelung deformity is not part of LD. Homozygous loss of SHOX has been shown to underlie LD (
<xref rid="B66" ref-type="bibr">66</xref>
,
<xref rid="B159" ref-type="bibr">159</xref>
,
<xref rid="B191" ref-type="bibr">191</xref>
).</p>
</sec>
<sec>
<title>C. Turner syndrome</title>
<p>TS is a genetic disease caused by complete or partial absence of one copy of the X chromosome (termed monosomy of the X chromosome; 45, X/partial monosomy of the X). Also called Ullrich-Turner syndrome, the disease was first described by Otto Ullrich and Henry Turner (
<xref rid="B192" ref-type="bibr">192</xref>
,
<xref rid="B193" ref-type="bibr">193</xref>
). It affects about one in 2500 women. Almost all individuals with TS exhibit short stature (final average adult height in Caucasians, 142–147 cm), gonadal dysgenesis (dysfunctional ovaries), and resulting amenorrhea (absence of menstrual cycle) and infertility. Skeletal defects, which appear less frequently, include short fourth metacarpals (
<xref ref-type="fig" rid="F6">Figure 6</xref>
C), cubitus valgus (forearm angled away from the body), micrognathia, Madelung deformity, high-arched palate, webbed neck, broad chest, and low-set ears (
<xref rid="B194" ref-type="bibr">194</xref>
<xref ref-type="bibr" rid="B195"></xref>
<xref rid="B196" ref-type="bibr">196</xref>
).</p>
<p>Women with TS may also present congenital heart defects, kidney problems, lymphedema, high blood pressure, hypothyroidism, diabetes, vision problems, hearing impairment, and autoimmune diseases (
<xref rid="B147" ref-type="bibr">147</xref>
). Finally, a specific pattern of cognitive deficits is often observed, with particular difficulties in visuospatial, mathematical, and memory areas (
<xref rid="B197" ref-type="bibr">197</xref>
).
<italic>SHOX</italic>
deficiency is thought to cause the skeletal abnormalities associated with TS (
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B161" ref-type="bibr">161</xref>
,
<xref rid="B198" ref-type="bibr">198</xref>
). The expression of
<italic>SHOX</italic>
in the elbow and knee (and the lack thereof) may explain the cubitus valgus and the bowing and shortening of forearms and lower legs in some TS as well as LWD patients. The Madelung deformity and the shortened metacarpals seen in TS and LWD could result from a loss of
<italic>SHOX</italic>
expression in the distal ulna and radius. The prevalence of Madelung deformity remains only 7.5% in TS, and this would be explained by gonadal estrogen production usually being compromised in TS (
<xref rid="B198" ref-type="bibr">198</xref>
). A lack of
<italic>SHOX</italic>
expression in the first and second pharyngeal arches is likely to contribute to TS traits such as micrognathia, high-arched palate, and sensorineural deafness (
<xref rid="B25" ref-type="bibr">25</xref>
).</p>
<p>TS is also associated with low bone mineral density (BMD) in cortical rather than trabecular bones (
<xref rid="B199" ref-type="bibr">199</xref>
). In fact, the cortical (but not the trabecular) BMD of the distal forearm is significantly lower in adult TS patients compared to age-matched 46,XX females with premature ovarian insufficiency (
<xref rid="B200" ref-type="bibr">200</xref>
). This ovarian estrogen-independent selective reduction in cortical BMD would primarily be ascribed to SHOX deficiency. Indeed, altered bone geometry and microarchitecture have been found in both TS and SHOX deficiency (
<xref rid="B199" ref-type="bibr">199</xref>
). In addition, although SHOX expression is primarily identified in the growth plate and is absent from osteoblasts and osteoclasts, SHOX is known to interact with multiple factor(s) relevant for skeletogenesis, as described in this paper. Thus, it is likely that SHOX deficiency disturbs the complex molecular network and the cell-cell interactions involved in the cortical bone formation, leading to low cortical BMD.</p>
</sec>
<sec>
<title>D. Sex chromosome aneuploidies</title>
<p>Adult heights in patients with sex chromosome aneuploidies do not show a simple correlation with the SHOX gene dosage (
<xref rid="B201" ref-type="bibr">201</xref>
). Although severe short stature in patients with 45,X and mild to moderate tall stature in patients with 47,XXX or 47,XXY are grossly consistent with SHOX gene dosage (
<xref rid="B15" ref-type="bibr">15</xref>
), the adult heights in patients with four or five sex chromosomes (eg, 48,XXXX, 48,XXXY, 48,XXYY, 49,XXXXX, and 49,XXXXY) are usually not increased. In this regard, it has been reported that the distribution of the mean adult heights in apparently nonmosaic patients with sex chromosome aberrations can be explained by four factors: 1) the dosage effect of SHOX; 2) the dosage effect of the putative Y-specific growth gene GCY; 3) the sex difference in gonadal steroids; and 4) the degree of global nonspecific developmental defects including growth failure caused by chromosome imbalance (
<xref rid="B202" ref-type="bibr">202</xref>
). Of these factors, the concept of chromosome imbalance (quantitative alterations of euchromatic or noninactivated regions) is noteworthy. It has been suggested that chromosome imbalance disturbs developmental homeostasis, resulting in multiple nonspecific features common to various aneuploidies such as growth failure, developmental retardation, gonadal dysfunction, and tissue dysplasia, with the deleterious effects being more severe in deletions than in corresponding duplications (
<xref rid="B203" ref-type="bibr">203</xref>
,
<xref rid="B204" ref-type="bibr">204</xref>
). Furthermore, it has been assumed that the degree of chromosome imbalance is grossly similar between loss or gain of inactivated X chromosomes harboring several noninactivated regions and that of normal Y chromosomes (
<xref rid="B15" ref-type="bibr">15</xref>
,
<xref rid="B202" ref-type="bibr">202</xref>
). Thus, the marked adult height deficiency in patients with 45,X is explained by the combined effects of SHOX haploinsufficiency and severe growth disadvantage resulting from a sex chromosome deletion, and the mild to moderate adult height gain in patients with 47,XXX or 47,XXY (and 47,XYY as well) is explained by the combined effects of SHOX and/or GCY overdosage and relatively mild growth disadvantage caused by a sex chromosome duplication. In patients with four or five sex chromosomes, such a situation may drastically impair developmental homeostasis because of marked chromosome imbalance, resulting in reduced adult heights despite increased SHOX dosage and/or GCY dosage. Indeed, it is possible that the effects of excessive SHOX and/or GCY dosage cannot be fully reflected in the adult height in such situations. Although this notion remains speculative, it would provide a reasonable explanation for the intriguing findings of the adult heights in patients with sex chromosome aneuploidies.</p>
</sec>
<sec>
<title>E. Idiopathic short stature</title>
<p>Idiopathic short stature (MIM: 300582) is a heterogeneous diagnostic category in which the underlying cause of short stature has not been revealed by standard diagnostic procedures. Patients are shorter than 2 SD below the mean for age and gender (ie, below the third percentile) without presenting any apparent clinical signs of systemic, endocrine (eg, thyroid or GH deficiency), nutritional, or chromosomal abnormalities. Approximately 3% of the general population fall below the third percentile in height and are therefore considered short. Among individuals with the initial diagnosis of ISS, approximately 10% harbor SHOX mutations (
<xref ref-type="table" rid="T2">Table 2</xref>
). The results vary considerably from cohort to cohort, and the prevalence of SHOX mutations has increased with more sensitive genetic tests that can detect small deletions (eg, MLPA vs fluorescence in situ hybridization [FISH]) and with the examination of SHOX enhancer regions that were omitted in early SHOX mutation screening (
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B50" ref-type="bibr">50</xref>
,
<xref rid="B58" ref-type="bibr">58</xref>
,
<xref rid="B161" ref-type="bibr">161</xref>
,
<xref rid="B166" ref-type="bibr">166</xref>
,
<xref rid="B167" ref-type="bibr">167</xref>
,
<xref rid="B174" ref-type="bibr">174</xref>
,
<xref rid="B179" ref-type="bibr">179</xref>
,
<xref rid="B180" ref-type="bibr">180</xref>
,
<xref rid="B184" ref-type="bibr">184</xref>
,
<xref rid="B186" ref-type="bibr">186</xref>
,
<xref rid="B205" ref-type="bibr">205</xref>
<xref ref-type="bibr" rid="B206"></xref>
<xref rid="B207" ref-type="bibr">207</xref>
,
<xref rid="B209" ref-type="bibr">209</xref>
<xref ref-type="bibr" rid="B210"></xref>
<xref rid="B211" ref-type="bibr">211</xref>
).</p>
</sec>
<sec>
<title>F. SHOX enhancer deletions in LWD and ISS</title>
<p>Remote regulatory elements are thought to play a critical role in how genes are switched on and off during development. Among patients with LWD, LD, or ISS who have an intact
<italic>SHOX</italic>
coding sequence, some were found to carry deletions of varying size downstream of the
<italic>SHOX</italic>
gene, which suggested that cis-acting enhancer elements regulating
<italic>SHOX</italic>
transcription may have been lost in these patients (
<xref rid="B185" ref-type="bibr">185</xref>
,
<xref rid="B189" ref-type="bibr">189</xref>
). Subsequent studies identified other deletions downstream of the SHOX coding sequence in individuals with LWS or ISS, and these also were hypothesized to delete or disrupt putative enhancer elements (
<xref rid="B31" ref-type="bibr">31</xref>
,
<xref rid="B162" ref-type="bibr">162</xref>
,
<xref rid="B174" ref-type="bibr">174</xref>
,
<xref rid="B186" ref-type="bibr">186</xref>
,
<xref rid="B212" ref-type="bibr">212</xref>
,
<xref rid="B213" ref-type="bibr">213</xref>
) (
<xref ref-type="table" rid="T3">Table 3</xref>
).</p>
<p>Further insight into the existence of enhancer elements controlling
<italic>SHOX</italic>
transcription came from a study including five families with individuals suffering from LWD (
<xref rid="B49" ref-type="bibr">49</xref>
). The affected individuals did not present mutations within
<italic>SHOX</italic>
, but instead had deletions downstream of its coding region. Analysis of the 3′ end of these
<italic>SHOX</italic>
deletions revealed an overlapping region of approximately 30 kb. Comparative genomic analysis showed that this interval comprised several CNEs that could act as enhancer elements of
<italic>SHOX</italic>
transcription. Consistent with this finding, luciferase reporter assays showed that one of these CNEs—cloned at the 3′ end of the luciferase gene—enhanced the SHOX promoter activity in the U2OS osteosarcoma cell line (
<xref rid="B49" ref-type="bibr">49</xref>
).</p>
<p>Further studies of LWD patients with intact
<italic>SHOX</italic>
identified other deletions 100–300 kb downstream of the
<italic>SHOX</italic>
gene and, more importantly, provided the first evidence of enhancer activity in chicken limb buds (
<xref rid="B31" ref-type="bibr">31</xref>
). Similarly to the study of Fukami et al (
<xref rid="B49" ref-type="bibr">49</xref>
), comparative genomic analysis of this region revealed several putative
<italic>SHOX</italic>
long-range regulatory elements that were highly conserved in all vertebrates carrying the
<italic>SHOX</italic>
gene (
<xref rid="B31" ref-type="bibr">31</xref>
). When cloned in front of a gene reporter system consisting of a β-globin promoter driving the expression of the GFP-encoding gene, three of these CNEs increased gene expression in limb buds of chicken embryos, indicating that they may function as enhancers of
<italic>SHOX</italic>
regulation (
<xref rid="B31" ref-type="bibr">31</xref>
). These three CNEs also exhibited enhancer activity in zebrafish embryos in the pectoral fin and in other tissues including ear, brain, skin, and heart (
<xref rid="B33" ref-type="bibr">33</xref>
). Using zebrafish as a model, smaller, more deeply conserved subsequences that were still endowed with enhancer activity were delineated within these CNEs (
<xref rid="B33" ref-type="bibr">33</xref>
). Interestingly, 4C-seq interaction and H3K27ac ChIP-seq profiles have recently revealed that the cis-regulatory domain of SHOX may extend 1 Mb surrounding SHOX, suggesting that further unknown cis-regulatory elements are located up- and downstream of SHOX (
<xref rid="B214" ref-type="bibr">214</xref>
<xref ref-type="bibr" rid="B215"></xref>
<xref rid="B216" ref-type="bibr">216</xref>
).</p>
<p>Comparative genomic analysis also proved instrumental for the identification of putative enhancer elements upstream of SHOX by revealing three CNEs 250 kb upstream of the SHOX gene with enhancer properties in the developing chicken limb. However, deletion screening of the SHOX upstream region in 60 LWS patients with intact SHOX coding and downstream regions did not pinpoint novel deletions encompassing these putative enhancer elements. These results suggest that deletions upstream of the SHOX gene occur at a lower rate than those affecting the downstream region, most likely due to structural genomic differences between these two regions (
<xref rid="B30" ref-type="bibr">30</xref>
). Nevertheless, one individual with ISS has been reported to have a deletion comprising two SHOX upstream enhancers, CNE-5 and CNE-3 (
<xref rid="B29" ref-type="bibr">29</xref>
), and recently upstream copy number variations were found in three of 501 patients with ISS (
<xref rid="B214" ref-type="bibr">214</xref>
). Altogether, these studies indicate that deletions up- or downstream of the
<italic>SHOX</italic>
gene may result in the loss of SHOX enhancer elements, thereby leading to SHOX deficiency due to reduced SHOX expression.</p>
</sec>
<sec>
<title>G. Treatment of SHOX deficiency</title>
<p>Before the link between SHOX deficiency and short stature was firmly established, GH was already successfully used for the treatment of short stature in TS patients. This prompted clinical researchers to evaluate whether patients with SHOX deficiency would also benefit from GH therapy. To this end, Eli Lilly sponsored a randomized phase III clinical trial that included three treatment arms (n = 25 per arm): two groups of patients with short stature and SHOX deficiency, who were randomized to receive no treatment or treatment with GH (0.05 mg/kg/d) for 2 years; and one observational comparator group of age-matched girls with TS who were treated with the same GH regimen. The trial showed that GH was effective in children with SHOX deficiency, with 41% of patients reaching a height within the normal range within 2 years, compared to 4% of untreated children and 28% of patients with TS (
<xref rid="B217" ref-type="bibr">217</xref>
). The gain of height in SHOX-deficient children who were treated with GH was 3.5 cm during the first year and 1.9 cm in the second year (
<xref rid="B217" ref-type="bibr">217</xref>
). Based on this study, treatment with GH of SHOX deficiency has been approved by the U.S. Food and Drug Administration and the European Medicines Agency. GH treatment in patients with SHOX deficiency had no systematic effect on the skeletal anomalies in this disorder (
<xref rid="B218" ref-type="bibr">218</xref>
). Continuation of GH treatment to final height yielded, on average, height gains of more than 1.3 SDS, which corresponds to 8 to 9 cm. GH therapy was especially efficacious regarding growth rate and final outcome when it was started early in young children (
<xref rid="B219" ref-type="bibr">219</xref>
). It has also been noted that the response to GH treatment is greater in patients with SHOX enhancer deletions compared with SHOX coding deletions (
<xref rid="B212" ref-type="bibr">212</xref>
).</p>
<p>In addition to GH treatment, GnRH analog (GnRHa) therapy may also be recommended in patients with
<italic>SHOX</italic>
deficiency. It is expected that GnRHa therapy serves to prevent or mitigate the development of skeletal features by suppressing gonadal estrogen production. Indeed, it has been suggested and discussed that gonadal estrogens exert a maturational effect on skeletal tissues that are susceptible to unbalanced premature growth plate fusion because of
<italic>SHOX</italic>
deficiency, facilitating the development of skeletal lesions in a female-dominant and pubertal tempo-dependent fashion (
<xref rid="B160" ref-type="bibr">160</xref>
,
<xref rid="B198" ref-type="bibr">198</xref>
,
<xref rid="B220" ref-type="bibr">220</xref>
). This notion would explain, in terms of gonadal estrogen deficiency, why severe skeletal lesions remain rare in TS patients, despite the presence of
<italic>SHOX</italic>
deficiency.</p>
<p>Furthermore, the combination therapy of GH and GnRHa may be most effective in promoting statural growth in patients with
<italic>SHOX</italic>
deficiency (
<xref rid="B221" ref-type="bibr">221</xref>
,
<xref rid="B222" ref-type="bibr">222</xref>
), as well as in those with other types of growth deficiencies (
<xref rid="B223" ref-type="bibr">223</xref>
,
<xref rid="B224" ref-type="bibr">224</xref>
). In particular, the combination therapy would be worth attempting in girls maturing early or in individuals with early signs of premature fusion of the growth plates. However, clinical experience of combined GH and GnRHa therapy remains poor in
<italic>SHOX</italic>
deficiency, and further studies are required to have a definitive conclusion regarding the clinical effects of the combination therapy.</p>
<p>It would also be worth considering whether aromatase inhibitors (AIs) can be a therapeutic option for SHOX deficiency. Theoretically, because AIs hinder the conversion of androgens into estrogens (
<xref rid="B225" ref-type="bibr">225</xref>
), they could suppress estrogen-dependent skeletal lesions and the resulting growth deficiency. However, the therapy with AIs results in an accumulation of androgens and an elevation of gonadotropins (
<xref rid="B226" ref-type="bibr">226</xref>
). Thus, although clinical features of SHOX deficiency are usually more severe in affected girls than in affected boys, AIs cannot be applied to affected girls because of the risk of virilization and ovarian stimulation (
<xref rid="B226" ref-type="bibr">226</xref>
). Furthermore, although the AI therapy could be performed in a small fraction of affected boys with relatively severe phenotype, the long-term efficacy and safety of the AI therapy still remain uncertain in previous studies for boys with ISS (
<xref rid="B225" ref-type="bibr">225</xref>
<xref ref-type="bibr" rid="B226"></xref>
<xref rid="B228" ref-type="bibr">228</xref>
). Thus, the AI therapy for SHOX deficiency is regarded as experimental and is not recommended at present.</p>
</sec>
<sec>
<title>H. Clinical indicators of SHOX deficiency</title>
<p>Treatment with GH is effective for ameliorating the growth deficit and skeletal anomalies found in children with SHOX deficiency. However, among children with ISS it may be difficult before puberty to distinguish those who have constitutional delay of growth and adolescence and are destined eventually to reach normal height without intervention. Because a similar late attainment of normal height is unlikely in children with SHOX deficiency (
<xref rid="B229" ref-type="bibr">229</xref>
), it is especially important to identify those short children harboring SHOX mutations so that they can benefit from timely GH treatment.</p>
<p>As reported above, SHOX deficiency results in a wide spectrum of short stature phenotypes, including LWD, LD, or short stature without any typical features in ISS individuals (
<xref ref-type="fig" rid="F6">Figure 6</xref>
). Birth length is usually only mildly reduced in children with SHOX deficiency, but growth failure is already observed in early childhood (
<xref rid="B161" ref-type="bibr">161</xref>
). Despite there being little or no correlation between genotype and phenotype in individuals with SHOX deficiency, a disproportionate mesomelic short stature (shortening of the forearms and lower legs) characterizes a large fraction of this population. Mesomelic skeletal disproportion usually appears first in school-aged children and increases in frequency and severity with age (
<xref rid="B181" ref-type="bibr">181</xref>
,
<xref rid="B230" ref-type="bibr">230</xref>
). Therefore, detailed anthropometric analysis of body proportion provides an important selection criterion to allow more cost-effective use of genetic testing. This analysis normally includes measurement of standing height, arm span, and sitting height and the calculation of subischial leg length as the difference between standing and sitting height. When compared to age-related reference standards, children with SHOX deficiency often exhibit a lower than expected arm span and subischial leg lengths in relation to their standing and sitting heights. Mainly based on this observation, several scoring systems have been developed to assist pediatric endocrinologists in their decision to request SHOX molecular analysis before a final diagnosis. Binder et al (
<xref rid="B184" ref-type="bibr">184</xref>
) proposed a limb:trunk ratio (leg length + arm span)/sitting height as a good predictor of SHOX deficiency. Abnormal body proportions are also the criteria for another scoring system that predicts SHOX mutations in children with ISS by considering the ratio of sitting height to standing height for age and sex (
<xref rid="B179" ref-type="bibr">179</xref>
).</p>
<p>Rappold et al (
<xref rid="B180" ref-type="bibr">180</xref>
) developed a more comprehensive scoring system that includes body disproportion (ratios of arm span to standing height and of sitting height to standing height) and other indices of SHOX deficiency such as body mass index, muscular hypertrophy, cubitus valgus, short forearm, bowing of forearm, and dislocation of ulna (at elbow or wrist). The score items and their weights were derived by multivariate analysis in 1608 individuals with sporadic or familiar short stature, 68 (4.2%) of whom had SHOX deficiency (
<xref ref-type="table" rid="T4">Table 4</xref>
). At a cutoff score of 7 (of a total score of 24), the positive prediction rate for identifying a
<italic>SHOX</italic>
gene point mutation or deletion was 19%. Downstream or upstream SHOX enhancers were not known at the time, and patients were therefore not tested for such deletions. Including the testing for SHOX enhancers would theoretically have increased the positive prediction value. Validation of this score in an independent large cohort of short children confirmed its usefulness (
<xref rid="B186" ref-type="bibr">186</xref>
).</p>
<table-wrap id="T4" position="float">
<label>Table 4.</label>
<caption>
<p>Scoring System Based on Clinical Criteria</p>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th align="left" rowspan="1" colspan="1">Score Item</th>
<th align="left" rowspan="1" colspan="1">Criteria</th>
<th align="left" rowspan="1" colspan="1">Score Points</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" rowspan="1" colspan="1">Dislocation of ulna (at elbow)</td>
<td align="left" rowspan="1" colspan="1">Yes</td>
<td align="left" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Body mass index</td>
<td align="left" rowspan="1" colspan="1">>50th percentile</td>
<td align="left" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Short forearm</td>
<td align="left" rowspan="1" colspan="1">Yes</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Bowing of forearm</td>
<td align="left" rowspan="1" colspan="1">Yes</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Muscular hypertrophy</td>
<td align="left" rowspan="1" colspan="1">Yes</td>
<td align="left" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Arm span/height ratio</td>
<td align="left" rowspan="1" colspan="1"><96%</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sitting height/height ratio</td>
<td align="left" rowspan="1" colspan="1">>55%</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cubitus valgus</td>
<td align="left" rowspan="1" colspan="1">Yes</td>
<td align="left" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Total</td>
<td rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">24</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn fn-type="other">
<p>Scoring system for identifying patients that qualify for SHOX testing based on clinical criteria.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Scrutinizing left hand radiographs, which are a diagnostic standard in children with short stature for bone age assessment, may further reveal hints of SHOX deficiency (
<xref rid="B218" ref-type="bibr">218</xref>
). It is important to recognize metaphyseal lucency and epiphyseal hypoplasia at the medial side of the distal radius as early skeletal signs of SHOX deficiency (
<xref ref-type="fig" rid="F7">Figure 7</xref>
), as well as short fourth metacarpals and carpal sign (ie, decreased carpal angle ≤117°) (
<xref rid="B208" ref-type="bibr">208</xref>
,
<xref rid="B231" ref-type="bibr">231</xref>
). In particular, metaphyseal lucency appears to be fairly specific to SHOX deficiency in childhood, although it becomes obscure with skeletal maturation. Carpal sign is also characteristic of SHOX deficiency, especially at later ages. Although these features are not invariably identified in patients with SHOX deficiency, they can be good indicators for SHOX deficiency. Thus, when such findings are observed on hand and wrist roentgenograms, forearm radiographs should be obtained to examine radial curvature and/or shortening indicative of SHOX deficiency.</p>
<fig id="F7" position="float">
<label>Figure 7.</label>
<caption>
<p>Radiological indications for SHOX deficiency. Hand roentgenograms obtained at 8 years and 2 months of age (A and B) and at 16 years of age (C) in patient 1 and those obtained at 11 years and 9 months of age (D–F) in patient 2. Patient 1 has a 46,XY karyotype and a de novo microdeletion encompassing the SHOX coding and enhancer regions. Patient 2 has a 46,XX karyotype and a paternally derived microdeletion involving the SHOX-downstream enhancer region. Both patients show metaphyseal lucency of the medial side of the distal radius (arrows), epiphyseal hypoplasia of the medial side of the distal radius (arrowheads), and decreased carpal angle.</p>
</caption>
<graphic xlink:href="zef0041629290007"></graphic>
</fig>
<p>In addition, familial members of a proband with SHOX deficiency should be studied irrespective of clinical phenotype. Indeed, familial studies have identified SHOX deficiency in individuals, especially in males, with apparent ISS or low-normal height (
<xref ref-type="fig" rid="F6">Figure 6</xref>
D).</p>
<p>Selecting patients for genetic SHOX testing requires therefore a four-step procedure: 1) patient history including family history; 2) auxological/anthropometric assessments; 3) examination for dysmorphic signs including family members (eg, Madelung deformity); and 4) radiological examinations (
<xref rid="B180" ref-type="bibr">180</xref>
).</p>
</sec>
</sec>
<sec>
<title>VI. Conclusions</title>
<p>The studies summarized here have helped to elucidate the role of SHOX during bone development, the mechanisms regulating its activity, and the etiopathogenesis of SHOX deficiency phenotypes in ISS, LWD, LD, and TS. However, our understanding of the SHOX role in bone development, of SHOX-related pathways, and of mechanisms of regulating SHOX remains incomplete. Such SHOX-related studies have been hampered by the absence of orthologous
<italic>SHOX</italic>
genes in mouse and rat, impeding the establishment of rodent knockout models. Consequently, SHOX-expressing cell lines have been useful for early characterizations of SHOX and may continue to be valuable tools for the further investigation of SHOX cellular functions. However, the physiological relevance of SHOX studies in monolayer cellular systems remains questionable, given the complexity of the growth plate and the spatiotemporal expression of SHOX during the different phases of bone development. Because mouse
<italic>Shox2</italic>
and human
<italic>SHOX</italic>
are homologous genes sharing a common homeodomain, and because
<italic>Shox2</italic>
may have undertaken some of the functions of
<italic>Shox</italic>
, it is plausible that studies using mouse
<italic>Shox2</italic>
knockout models or embryonic limb bud micromass cultures will contribute to elucidation of the developmental roles of human
<italic>SHOX</italic>
and
<italic>SHOX2</italic>
. Other animal models, such as the chick embryo or zebrafish, may also be useful for deciphering the distinct cellular functions of these growth regulatory proteins. Further characterization of SHOX-related pathways is crucial not only for elucidating SHOX functions and their link to disease, but also to pave the way for novel therapeutic strategies targeted against SHOX-related disorders.</p>
</sec>
</body>
<back>
<fn-group content-type="abbreviations">
<fn fn-type="abbr">
<p>Abbreviations:
<def-list>
<def-item>
<term id="G1">ACAN</term>
<def>
<p>aggrecan</p>
</def>
</def-item>
<def-item>
<term id="G2">AI</term>
<def>
<p>aromatase inhibitor</p>
</def>
</def-item>
<def-item>
<term id="G3">ANP</term>
<def>
<p>atrial natriuretic peptide</p>
</def>
</def-item>
<def-item>
<term id="G4">BMD</term>
<def>
<p>bone mineral density</p>
</def>
</def-item>
<def-item>
<term id="G5">BMP</term>
<def>
<p>bone morphogenetic protein</p>
</def>
</def-item>
<def-item>
<term id="G6">BNP</term>
<def>
<p>brain natriuretic peptide</p>
</def>
</def-item>
<def-item>
<term id="G7">ChIP</term>
<def>
<p>chromatin immunoprecipitation</p>
</def>
</def-item>
<def-item>
<term id="G8">CKII</term>
<def>
<p>casein kinase II</p>
</def>
</def-item>
<def-item>
<term id="G9">CNE</term>
<def>
<p>conserved noncoding element</p>
</def>
</def-item>
<def-item>
<term id="G10">CNP</term>
<def>
<p>C-type natriuretic peptide</p>
</def>
</def-item>
<def-item>
<term id="G11">CS</term>
<def>
<p>Carnegie stage</p>
</def>
</def-item>
<def-item>
<term id="G12">Ctgf</term>
<def>
<p>connective tissue growth factor</p>
</def>
</def-item>
<def-item>
<term id="G13">E</term>
<def>
<p>embryonic day</p>
</def>
</def-item>
<def-item>
<term id="G14">FGF</term>
<def>
<p>fibroblast growth factor</p>
</def>
</def-item>
<def-item>
<term id="G15">FGFR</term>
<def>
<p>fibroblast growth factor receptor</p>
</def>
</def-item>
<def-item>
<term id="G16">FISH</term>
<def>
<p>fluorescence in situ hybridization</p>
</def>
</def-item>
<def-item>
<term id="G17">GFP</term>
<def>
<p>green fluorescent protein</p>
</def>
</def-item>
<def-item>
<term id="G18">GnRHa</term>
<def>
<p>GnRH analog</p>
</def>
</def-item>
<def-item>
<term id="G19">ISS</term>
<def>
<p>idiopathic short stature</p>
</def>
</def-item>
<def-item>
<term id="G20">JAK-STAT</term>
<def>
<p>Janus kinase-signal transducer and activator of transcription</p>
</def>
</def-item>
<def-item>
<term id="G21">LD</term>
<def>
<p>Langer dysplasia</p>
</def>
</def-item>
<def-item>
<term id="G22">LWD</term>
<def>
<p>Léri-Weill dyschondrosteosis</p>
</def>
</def-item>
<def-item>
<term id="G23">MLPA</term>
<def>
<p>multiplex ligation-dependent probe amplification</p>
</def>
</def-item>
<def-item>
<term id="G24">MOMP</term>
<def>
<p>mitochondrial outer membrane polarization</p>
</def>
</def-item>
<def-item>
<term id="G25">NPPB</term>
<def>
<p>natriuretic peptide B</p>
</def>
</def-item>
<def-item>
<term id="G26">NPR</term>
<def>
<p>natriuretic peptide receptor</p>
</def>
</def-item>
<def-item>
<term id="G27">PAR1</term>
<def>
<p>pseudoautosomal region 1</p>
</def>
</def-item>
<def-item>
<term id="G28">RA</term>
<def>
<p>retinoic acid</p>
</def>
</def-item>
<def-item>
<term id="G29">RNS</term>
<def>
<p>reactive nitrogen species</p>
</def>
</def-item>
<def-item>
<term id="G30">ROS</term>
<def>
<p>reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term id="G31">RUNX2</term>
<def>
<p>runt-related transcription factor 2</p>
</def>
</def-item>
<def-item>
<term id="G32">SHOX</term>
<def>
<p>short stature homeobox-containing gene on chromosome X</p>
</def>
</def-item>
<def-item>
<term id="G33">SNP</term>
<def>
<p>single nucleotide polymorphism</p>
</def>
</def-item>
<def-item>
<term id="G34">SOX9</term>
<def>
<p>SRY-box 9</p>
</def>
</def-item>
<def-item>
<term id="G35">SRY</term>
<def>
<p>sex-determining region Y</p>
</def>
</def-item>
<def-item>
<term id="G36">TS</term>
<def>
<p>Turner syndrome</p>
</def>
</def-item>
<def-item>
<term id="G37">UTR</term>
<def>
<p>untranslated region.</p>
</def>
</def-item>
</def-list>
</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgments</title>
<p>We thank Katja Beiser-Schneider, Werner Blum, Gordon Cutler, Maki Fukami, Caroline Hadley, and Marcel Karperien for important comments on the manuscript and Jutta Jung for helping with the art work. We also thankfully acknowledge the work of our clinical colleagues who supported this work by providing patient material and to the patients and their families. This article is dedicated to Rüdiger Blaschke and Werner Blum and all the members of the Rappold lab who have contributed to these studies in the last 20 years.</p>
<p>Disclosure Summary: A.M. and T.O. have nothing to declare. G.A.R. received lecture fees from Eli Lilly, Pfizer, Serono and Ipsen. G.A.R. is a holder of EU 0946721 and US 7252974 patents.</p>
</ack>
<ref-list>
<title>Reference</title>
<ref id="B1">
<label>1.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>The KIGS aetiology classification system</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Gunnarson</surname>
<given-names>R</given-names>
</name>
</person-group>
, eds.
<source>Progress in Growth Hormone Therapy - 5 Years of KIGS</source>
.
<publisher-loc>Mannheim, Germany</publisher-loc>
:
<publisher-name>J&J Verlag</publisher-name>
;
<year>1994</year>
.</mixed-citation>
</ref>
<ref id="B2">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Height matters-from monogenic disorders to normal variation</article-title>
.
<source>Nat Rev Endocrinol</source>
.
<year>2013</year>
;
<volume>9</volume>
:
<fpage>171</fpage>
<lpage>177</lpage>
.
<pub-id pub-id-type="pmid">23337954</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wit</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Oostdijk</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Losekoot</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van Duyvenvoorde</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Ruivenkamp</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>Mechanisms in endocrinology: novel genetic causes of short stature</article-title>
.
<source>Eur J Endocrinol</source>
.
<year>2016</year>
;
<volume>174</volume>
:
<fpage>R145</fpage>
<lpage>R173</lpage>
.
<pub-id pub-id-type="pmid">26578640</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sävendahl</surname>
<given-names>L</given-names>
</name>
<name>
<surname>De Luca</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Short and tall stature: a new paradigm emerges</article-title>
.
<source>Nat Rev Endocrinol</source>
.
<year>2015</year>
;
<volume>11</volume>
:
<fpage>735</fpage>
<lpage>746</lpage>
.
<pub-id pub-id-type="pmid">26437621</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Naiki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Muroya</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rare pseudoautosomal copy-number variations involving SHOX and/or its flanking regions in individuals with and without short stature</article-title>
.
<source>J Hum Genet</source>
.
<year>2015</year>
;
<volume>60</volume>
:
<fpage>553</fpage>
<lpage>556</lpage>
.
<pub-id pub-id-type="pmid">26040210</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wagner</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wirth</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9</article-title>
.
<source>Cell</source>
.
<year>1994</year>
;
<volume>79</volume>
:
<fpage>1111</fpage>
<lpage>1120</lpage>
.
<pub-id pub-id-type="pmid">8001137</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horton</surname>
<given-names>WA</given-names>
</name>
</person-group>
<article-title>Molecular genetic basis of the human chondrodysplasias</article-title>
.
<source>Endocrinol Metab Clin North Am</source>
.
<year>1996</year>
;
<volume>25</volume>
:
<fpage>683</fpage>
<lpage>697</lpage>
.
<pub-id pub-id-type="pmid">8879993</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prinos</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sommer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kilpatrick</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Tsipouras</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A common FGFR3 gene mutation in hypochondroplasia</article-title>
.
<source>Hum Mol Genet</source>
.
<year>1995</year>
;
<volume>4</volume>
:
<fpage>2097</fpage>
<lpage>2101</lpage>
.
<pub-id pub-id-type="pmid">8589686</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoilov</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kilpatrick</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Tsipouras</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia</article-title>
.
<source>Am J Med Genet</source>
.
<year>1995</year>
;
<volume>55</volume>
:
<fpage>127</fpage>
<lpage>133</lpage>
.
<pub-id pub-id-type="pmid">7702086</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Wit</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Breuning</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Genetic analysis of short stature</article-title>
.
<source>Horm Res</source>
.
<year>2003</year>
;
<volume>60</volume>
:
<fpage>157</fpage>
<lpage>165</lpage>
.
<pub-id pub-id-type="pmid">14530602</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wit</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>van Duyvenvoorde</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>van Klinken</surname>
<given-names>JB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Copy number variants in short children born small for gestational age</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2014</year>
;
<volume>82</volume>
:
<fpage>310</fpage>
<lpage>318</lpage>
.
<pub-id pub-id-type="pmid">25300501</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Goodfellow</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Short stature in a girl with a terminal Xp deletion distal to DXYS15: localisation of a growth gene(s) in the pseudoautosomal region</article-title>
.
<source>J Med Genet</source>
.
<year>1992</year>
;
<volume>29</volume>
:
<fpage>455</fpage>
<lpage>459</lpage>
.
<pub-id pub-id-type="pmid">1640423</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Localisation of male determining factors in man: a thorough review of structural anomalies of the Y chromosome</article-title>
.
<source>J Med Genet</source>
.
<year>1981</year>
;
<volume>18</volume>
:
<fpage>161</fpage>
<lpage>195</lpage>
.
<pub-id pub-id-type="pmid">7017147</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vollrath</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Foote</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hilton</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The human Y chromosome: a 43-interval map based on naturally occurring deletions</article-title>
.
<source>Science</source>
.
<year>1992</year>
;
<volume>258</volume>
:
<fpage>52</fpage>
<lpage>59</lpage>
.
<pub-id pub-id-type="pmid">1439769</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Sex chromosome aberrations and stature: deduction of the principal factors involved in the determination of adult height</article-title>
.
<source>Hum Genet</source>
.
<year>1993</year>
;
<volume>91</volume>
:
<fpage>551</fpage>
<lpage>562</lpage>
.
<pub-id pub-id-type="pmid">8340109</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>May</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Shone</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Kalaydjieva</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sajantila</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jeffreys</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX</article-title>
.
<source>Nat Genet</source>
.
<year>2002</year>
;
<volume>31</volume>
:
<fpage>272</fpage>
<lpage>275</lpage>
.
<pub-id pub-id-type="pmid">12089524</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lien</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Szyda</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Schechinger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Arnheim</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2000</year>
;
<volume>66</volume>
:
<fpage>557</fpage>
<lpage>566</lpage>
.
<pub-id pub-id-type="pmid">10677316</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FISH-deletion mapping defines a 270-kb short stature critical interval in the pseudoautosomal region PAR1 on human sex chromosomes</article-title>
.
<source>Hum Genet</source>
.
<year>1997</year>
;
<volume>100</volume>
:
<fpage>236</fpage>
<lpage>239</lpage>
.
<pub-id pub-id-type="pmid">9254856</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome</article-title>
.
<source>Nat Genet</source>
.
<year>1997</year>
;
<volume>16</volume>
:
<fpage>54</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">9140395</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellison</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Wardak</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Gehron Robey</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Laig-Webster</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chiong</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>PHOG, a candidate gene for involvement in the short stature of Turner syndrome</article-title>
.
<source>Hum Mol Genet</source>
.
<year>1997</year>
;
<volume>6</volume>
:
<fpage>1341</fpage>
<lpage>1347</lpage>
.
<pub-id pub-id-type="pmid">9259282</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roeth</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dweep</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alternative splicing and nonsense-mediated RNA decay contribute to the regulation of SHOX expression</article-title>
.
<source>PLoS One</source>
.
<year>2011</year>
;
<volume>6</volume>
:
<fpage>e18115</fpage>
.
<pub-id pub-id-type="pmid">21448463</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gehring</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Affolter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bürglin</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Homeodomain proteins</article-title>
.
<source>Annu Rev Biochem</source>
.
<year>1994</year>
;
<volume>63</volume>
:
<fpage>487</fpage>
<lpage>526</lpage>
.
<pub-id pub-id-type="pmid">7979246</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boncinelli</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Homeobox genes and disease</article-title>
.
<source>Curr Opin Genet Dev</source>
.
<year>1997</year>
;
<volume>7</volume>
:
<fpage>331</fpage>
<lpage>337</lpage>
.
<pub-id pub-id-type="pmid">9229108</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Monaghan</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Schiller</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart, and limb development</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>1998</year>
;
<volume>95</volume>
:
<fpage>2406</fpage>
<lpage>2411</lpage>
.
<pub-id pub-id-type="pmid">9482898</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement-Jones</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schiller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2000</year>
;
<volume>9</volume>
:
<fpage>695</fpage>
<lpage>702</lpage>
.
<pub-id pub-id-type="pmid">10749976</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Espinoza-Lewis</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function</article-title>
.
<source>J Biol Chem</source>
.
<year>2011</year>
;
<volume>286</volume>
:
<fpage>17029</fpage>
<lpage>17038</lpage>
.
<pub-id pub-id-type="pmid">21454626</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tiecke</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bangs</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Blaschke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tickle</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Expression of the short stature homeobox gene Shox is restricted by proximal and distal signals in chick limb buds and affects the length of skeletal elements</article-title>
.
<source>Dev Biol</source>
.
<year>2006</year>
;
<volume>298</volume>
:
<fpage>585</fpage>
<lpage>596</lpage>
.
<pub-id pub-id-type="pmid">16904661</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Decker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bender</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>FGFR3 is a target of the homeobox transcription factor SHOX in limb development</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2011</year>
;
<volume>20</volume>
:
<fpage>1524</fpage>
<lpage>1535</lpage>
.
<pub-id pub-id-type="pmid">21273290</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aza-Carmona</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rodríguez-Estevez</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature</article-title>
.
<source>Eur J Hum Genet</source>
.
<year>2012</year>
;
<volume>20</volume>
:
<fpage>125</fpage>
<lpage>127</lpage>
.
<pub-id pub-id-type="pmid">22071895</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bangs</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Signolet</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tickle</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Enhancer elements upstream of the SHOX gene are active in the developing limb</article-title>
.
<source>Eur J Hum Genet</source>
.
<year>2010</year>
;
<volume>18</volume>
:
<fpage>527</fpage>
<lpage>532</lpage>
.
<pub-id pub-id-type="pmid">19997128</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabherwal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bangs</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Röth</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2007</year>
;
<volume>16</volume>
:
<fpage>210</fpage>
<lpage>222</lpage>
.
<pub-id pub-id-type="pmid">17200153</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sawada</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kamei</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hakuno</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shimizu</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>In vivo loss of function study reveals the short stature homeobox-containing (shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish</article-title>
.
<source>Dev Dyn</source>
.
<year>2015</year>
;
<volume>244</volume>
:
<fpage>146</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="pmid">25483930</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kenyon</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>McEwen</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Callaway</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Elgar</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Functional analysis of conserved non-coding regions around the short stature hox gene (shox) in whole zebrafish embryos</article-title>
.
<source>PLoS One</source>
.
<year>2011</year>
;
<volume>6</volume>
:
<fpage>e21498</fpage>
.
<pub-id pub-id-type="pmid">21731768</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dierich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Huss-Garcia</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Duboule</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A mouse model for human short-stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone development</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2006</year>
;
<volume>103</volume>
:
<fpage>4511</fpage>
<lpage>4515</lpage>
.
<pub-id pub-id-type="pmid">16537395</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Hahurij</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Kuijper</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development</article-title>
.
<source>Circulation</source>
.
<year>2007</year>
;
<volume>115</volume>
:
<fpage>1830</fpage>
<lpage>1838</lpage>
.
<pub-id pub-id-type="pmid">17372176</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Espinoza-Lewis</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>He</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2–5</article-title>
.
<source>Dev Biol</source>
.
<year>2009</year>
;
<volume>327</volume>
:
<fpage>376</fpage>
<lpage>385</lpage>
.
<pub-id pub-id-type="pmid">19166829</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Alappat</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate</article-title>
.
<source>Development</source>
.
<year>2005</year>
;
<volume>132</volume>
:
<fpage>4397</fpage>
<lpage>4406</lpage>
.
<pub-id pub-id-type="pmid">16141225</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neufeld</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb</article-title>
.
<source>Genetics</source>
.
<year>2014</year>
;
<volume>198</volume>
:
<fpage>1117</fpage>
<lpage>1126</lpage>
.
<pub-id pub-id-type="pmid">25217052</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bobick</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Shox2 regulates progression through chondrogenesis in the mouse proximal limb</article-title>
.
<source>J Cell Sci</source>
.
<year>2012</year>
;
<volume>125</volume>
:
<fpage>6071</fpage>
<lpage>6083</lpage>
.
<pub-id pub-id-type="pmid">23038774</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vickerman</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Neufeld</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Shox2 function couples neural, muscular and skeletal development in the proximal forelimb</article-title>
.
<source>Dev Biol</source>
.
<year>2011</year>
;
<volume>350</volume>
:
<fpage>323</fpage>
<lpage>336</lpage>
.
<pub-id pub-id-type="pmid">21156168</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fei</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice</article-title>
.
<source>Mech Dev</source>
.
<year>2008</year>
;
<volume>125</volume>
:
<fpage>729</fpage>
<lpage>742</lpage>
.
<pub-id pub-id-type="pmid">18514492</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosin</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>McAllister</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>Dyck</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Percival</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Kurrasch</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Mice lacking the transcription factor SHOX2 display impaired cerebellar development and deficits in motor coordination</article-title>
.
<source>Dev Biol</source>
.
<year>2015</year>
;
<volume>399</volume>
:
<fpage>54</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="pmid">25528224</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scott</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sakurai</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yaron</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons</article-title>
.
<source>J Neurosci</source>
.
<year>2011</year>
;
<volume>31</volume>
:
<fpage>6741</fpage>
<lpage>6749</lpage>
.
<pub-id pub-id-type="pmid">21543603</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Boucher</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shox2 is a molecular determinant of depot-specific adipocyte function</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2013</year>
;
<volume>110</volume>
:
<fpage>11409</fpage>
<lpage>11414</lpage>
.
<pub-id pub-id-type="pmid">23798383</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Töpfer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steinbeisser</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Transcriptional and translational regulation of the Leri-Weill and Turner syndrome homeobox gene SHOX</article-title>
.
<source>J Biol Chem</source>
.
<year>2003</year>
;
<volume>278</volume>
:
<fpage>47820</fpage>
<lpage>47826</lpage>
.
<pub-id pub-id-type="pmid">12960152</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Heyningen</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bickmore</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Regulation from a distance: long-range control of gene expression in development and disease</article-title>
.
<source>Philos Trans R Soc Lond B Biol Sci</source>
.
<year>2013</year>
;
<volume>368</volume>
:
<fpage>20120372</fpage>
.
<pub-id pub-id-type="pmid">23650642</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pennacchio</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>EM</given-names>
</name>
</person-group>
<article-title>Genomic strategies to identify mammalian regulatory sequences</article-title>
.
<source>Nat Rev Genet</source>
.
<year>2001</year>
;
<volume>2</volume>
:
<fpage>100</fpage>
<lpage>109</lpage>
.
<pub-id pub-id-type="pmid">11253049</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleinjan</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>van Heyningen</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Long-range control of gene expression: emerging mechanisms and disruption in disease</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2005</year>
;
<volume>76</volume>
:
<fpage>8</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">15549674</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tajima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yokoya</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3′ region: implication for the downstream enhancer</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2006</year>
;
<volume>78</volume>
:
<fpage>167</fpage>
<lpage>170</lpage>
.
<pub-id pub-id-type="pmid">16385461</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<label>50.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Royo</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Barroso</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer</article-title>
.
<source>J Med Genet</source>
.
<year>2012</year>
;
<volume>49</volume>
:
<fpage>442</fpage>
<lpage>450</lpage>
.
<pub-id pub-id-type="pmid">22791839</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Niesler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Burnett</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>The Leri-Weill and Turner syndrome homeobox gene SHOX encodes a cell-type specific transcriptional activator</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2001</year>
;
<volume>10</volume>
:
<fpage>3083</fpage>
<lpage>3091</lpage>
.
<pub-id pub-id-type="pmid">11751690</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<label>52.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolberger</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Homeodomain interactions</article-title>
.
<source>Curr Opin Struct Biol</source>
.
<year>1996</year>
;
<volume>6</volume>
:
<fpage>62</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="pmid">8696974</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<label>53.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gehring</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>YQ</given-names>
</name>
<name>
<surname>Billeter</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Homeodomain-DNA recognition</article-title>
.
<source>Cell</source>
.
<year>1994</year>
;
<volume>78</volume>
:
<fpage>211</fpage>
<lpage>223</lpage>
.
<pub-id pub-id-type="pmid">8044836</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<label>54.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cusin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Viot</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX mutations in dyschondrosteosis (Leri-Weill syndrome)</article-title>
.
<source>Nat Genet</source>
.
<year>1998</year>
;
<volume>19</volume>
:
<fpage>67</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="pmid">9590292</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<label>55.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cormier-Daire</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Munnich</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Allelic and nonallelic heterogeneity in dyschondrosteosis (Leri-Weill syndrome)</article-title>
.
<source>Am J Med Genet</source>
.
<year>2001</year>
;
<volume>106</volume>
:
<fpage>272</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">11891678</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<label>56.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flanagan</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Munns</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Hayes</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prevalence of mutations in the short stature homeobox containing gene (SHOX) in Madelung deformity of childhood</article-title>
.
<source>J Med Genet</source>
.
<year>2002</year>
;
<volume>39</volume>
:
<fpage>758</fpage>
<lpage>763</lpage>
.
<pub-id pub-id-type="pmid">12362035</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<label>57.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigelioniene</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schoumans</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Neumeyer</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Analysis of short stature homeobox-containing gene (SHOX) and auxological phenotype in dyschondrosteosis and isolated Madelung deformity</article-title>
.
<source>Hum Genet</source>
.
<year>2001</year>
;
<volume>109</volume>
:
<fpage>551</fpage>
<lpage>558</lpage>
.
<pub-id pub-id-type="pmid">11735031</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<label>58.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Niesler</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Deletions of the homeobox gene SHOX (short stature homeobox) are an important cause of growth failure in children with short stature</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2002</year>
;
<volume>87</volume>
:
<fpage>1402</fpage>
<lpage>1406</lpage>
.
<pub-id pub-id-type="pmid">11889216</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<label>59.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lecuit</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dostatni</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Desplan</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Cooperative dimerization of paired class homeo domains on DNA</article-title>
.
<source>Genes Dev</source>
.
<year>1993</year>
;
<volume>7</volume>
:
<fpage>2120</fpage>
<lpage>2134</lpage>
.
<pub-id pub-id-type="pmid">7901121</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<label>60.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Desplan</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Homeodomain proteins. Cooperating to be different</article-title>
.
<source>Curr Biol</source>
.
<year>1995</year>
;
<volume>5</volume>
:
<fpage>32</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="pmid">7697343</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<label>61.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneider</surname>
<given-names>KU</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sabherwal</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis</article-title>
.
<source>Hum Mutat</source>
.
<year>2005</year>
;
<volume>26</volume>
:
<fpage>44</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="pmid">15931687</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<label>62.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabherwal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel point mutation A170P in the SHOX gene defines impaired nuclear translocation as a molecular cause for Leri-Weill dyschondrosteosis and Langer dysplasia</article-title>
.
<source>J Med Genet</source>
.
<year>2004</year>
;
<volume>41</volume>
:
<fpage>e83</fpage>
.
<pub-id pub-id-type="pmid">15173249</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<label>63.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Daeffler</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Marttila</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phosphorylation on Ser106 modulates the cellular functions of the SHOX homeodomain protein</article-title>
.
<source>J Mol Biol</source>
.
<year>2006</year>
;
<volume>355</volume>
:
<fpage>590</fpage>
<lpage>603</lpage>
.
<pub-id pub-id-type="pmid">16325853</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<label>64.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cusin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Le Merrer</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX point mutations in dyschondrosteosis</article-title>
.
<source>J Med Genet</source>
.
<year>2001</year>
;
<volume>38</volume>
:
<fpage>323</fpage>
.
<pub-id pub-id-type="pmid">11403039</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<label>65.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>del Blanco</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Aza-Carmona</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PAR1 deletions downstream of SHOX are the most frequent defect in a Spanish cohort of Léri-Weill dyschondrosteosis (LWD) probands</article-title>
.
<source>Hum Mutat</source>
.
<year>2006</year>
;
<volume>27</volume>
:
<fpage>1062</fpage>
.
<pub-id pub-id-type="pmid">16941489</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<label>66.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shears</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Guillen-Navarro</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sempere-Miralles</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Domingo-Jimenez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Scambler</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Pseudodominant inheritance of Langer mesomelic dysplasia caused by a SHOX homeobox missense mutation</article-title>
.
<source>Am J Med Genet</source>
.
<year>2002</year>
;
<volume>110</volume>
:
<fpage>153</fpage>
<lpage>157</lpage>
.
<pub-id pub-id-type="pmid">12116253</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<label>67.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binder</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Renz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX haploinsufficiency and Leri-Weill dyschondrosteosis: prevalence and growth failure in relation to mutation, sex, and degree of wrist deformity</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2004</year>
;
<volume>89</volume>
:
<fpage>4403</fpage>
<lpage>4408</lpage>
.
<pub-id pub-id-type="pmid">15356038</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<label>68.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabherwal</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>KU</given-names>
</name>
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Impairment of SHOX nuclear localization as a cause for Léri-Weill syndrome</article-title>
.
<source>J Cell Sci</source>
.
<year>2004</year>
;
<volume>117</volume>
:
<fpage>3041</fpage>
<lpage>3048</lpage>
.
<pub-id pub-id-type="pmid">15173321</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<label>69.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furukawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kozak</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Cepko</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>1997</year>
;
<volume>94</volume>
:
<fpage>3088</fpage>
<lpage>3093</lpage>
.
<pub-id pub-id-type="pmid">9096350</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<label>70.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semina</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Reiter</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Leysens</surname>
<given-names>NJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome</article-title>
.
<source>Nat Genet</source>
.
<year>1996</year>
;
<volume>14</volume>
:
<fpage>392</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="pmid">8944018</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<label>71.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semina</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Reiter</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>A new human homeobox gene OGI2X is a member of the most conserved homeobox gene family and is expressed during heart development in mouse</article-title>
.
<source>Hum Mol Genet</source>
.
<year>1998</year>
;
<volume>7</volume>
:
<fpage>415</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="pmid">9466998</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<label>72.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ornitz</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Development of the endochondral skeleton</article-title>
.
<source>Cold Spring Harb Perspect Biol</source>
.
<year>2013</year>
;
<volume>5</volume>
:
<fpage>a008334</fpage>
.
<pub-id pub-id-type="pmid">23284041</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<label>73.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kronenberg</surname>
<given-names>HM</given-names>
</name>
</person-group>
<article-title>Developmental regulation of the growth plate</article-title>
.
<source>Nature</source>
.
<year>2003</year>
;
<volume>423</volume>
:
<fpage>332</fpage>
<lpage>336</lpage>
.
<pub-id pub-id-type="pmid">12748651</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<label>74.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akiyama</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Control of chondrogenesis by the transcription factor Sox9</article-title>
.
<source>Mod Rheumatol</source>
.
<year>2008</year>
;
<volume>18</volume>
:
<fpage>213</fpage>
<lpage>219</lpage>
.
<pub-id pub-id-type="pmid">18351289</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<label>75.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Byrne</surname>
<given-names>MH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2004</year>
;
<volume>101</volume>
:
<fpage>17192</fpage>
<lpage>17197</lpage>
.
<pub-id pub-id-type="pmid">15563592</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<label>76.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lui</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2012</year>
;
<volume>21</volume>
:
<fpage>5193</fpage>
<lpage>5201</lpage>
.
<pub-id pub-id-type="pmid">22914739</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<label>77.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lui</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Recent research on the growth plate: recent insights into the regulation of the growth plate</article-title>
.
<source>J Mol Endocrinol</source>
.
<year>2014</year>
;
<volume>53</volume>
:
<fpage>T1</fpage>
<lpage>T9</lpage>
.
<pub-id pub-id-type="pmid">24740736</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<label>78.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wood</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Esko</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Defining the role of common variation in the genomic and biological architecture of adult human height</article-title>
.
<source>Nat Genet</source>
.
<year>2014</year>
;
<volume>46</volume>
:
<fpage>1173</fpage>
<lpage>1186</lpage>
.
<pub-id pub-id-type="pmid">25282103</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<label>79.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Walvoord</surname>
<given-names>EC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Whole exome sequencing to identify genetic causes of short stature</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2014</year>
;
<volume>82</volume>
:
<fpage>44</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="pmid">24970356</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<label>80.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dauber</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rosenfeld</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Hirschhorn</surname>
<given-names>JN</given-names>
</name>
</person-group>
<article-title>Genetic evaluation of short stature</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2014</year>
;
<volume>99</volume>
:
<fpage>3080</fpage>
<lpage>3092</lpage>
.
<pub-id pub-id-type="pmid">24915122</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<label>81.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lango Allen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Estrada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lettre</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hundreds of variants clustered in genomic loci and biological pathways affect human height</article-title>
.
<source>Nature</source>
.
<year>2010</year>
;
<volume>467</volume>
:
<fpage>832</fpage>
<lpage>838</lpage>
.
<pub-id pub-id-type="pmid">20881960</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<label>82.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozhemyakina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lassar</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Zelzer</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation</article-title>
.
<source>Development</source>
.
<year>2015</year>
;
<volume>142</volume>
:
<fpage>817</fpage>
<lpage>831</lpage>
.
<pub-id pub-id-type="pmid">25715393</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<label>83.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Marino</surname>
<given-names>R</given-names>
</name>
<name>
<surname>De Luca</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Phillip</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Endocrine regulation of the growth plate</article-title>
.
<source>Horm Res</source>
.
<year>2005</year>
;
<volume>64</volume>
:
<fpage>157</fpage>
<lpage>165</lpage>
.
<pub-id pub-id-type="pmid">16205094</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<label>84.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sederquist</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fernandez-Vojvodich</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zaman</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sävendahl</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Recent research on the growth plate: impact of inflammatory cytokines on longitudinal bone growth</article-title>
.
<source>J Mol Endocrinol</source>
.
<year>2014</year>
;
<volume>53</volume>
:
<fpage>T35</fpage>
<lpage>T44</lpage>
.
<pub-id pub-id-type="pmid">24711646</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<label>85.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanderschueren</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Claessens</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sex steroid actions in male bone</article-title>
.
<source>Endocr Rev</source>
.
<year>2014</year>
;
<volume>35</volume>
:
<fpage>906</fpage>
<lpage>960</lpage>
.
<pub-id pub-id-type="pmid">25202834</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<label>86.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Luca</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Uyeda</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Mericq</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Retinoic acid is a potent regulator of growth plate chondrogenesis</article-title>
.
<source>Endocrinology</source>
.
<year>2000</year>
;
<volume>141</volume>
:
<fpage>346</fpage>
<lpage>353</lpage>
.
<pub-id pub-id-type="pmid">10614657</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<label>87.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maes</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Signaling pathways effecting crosstalk between cartilage and adjacent tissues: seminars in cell and developmental biology: the biology and pathology of cartilage [published online May 12, 2016]</article-title>
.
<source>Semin Cell Dev Biol</source>
.
<comment>doi:
<ext-link ext-link-type="doi" xlink:href="10.1016/j.semcdb.2016.05.007">10.1016/j.semcdb.2016.05.007</ext-link>
</comment>
.</mixed-citation>
</ref>
<ref id="B88">
<label>88.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Luca</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Uyeda</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of growth plate chondrogenesis by bone morphogenetic protein-2</article-title>
.
<source>Endocrinology</source>
.
<year>2001</year>
;
<volume>142</volume>
:
<fpage>430</fpage>
<lpage>436</lpage>
.
<pub-id pub-id-type="pmid">11145607</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<label>89.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pogue</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>BMP signaling in the cartilage growth plate</article-title>
.
<source>Curr Top Dev Biol</source>
.
<year>2006</year>
;
<volume>76</volume>
:
<fpage>1</fpage>
<lpage>48</lpage>
.
<pub-id pub-id-type="pmid">17118262</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<label>90.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andrade</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation</article-title>
.
<source>Bone</source>
.
<year>2007</year>
;
<volume>40</volume>
:
<fpage>1361</fpage>
<lpage>1369</lpage>
.
<pub-id pub-id-type="pmid">17337262</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<label>91.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuss</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stumm</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A</article-title>
.
<source>Dev Biol</source>
.
<year>2014</year>
;
<volume>385</volume>
:
<fpage>83</fpage>
<lpage>93</lpage>
.
<pub-id pub-id-type="pmid">24161848</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<label>92.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Recent research on the growth plate: advances in fibroblast growth factor signaling in growth plate development and disorders</article-title>
.
<source>J Mol Endocrinol</source>
.
<year>2014</year>
;
<volume>53</volume>
:
<fpage>T11</fpage>
<lpage>T34</lpage>
.
<pub-id pub-id-type="pmid">25114206</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<label>93.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chusho</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dwarfism and early death in mice lacking C-type natriuretic peptide</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2001</year>
;
<volume>98</volume>
:
<fpage>4016</fpage>
<lpage>4021</lpage>
.
<pub-id pub-id-type="pmid">11259675</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<label>94.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mericq</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Uyeda</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>De Luca</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP</article-title>
.
<source>Pediatr Res</source>
.
<year>2000</year>
;
<volume>47</volume>
:
<fpage>189</fpage>
<lpage>193</lpage>
.
<pub-id pub-id-type="pmid">10674345</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<label>95.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pejchalova</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Krejci</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wilcox</surname>
<given-names>WR</given-names>
</name>
</person-group>
<article-title>C-natriuretic peptide: an important regulator of cartilage</article-title>
.
<source>Mol Genet Metab</source>
.
<year>2007</year>
;
<volume>92</volume>
:
<fpage>210</fpage>
<lpage>215</lpage>
.
<pub-id pub-id-type="pmid">17681481</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<label>96.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez-Vojvodich</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Palmblad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Karimian</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Sävendahl</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Pro-inflammatory cytokines produced by growth plate chondrocytes may act locally to modulate longitudinal bone growth</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2012</year>
;
<volume>77</volume>
:
<fpage>180</fpage>
<lpage>187</lpage>
.
<pub-id pub-id-type="pmid">22508264</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<label>97.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jochmann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bachvarova</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Vortkamp</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Heparan sulfate as a regulator of endochondral ossification and osteochondroma development</article-title>
.
<source>Matrix Biol</source>
.
<year>2014</year>
;
<volume>34</volume>
:
<fpage>55</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">24370655</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<label>98.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Marttila</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes</article-title>
.
<source>J Biol Chem</source>
.
<year>2004</year>
;
<volume>279</volume>
:
<fpage>37103</fpage>
<lpage>37114</lpage>
.
<pub-id pub-id-type="pmid">15145945</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<label>99.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munns</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Haase</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Crowther</surname>
<given-names>LM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression of SHOX in human fetal and childhood growth plate</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2004</year>
;
<volume>89</volume>
:
<fpage>4130</fpage>
<lpage>4135</lpage>
.
<pub-id pub-id-type="pmid">15292358</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<label>100.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munns</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Glass</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>LaBrom</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histopathological analysis of Leri-Weill dyschondrosteosis: disordered growth plate</article-title>
.
<source>Hand Surg</source>
.
<year>2001</year>
;
<volume>6</volume>
:
<fpage>13</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="pmid">11677662</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<label>101.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hristov</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marttila</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Niesler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>SHOX triggers the lysosomal pathway of apoptosis via oxidative stress</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2014</year>
;
<volume>23</volume>
:
<fpage>1619</fpage>
<lpage>1630</lpage>
.
<pub-id pub-id-type="pmid">24186869</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<label>102.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repnik</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Stoka</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turk</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turk</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Lysosomes and lysosomal cathepsins in cell death</article-title>
.
<source>Biochim Biophys Acta</source>
.
<year>2012</year>
;
<volume>1824</volume>
:
<fpage>22</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="pmid">21914490</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<label>103.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Häcker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Marttila</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>BNP is a transcriptional target of the short stature homeobox gene SHOX</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2007</year>
;
<volume>16</volume>
:
<fpage>3081</fpage>
<lpage>3087</lpage>
.
<pub-id pub-id-type="pmid">17881654</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<label>104.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vajo</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Francomano</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Wilkin</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans</article-title>
.
<source>Endocr Rev</source>
.
<year>2000</year>
;
<volume>21</volume>
:
<fpage>23</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="pmid">10696568</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<label>105.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Cervenkova</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Balek</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel variant of FGFR3 causes proportionate short stature</article-title>
.
<source>Eur J Endocrinol</source>
.
<year>2015</year>
;
<volume>172</volume>
:
<fpage>763</fpage>
<lpage>770</lpage>
.
<pub-id pub-id-type="pmid">25777271</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<label>106.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toydemir</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Brassington</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Bayrak-Toydemir</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2006</year>
;
<volume>79</volume>
:
<fpage>935</fpage>
<lpage>941</lpage>
.
<pub-id pub-id-type="pmid">17033969</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<label>107.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makrythanasis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Temtamy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aglan</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Otaify</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Hamamy</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Antonarakis</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly</article-title>
.
<source>Hum Mutat</source>
.
<year>2014</year>
;
<volume>35</volume>
:
<fpage>959</fpage>
<lpage>963</lpage>
.
<pub-id pub-id-type="pmid">24864036</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<label>108.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Adar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis</article-title>
.
<source>J Clin Invest</source>
.
<year>1999</year>
;
<volume>104</volume>
:
<fpage>1517</fpage>
<lpage>1525</lpage>
.
<pub-id pub-id-type="pmid">10587515</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<label>109.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Naski</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Colvin</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Coffin</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Ornitz</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3</article-title>
.
<source>Development</source>
.
<year>1998</year>
;
<volume>125</volume>
:
<fpage>4977</fpage>
<lpage>4988</lpage>
.
<pub-id pub-id-type="pmid">9811582</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<label>110.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ornitz</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Marie</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease</article-title>
.
<source>Genes Dev</source>
.
<year>2002</year>
;
<volume>16</volume>
:
<fpage>1446</fpage>
<lpage>1465</lpage>
.
<pub-id pub-id-type="pmid">12080084</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<label>111.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wynshaw-Boris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Leder</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Fibroblast growth factor receptor 3 is a negative regulator of bone growth</article-title>
.
<source>Cell</source>
.
<year>1996</year>
;
<volume>84</volume>
:
<fpage>911</fpage>
<lpage>921</lpage>
.
<pub-id pub-id-type="pmid">8601314</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<label>112.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colvin</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Bohne</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Harding</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>McEwen</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Ornitz</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3</article-title>
.
<source>Nat Genet</source>
.
<year>1996</year>
;
<volume>12</volume>
:
<fpage>390</fpage>
<lpage>397</lpage>
.
<pub-id pub-id-type="pmid">8630492</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<label>113.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aza-Carmona</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shears</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Yuste-Checa</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer</article-title>
.
<source>Hum Mol Genet</source>
.
<year>2011</year>
;
<volume>20</volume>
:
<fpage>1547</fpage>
<lpage>1559</lpage>
.
<pub-id pub-id-type="pmid">21262861</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<label>114.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hattori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gebhard</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification</article-title>
.
<source>Development</source>
.
<year>2010</year>
;
<volume>137</volume>
:
<fpage>901</fpage>
<lpage>911</lpage>
.
<pub-id pub-id-type="pmid">20179096</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<label>115.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mattos</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Sanseverino</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Magalhães</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical and molecular characterization of a Brazilian cohort of campomelic dysplasia patients, and identification of seven new SOX9 mutations</article-title>
.
<source>Genet Mol Biol</source>
.
<year>2015</year>
;
<volume>38</volume>
:
<fpage>14</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="pmid">25983619</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<label>116.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tompson</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Merriman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Funari</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A recessive skeletal dysplasia, SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2009</year>
;
<volume>84</volume>
:
<fpage>72</fpage>
<lpage>79</lpage>
.
<pub-id pub-id-type="pmid">19110214</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<label>117.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nilsson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Dunbar</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Short stature, accelerated bone maturation, and early growth cessation due to heterozygous aggrecan mutations</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2014</year>
;
<volume>99</volume>
:
<fpage>E1510</fpage>
<lpage>E1518</lpage>
.
<pub-id pub-id-type="pmid">24762113</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<label>118.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aza-Carmona</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Barca-Tierno</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hisado-Oliva</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e83104</fpage>
.
<pub-id pub-id-type="pmid">24421874</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<label>119.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beiser</surname>
<given-names>KU</given-names>
</name>
<name>
<surname>Glaser</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kleinschmidt</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of novel SHOX target genes in the developing limb using a transgenic mouse model</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e98543</fpage>
.
<pub-id pub-id-type="pmid">24887312</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<label>120.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohn</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Krumlauf</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Tickle</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Hox9 genes and vertebrate limb specification</article-title>
.
<source>Nature</source>
.
<year>1997</year>
;
<volume>387</volume>
:
<fpage>97</fpage>
<lpage>101</lpage>
.
<pub-id pub-id-type="pmid">9139829</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<label>121.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zakany</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Duboule</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The role of Hox genes during vertebrate limb development</article-title>
.
<source>Curr Opin Genet Dev</source>
.
<year>2007</year>
;
<volume>17</volume>
:
<fpage>359</fpage>
<lpage>366</lpage>
.
<pub-id pub-id-type="pmid">17644373</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<label>122.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fromental-Ramain</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Warot</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lakkaraju</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning</article-title>
.
<source>Development</source>
.
<year>1996</year>
;
<volume>122</volume>
:
<fpage>461</fpage>
<lpage>472</lpage>
.
<pub-id pub-id-type="pmid">8625797</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<label>123.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wellik</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Capecchi</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton</article-title>
.
<source>Science</source>
.
<year>2003</year>
;
<volume>301</volume>
:
<fpage>363</fpage>
<lpage>367</lpage>
.
<pub-id pub-id-type="pmid">12869760</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<label>124.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Witte</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Hsieh-Li</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Potter</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Capecchi</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11</article-title>
.
<source>Nature</source>
.
<year>1995</year>
;
<volume>375</volume>
:
<fpage>791</fpage>
<lpage>795</lpage>
.
<pub-id pub-id-type="pmid">7596412</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<label>125.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fromental-Ramain</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Warot</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Messadecq</surname>
<given-names>N</given-names>
</name>
<name>
<surname>LeMeur</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dollé</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chambon</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod</article-title>
.
<source>Development</source>
.
<year>1996</year>
;
<volume>122</volume>
:
<fpage>2997</fpage>
<lpage>3011</lpage>
.
<pub-id pub-id-type="pmid">8898214</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<label>126.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Roeth</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>KU</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The homeobox transcription factor HOXA9 is a regulator of SHOX in U2OS cells and chicken micromass cultures</article-title>
.
<source>PLoS One</source>
.
<year>2012</year>
;
<volume>7</volume>
:
<fpage>e45369</fpage>
.
<pub-id pub-id-type="pmid">23028966</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<label>127.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton</article-title>
.
<source>Dev Biol</source>
.
<year>2007</year>
;
<volume>306</volume>
:
<fpage>549</fpage>
<lpage>559</lpage>
.
<pub-id pub-id-type="pmid">17481601</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<label>128.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gross</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krause</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wuelling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vortkamp</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Hoxa11 and Hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice</article-title>
.
<source>PLoS One</source>
.
<year>2012</year>
;
<volume>7</volume>
:
<fpage>e43553</fpage>
.
<pub-id pub-id-type="pmid">22916278</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<label>129.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foldynova-Trantirkova</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wilcox</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Krejci</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias</article-title>
.
<source>Hum Mutat</source>
.
<year>2012</year>
;
<volume>33</volume>
:
<fpage>29</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="pmid">22045636</pub-id>
</mixed-citation>
</ref>
<ref id="B130">
<label>130.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sahni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ambrosetti</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Mansukhani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gertner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Basilico</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway</article-title>
.
<source>Genes Dev</source>
.
<year>1999</year>
;
<volume>13</volume>
:
<fpage>1361</fpage>
<lpage>1366</lpage>
.
<pub-id pub-id-type="pmid">10364154</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<label>131.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishikimi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kuwahara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakao</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides</article-title>
.
<source>J Cardiol</source>
.
<year>2011</year>
;
<volume>57</volume>
:
<fpage>131</fpage>
<lpage>140</lpage>
.
<pub-id pub-id-type="pmid">21296556</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<label>132.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Volpe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Natriuretic peptides and cardio-renal disease</article-title>
.
<source>Int J Cardiol</source>
.
<year>2014</year>
;
<volume>176</volume>
:
<fpage>630</fpage>
<lpage>639</lpage>
.
<pub-id pub-id-type="pmid">25213572</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<label>133.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Plasma level of B-type natriuretic peptide as a prognostic marker after acute myocardial infarction: a long-term follow-up analysis</article-title>
.
<source>Circulation</source>
.
<year>2004</year>
;
<volume>110</volume>
:
<fpage>1387</fpage>
<lpage>1391</lpage>
.
<pub-id pub-id-type="pmid">15353502</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<label>134.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Doolittle</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Hammer</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Shelton</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Garbers</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2004</year>
;
<volume>101</volume>
:
<fpage>17300</fpage>
<lpage>17305</lpage>
.
<pub-id pub-id-type="pmid">15572448</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<label>135.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yasoda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Komatsu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chusho</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway</article-title>
.
<source>Nat Med</source>
.
<year>2004</year>
;
<volume>10</volume>
:
<fpage>80</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="pmid">14702637</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<label>136.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartels</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Bükülmez</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Padayatti</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2004</year>
;
<volume>75</volume>
:
<fpage>27</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="pmid">15146390</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<label>137.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hachiya</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kamei</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intact kinase homology domain of natriuretic peptide receptor-B is essential for skeletal development</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2007</year>
;
<volume>92</volume>
:
<fpage>4009</fpage>
<lpage>4014</lpage>
.
<pub-id pub-id-type="pmid">17652215</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<label>138.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moncla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Missirian</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cacciagli</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A cluster of translocation breakpoints in 2q37 is associated with overexpression of NPPC in patients with a similar overgrowth phenotype</article-title>
.
<source>Hum Mutat</source>
.
<year>2007</year>
;
<volume>28</volume>
:
<fpage>1183</fpage>
<lpage>1188</lpage>
.
<pub-id pub-id-type="pmid">17676597</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<label>139.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bocciardi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Giorda</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Buttgereit</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation</article-title>
.
<source>Hum Mutat</source>
.
<year>2007</year>
;
<volume>28</volume>
:
<fpage>724</fpage>
<lpage>731</lpage>
.
<pub-id pub-id-type="pmid">17373680</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<label>140.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Iwata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kitagawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>CX</given-names>
</name>
</person-group>
<article-title>A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors</article-title>
.
<source>Hum Mol Genet</source>
.
<year>1999</year>
;
<volume>8</volume>
:
<fpage>35</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="pmid">9887329</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<label>141.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dailey</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Laplantine</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Priore</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Basilico</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation</article-title>
.
<source>J Cell Biol</source>
.
<year>2003</year>
;
<volume>161</volume>
:
<fpage>1053</fpage>
<lpage>1066</lpage>
.
<pub-id pub-id-type="pmid">12821644</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<label>142.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>1998</year>
;
<volume>95</volume>
:
<fpage>2337</fpage>
<lpage>2342</lpage>
.
<pub-id pub-id-type="pmid">9482886</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<label>143.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ogawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chusho</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cardiac fibrosis in mice lacking brain natriuretic peptide</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>2000</year>
;
<volume>97</volume>
:
<fpage>4239</fpage>
<lpage>4244</lpage>
.
<pub-id pub-id-type="pmid">10737768</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<label>144.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hisado-Oliva</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Garre-Vázquez</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Santaolalla-Caballero</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterozygous NPR2 mutations cause disproportionate short stature, similar to Léri-Weill dyschondrosteosis</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2015</year>
;
<volume>100</volume>
:
<fpage>E1133</fpage>
<lpage>E1142</lpage>
.
<pub-id pub-id-type="pmid">26075495</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<label>145.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vasques</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Amano</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Docko</surname>
<given-names>AJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2013</year>
;
<volume>98</volume>
:
<fpage>E1636</fpage>
<lpage>E1644</lpage>
.
<pub-id pub-id-type="pmid">24001744</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<label>146.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Carmichael</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature</article-title>
.
<source>Hum Mutat</source>
.
<year>2015</year>
;
<volume>36</volume>
:
<fpage>474</fpage>
<lpage>481</lpage>
.
<pub-id pub-id-type="pmid">25703509</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<label>147.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sybert</surname>
<given-names>VP</given-names>
</name>
<name>
<surname>McCauley</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Turner's syndrome</article-title>
.
<source>N Engl J Med</source>
.
<year>2004</year>
;
<volume>351</volume>
:
<fpage>1227</fpage>
<lpage>1238</lpage>
.
<pub-id pub-id-type="pmid">15371580</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<label>148.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roach</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Aigner</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kouri</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Chondroptosis: a variant of apoptotic cell death in chondrocytes?</article-title>
<source>Apoptosis</source>
.
<year>2004</year>
;
<volume>9</volume>
:
<fpage>265</fpage>
<lpage>277</lpage>
.
<pub-id pub-id-type="pmid">15258458</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<label>149.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morita</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyamoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification</article-title>
.
<source>J Exp Med</source>
.
<year>2007</year>
;
<volume>204</volume>
:
<fpage>1613</fpage>
<lpage>1623</lpage>
.
<pub-id pub-id-type="pmid">17576777</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<label>150.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teixeira</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Mansfield</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hertkorn</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ischiropoulos</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation</article-title>
.
<source>Am J Physiol Cell Physiol</source>
.
<year>2001</year>
;
<volume>281</volume>
:
<fpage>C833</fpage>
<lpage>C839</lpage>
.
<pub-id pub-id-type="pmid">11502560</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<label>151.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajpurohit</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mansfield</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohyama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ewert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Shapiro</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Chondrocyte death is linked to development of a mitochondrial membrane permeability transition in the growth plate</article-title>
.
<source>J Cell Physiol</source>
.
<year>1999</year>
;
<volume>179</volume>
:
<fpage>287</fpage>
<lpage>296</lpage>
.
<pub-id pub-id-type="pmid">10228947</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<label>152.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teixeira</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Costas</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Nemelivsky</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Apoptosis of growth plate chondrocytes occurs through a mitochondrial pathway</article-title>
.
<source>Angle Orthodont</source>
.
<year>2007</year>
;
<volume>77</volume>
:
<fpage>129</fpage>
<lpage>134</lpage>
.
<pub-id pub-id-type="pmid">17029540</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<label>153.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Söderström</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Salminen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Glumoff</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kirschke</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Aro</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vuorio</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Cathepsin expression during skeletal development</article-title>
.
<source>Biochim Biophys Acta</source>
.
<year>1999</year>
;
<volume>1446</volume>
:
<fpage>35</fpage>
<lpage>46</lpage>
.
<pub-id pub-id-type="pmid">10395917</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<label>154.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohsawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nitatori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Higuchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kominami</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Uchiyama</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Lysosomal cysteine and aspartic proteinases, acid phosphatase, and an endogenous cysteine proteinase inhibitor, cystatin-β, in rat osteoclasts</article-title>
.
<source>J Histochem Cytochem</source>
.
<year>1993</year>
;
<volume>41</volume>
:
<fpage>1075</fpage>
<lpage>1083</lpage>
.
<pub-id pub-id-type="pmid">8515049</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<label>155.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kiyoshima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Moroi</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Localization of cathepsins B, D, and L in the rat osteoclast by immuno-light and -electron microscopy</article-title>
.
<source>Histochemistry</source>
.
<year>1994</year>
;
<volume>101</volume>
:
<fpage>33</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="pmid">8026981</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<label>156.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Buttle</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of bone resorption by selective inactivators of cysteine proteinases</article-title>
.
<source>J Cell Biochem</source>
.
<year>1994</year>
;
<volume>56</volume>
:
<fpage>118</fpage>
<lpage>130</lpage>
.
<pub-id pub-id-type="pmid">7806585</pub-id>
</mixed-citation>
</ref>
<ref id="B157">
<label>157.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shears</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Vassal</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>FR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis</article-title>
.
<source>Nat Genet</source>
.
<year>1998</year>
;
<volume>19</volume>
:
<fpage>70</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="pmid">9590293</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<label>158.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Zinn</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Critical regions for Turner syndrome phenotypes on the X chromosome</article-title>
. In:
<person-group person-group-type="editor">
<name>
<surname>Saenger</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Pasquino</surname>
<given-names>AM</given-names>
</name>
</person-group>
, eds.
<source>Optimizing Health Care for Turner Patients in the 21st Century. Proceedings of the 5th International Symposium on Turner Syndrome, Naples, Italy</source>
.
<publisher-loc>Amsterdam, The Netherlands</publisher-loc>
:
<publisher-name>Elsevier Science</publisher-name>
;
<year>2000</year>
:
<fpage>19</fpage>
<lpage>28</lpage>
.</mixed-citation>
</ref>
<ref id="B159">
<label>159.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Shears</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Oei</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Homozygous deletion of SHOX in a mentally retarded male with Langer mesomelic dysplasia</article-title>
.
<source>J Med Genet</source>
.
<year>2000</year>
;
<volume>37</volume>
:
<fpage>959</fpage>
<lpage>964</lpage>
.
<pub-id pub-id-type="pmid">11186941</pub-id>
</mixed-citation>
</ref>
<ref id="B160">
<label>160.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nishimura</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>SHOX haploinsufficiency and overdosage: impact of gonadal function status</article-title>
.
<source>J Med Genet</source>
.
<year>2001</year>
;
<volume>38</volume>
:
<fpage>1</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">11134233</pub-id>
</mixed-citation>
</ref>
<ref id="B161">
<label>161.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binder</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Short stature due to SHOX deficiency: genotype, phenotype, and therapy</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2011</year>
;
<volume>75</volume>
:
<fpage>81</fpage>
<lpage>89</lpage>
.
<pub-id pub-id-type="pmid">21325865</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<label>162.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wildhardt</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain</article-title>
.
<source>J Med Genet</source>
.
<year>2009</year>
;
<volume>46</volume>
:
<fpage>834</fpage>
<lpage>839</lpage>
.
<pub-id pub-id-type="pmid">19578035</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<label>163.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dateki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification and characterization of cryptic SHOX intragenic deletions in three Japanese patients with Léri-Weill dyschondrosteosis</article-title>
.
<source>J Hum Genet</source>
.
<year>2008</year>
;
<volume>53</volume>
:
<fpage>454</fpage>
<lpage>459</lpage>
.
<pub-id pub-id-type="pmid">18322641</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<label>164.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>KU</given-names>
</name>
</person-group>
<article-title>SHOX at a glance: from gene to protein</article-title>
.
<source>Arch Physiol Biochem</source>
.
<year>2007</year>
;
<volume>113</volume>
:
<fpage>116</fpage>
<lpage>123</lpage>
.
<pub-id pub-id-type="pmid">17922307</pub-id>
</mixed-citation>
</ref>
<ref id="B165">
<label>165.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Barroso</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Heine-Suñer</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical and molecular evaluation of SHOX/PAR1 duplications in Leri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS)</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2011</year>
;
<volume>96</volume>
:
<fpage>E404</fpage>
<lpage>E412</lpage>
.
<pub-id pub-id-type="pmid">21147883</pub-id>
</mixed-citation>
</ref>
<ref id="B166">
<label>166.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sandoval</surname>
<given-names>GT</given-names>
</name>
<name>
<surname>Jaimes</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Barrios</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Cespedes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Velasco</surname>
<given-names>HM</given-names>
</name>
</person-group>
<article-title>SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature</article-title>
.
<source>Mol Genet Genomic Med</source>
.
<year>2014</year>
;
<volume>2</volume>
:
<fpage>95</fpage>
<lpage>102</lpage>
.
<pub-id pub-id-type="pmid">24689071</pub-id>
</mixed-citation>
</ref>
<ref id="B167">
<label>167.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Duyvenvoorde</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Lui</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Copy number variants in patients with short stature</article-title>
.
<source>Eur J Hum Genet</source>
.
<year>2014</year>
;
<volume>22</volume>
:
<fpage>602</fpage>
<lpage>609</lpage>
.
<pub-id pub-id-type="pmid">24065112</pub-id>
</mixed-citation>
</ref>
<ref id="B168">
<label>168.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gervasini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grati</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Lalatta</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome</article-title>
.
<source>Genet Med</source>
.
<year>2010</year>
;
<volume>12</volume>
:
<fpage>634</fpage>
<lpage>640</lpage>
.
<pub-id pub-id-type="pmid">20847698</pub-id>
</mixed-citation>
</ref>
<ref id="B169">
<label>169.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bunyan</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Baffico</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Capone</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Duplications upstream and downstream of SHOX identified as novel causes of Leri-Weill dyschondrosteosis or idiopathic short stature</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2016</year>
;
<volume>170</volume>
:
<fpage>949</fpage>
<lpage>957</lpage>
.
<pub-id pub-id-type="pmid">26698168</pub-id>
</mixed-citation>
</ref>
<ref id="B170">
<label>170.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tropeano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Howley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gazzellone</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microduplications at the pseudoautosomal SHOX locus in autism spectrum disorders and related neurodevelopmental conditions [published online April 12, 2016]</article-title>
.
<source>J Med Genet</source>
.
<comment>doi:
<ext-link ext-link-type="doi" xlink:href="10.1136/jmedgenet-2015-103621">10.1136/jmedgenet-2015-103621</ext-link>
</comment>
.</mixed-citation>
</ref>
<ref id="B171">
<label>171.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niesler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Röth</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wilke</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fujimura</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The novel human SHOX allelic variant database</article-title>
.
<source>Hum Mutat</source>
.
<year>2007</year>
;
<volume>28</volume>
:
<fpage>933</fpage>
<lpage>938</lpage>
.
<pub-id pub-id-type="pmid">17726696</pub-id>
</mixed-citation>
</ref>
<ref id="B172">
<label>172.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The pseudoautosomal regions, SHOX and disease</article-title>
.
<source>Curr Opin Genet Dev</source>
.
<year>2006</year>
;
<volume>16</volume>
:
<fpage>233</fpage>
<lpage>239</lpage>
.
<pub-id pub-id-type="pmid">16650979</pub-id>
</mixed-citation>
</ref>
<ref id="B173">
<label>173.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blaschke</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>SHOX: growth, Léri-Weill and Turner syndromes</article-title>
.
<source>Trends Endocrinol Metab</source>
.
<year>2000</year>
;
<volume>11</volume>
:
<fpage>227</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="pmid">10878753</pub-id>
</mixed-citation>
</ref>
<ref id="B174">
<label>174.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rosilio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Munnich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cormier-Daire</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>High incidence of SHOX anomalies in individuals with short stature</article-title>
.
<source>J Med Genet</source>
.
<year>2006</year>
;
<volume>43</volume>
:
<fpage>735</fpage>
<lpage>739</lpage>
.
<pub-id pub-id-type="pmid">16597678</pub-id>
</mixed-citation>
</ref>
<ref id="B175">
<label>175.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballabio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bardoni</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Carrozzo</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosome</article-title>
.
<source>Proc Natl Acad Sci USA</source>
.
<year>1989</year>
;
<volume>86</volume>
:
<fpage>10001</fpage>
<lpage>10005</lpage>
.
<pub-id pub-id-type="pmid">2602357</pub-id>
</mixed-citation>
</ref>
<ref id="B176">
<label>176.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Léri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weill</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Une affection congenitale et symetrique du developpement osseux: la dyschondrosteose</article-title>
.
<source>Bull Mem Soc Med Hosp Paris</source>
.
<year>1929</year>
;
<volume>35</volume>
:
<fpage>1491</fpage>
<lpage>1494</lpage>
.</mixed-citation>
</ref>
<ref id="B177">
<label>177.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jinno</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Takayama</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Skeletal deformity associated with SHOX deficiency</article-title>
.
<source>Clin Pediatr Endocrinol</source>
.
<year>2014</year>
;
<volume>23</volume>
:
<fpage>65</fpage>
<lpage>72</lpage>
.
<pub-id pub-id-type="pmid">25110390</pub-id>
</mixed-citation>
</ref>
<ref id="B178">
<label>178.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigelioniene</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Eklöf</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ivarsson</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutations in short stature homeobox containing gene (SHOX) in dyschondrosteosis but not in hypochondroplasia</article-title>
.
<source>Hum Genet</source>
.
<year>2000</year>
;
<volume>107</volume>
:
<fpage>145</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="pmid">11030412</pub-id>
</mixed-citation>
</ref>
<ref id="B179">
<label>179.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jorge</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Souza</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Nishi</surname>
<given-names>MY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability</article-title>
.
<source>Clin Endocrinol (Oxf)</source>
.
<year>2007</year>
;
<volume>66</volume>
:
<fpage>130</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="pmid">17201812</pub-id>
</mixed-citation>
</ref>
<ref id="B180">
<label>180.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Shavrikova</surname>
<given-names>EP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency</article-title>
.
<source>J Med Genet</source>
.
<year>2007</year>
;
<volume>44</volume>
:
<fpage>306</fpage>
<lpage>313</lpage>
.
<pub-id pub-id-type="pmid">17182655</pub-id>
</mixed-citation>
</ref>
<ref id="B181">
<label>181.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>C</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Marttila</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phenotypes associated with SHOX deficiency</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2001</year>
;
<volume>86</volume>
:
<fpage>5674</fpage>
<lpage>5680</lpage>
.
<pub-id pub-id-type="pmid">11739418</pub-id>
</mixed-citation>
</ref>
<ref id="B182">
<label>182.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Spranger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schechinger</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phenotypic variation and genetic heterogeneity in Léri-Weill syndrome</article-title>
.
<source>Eur J Hum Genet</source>
.
<year>2000</year>
;
<volume>8</volume>
:
<fpage>54</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="pmid">10713888</pub-id>
</mixed-citation>
</ref>
<ref id="B183">
<label>183.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falcinelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Iughetti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Percesepe</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX point mutations and deletions in Leri-Weill dyschondrosteosis</article-title>
.
<source>J Med Genet</source>
.
<year>2002</year>
;
<volume>39</volume>
:
<fpage>E33</fpage>
.
<pub-id pub-id-type="pmid">12070265</pub-id>
</mixed-citation>
</ref>
<ref id="B184">
<label>184.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binder</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>DD</given-names>
</name>
</person-group>
<article-title>Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2003</year>
;
<volume>88</volume>
:
<fpage>4891</fpage>
<lpage>4896</lpage>
.
<pub-id pub-id-type="pmid">14557470</pub-id>
</mixed-citation>
</ref>
<ref id="B185">
<label>185.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel class of pseudoautosomal region 1 deletions downstream of SHOX is associated with Leri-Weill dyschondrosteosis</article-title>
.
<source>Am J Hum Genet</source>
.
<year>2005</year>
;
<volume>77</volume>
:
<fpage>533</fpage>
<lpage>544</lpage>
.
<pub-id pub-id-type="pmid">16175500</pub-id>
</mixed-citation>
</ref>
<ref id="B186">
<label>186.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosilio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huber-Lequesne</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sapin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Carel</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Cormier-Daire</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Genotypes and phenotypes of children with SHOX deficiency in France</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2012</year>
;
<volume>97</volume>
:
<fpage>E1257</fpage>
<lpage>E1265</lpage>
.
<pub-id pub-id-type="pmid">22518848</pub-id>
</mixed-citation>
</ref>
<ref id="B187">
<label>187.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>van der Kamp</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Kriek</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The jumping SHOX gene–crossover in the pseudoautosomal region resulting in unusual inheritance of Leri-Weill dyschondrosteosis</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2011</year>
;
<volume>96</volume>
:
<fpage>E356</fpage>
<lpage>E359</lpage>
.
<pub-id pub-id-type="pmid">21068148</pub-id>
</mixed-citation>
</ref>
<ref id="B188">
<label>188.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langer</surname>
<given-names>LO</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Mesomelic dwarfism of the hypoplastic ulna, fibula, mandible type</article-title>
.
<source>Radiology</source>
.
<year>1967</year>
;
<volume>89</volume>
:
<fpage>654</fpage>
<lpage>660</lpage>
.
<pub-id pub-id-type="pmid">6059604</pub-id>
</mixed-citation>
</ref>
<ref id="B189">
<label>189.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Okuyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamamori</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nishimura</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Microdeletion in the SHOX 3′ region associated with skeletal phenotypes of Langer mesomelic dysplasia in a 45,X/46,X,r(X) infant and Leri-Weill dyschondrosteosis in her 46,XX mother: implication for the SHOX enhancer</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2005</year>
;
<volume>137</volume>
:
<fpage>72</fpage>
<lpage>76</lpage>
.
<pub-id pub-id-type="pmid">16007631</pub-id>
</mixed-citation>
</ref>
<ref id="B190">
<label>190.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Maloney</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bass</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mulik</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Wellesley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castle</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>SHOX mutations in a family and a fetus with Langer mesomelic dwarfism</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2004</year>
;
<volume>128A</volume>
:
<fpage>179</fpage>
<lpage>184</lpage>
.
<pub-id pub-id-type="pmid">15214013</pub-id>
</mixed-citation>
</ref>
<ref id="B191">
<label>191.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zinn</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Complete SHOX deficiency causes Langer mesomelic dysplasia</article-title>
.
<source>Am J Med Genet</source>
.
<year>2002</year>
;
<volume>110</volume>
:
<fpage>158</fpage>
<lpage>163</lpage>
.
<pub-id pub-id-type="pmid">12116254</pub-id>
</mixed-citation>
</ref>
<ref id="B192">
<label>192.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turner</surname>
<given-names>HH</given-names>
</name>
</person-group>
<article-title>A syndrome of infantilism, congenital webbed neck, and cubitus valgus</article-title>
.
<source>Endrocrinology</source>
.
<year>1938</year>
;
<volume>23</volume>
:
<fpage>566</fpage>
<lpage>574</lpage>
.</mixed-citation>
</ref>
<ref id="B193">
<label>193.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ullrich</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Über typische Kombinationsbilder multipler Abartungen</article-title>
.
<source>Eur J Pediatr</source>
.
<year>1930</year>
;
<volume>49</volume>
:
<fpage>271</fpage>
<lpage>276</lpage>
.</mixed-citation>
</ref>
<ref id="B194">
<label>194.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saenger</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Turner's syndrome</article-title>
.
<source>N Engl J Med</source>
.
<year>1996</year>
;
<volume>335</volume>
:
<fpage>1749</fpage>
<lpage>1754</lpage>
.
<pub-id pub-id-type="pmid">8929268</pub-id>
</mixed-citation>
</ref>
<ref id="B195">
<label>195.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Saenger</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Turner's syndrome</article-title>
.
<source>Lancet</source>
.
<year>2001</year>
;
<volume>358</volume>
:
<fpage>309</fpage>
<lpage>314</lpage>
.
<pub-id pub-id-type="pmid">11498234</pub-id>
</mixed-citation>
</ref>
<ref id="B196">
<label>196.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saenger</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wikland</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Conway</surname>
<given-names>GS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recommendations for the diagnosis and management of Turner syndrome</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2001</year>
;
<volume>86</volume>
:
<fpage>3061</fpage>
<lpage>3069</lpage>
.
<pub-id pub-id-type="pmid">11443168</pub-id>
</mixed-citation>
</ref>
<ref id="B197">
<label>197.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rovet</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>The psychoeducational characteristics of children with Turner syndrome</article-title>
.
<source>J Learn Disabil</source>
.
<year>1993</year>
;
<volume>26</volume>
:
<fpage>333</fpage>
<lpage>341</lpage>
.
<pub-id pub-id-type="pmid">8492052</pub-id>
</mixed-citation>
</ref>
<ref id="B198">
<label>198.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kosho</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Muroya</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Skeletal features and growth patterns in 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>1999</year>
;
<volume>84</volume>
:
<fpage>4613</fpage>
<lpage>4621</lpage>
.
<pub-id pub-id-type="pmid">10599728</pub-id>
</mixed-citation>
</ref>
<ref id="B199">
<label>199.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faienza</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Ventura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Colucci</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cavallo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brunetti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Bone fragility in Turner syndrome: mechanisms and prevention strategies</article-title>
.
<source>Front Endocrinol (Lausanne)</source>
.
<year>2016</year>
;
<volume>7</volume>
:
<fpage>34</fpage>
.
<pub-id pub-id-type="pmid">27199891</pub-id>
</mixed-citation>
</ref>
<ref id="B200">
<label>200.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bakalov</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Axelrod</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Baron</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Selective reduction in cortical bone mineral density in turner syndrome independent of ovarian hormone deficiency</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2003</year>
;
<volume>88</volume>
:
<fpage>5717</fpage>
<lpage>5722</lpage>
.
<pub-id pub-id-type="pmid">14671158</pub-id>
</mixed-citation>
</ref>
<ref id="B201">
<label>201.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ottesen</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Aksglaede</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Garn</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2010</year>
;
<volume>152A</volume>
:
<fpage>1206</fpage>
<lpage>1212</lpage>
.
<pub-id pub-id-type="pmid">20425825</pub-id>
</mixed-citation>
</ref>
<ref id="B202">
<label>202.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Turner syndrome and female sex chromosome aberrations: deduction of the principal factors involved in the development of clinical features</article-title>
.
<source>Hum Genet</source>
.
<year>1995</year>
;
<volume>95</volume>
:
<fpage>607</fpage>
<lpage>629</lpage>
.
<pub-id pub-id-type="pmid">7789944</pub-id>
</mixed-citation>
</ref>
<ref id="B203">
<label>203.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilbert</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Opitz</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Developmental and other pathologic changes in syndromes caused by chromosome abnormalities</article-title>
.
<source>Perspect Pediatr Pathol</source>
.
<year>1982</year>
;
<volume>7</volume>
:
<fpage>1</fpage>
<lpage>63</lpage>
.
<pub-id pub-id-type="pmid">6214761</pub-id>
</mixed-citation>
</ref>
<ref id="B204">
<label>204.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Epstein</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>The consequences of chromosome imbalance: principles, mechanisms, and models</article-title>
.
<publisher-loc>Cambridge, UK</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="B205">
<label>205.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binder</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schwarze</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Identification of short stature caused by SHOX defects and therapeutic effect of recombinant human growth hormone</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2000</year>
;
<volume>85</volume>
:
<fpage>245</fpage>
<lpage>249</lpage>
.
<pub-id pub-id-type="pmid">10634394</pub-id>
</mixed-citation>
</ref>
<ref id="B206">
<label>206.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calabrese</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fischetto</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stuppia</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>X/Y translocation in a family with Leri-Weill dyschondrosteosis</article-title>
.
<source>Hum Genet</source>
.
<year>1999</year>
;
<volume>105</volume>
:
<fpage>367</fpage>
<lpage>368</lpage>
.
<pub-id pub-id-type="pmid">10543407</pub-id>
</mixed-citation>
</ref>
<ref id="B207">
<label>207.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirschfeldova</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Solc</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Baxova</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX gene defects and selected dysmorphic signs in patients of idiopathic short stature and Léri-Weill dyschondrosteosis</article-title>
.
<source>Gene</source>
.
<year>2012</year>
;
<volume>491</volume>
:
<fpage>123</fpage>
<lpage>127</lpage>
.
<pub-id pub-id-type="pmid">22020182</pub-id>
</mixed-citation>
</ref>
<ref id="B208">
<label>208.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tauber</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lounis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Coulet</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baunin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cahuzac</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Rochiccioli</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Wrist anomalies in Turner syndrome compared with Leri-Weill dyschondrosteosis: a new feature in Turner syndrome</article-title>
.
<source>Eur J Pediatr</source>
.
<year>2004</year>
;
<volume>163</volume>
:
<fpage>475</fpage>
<lpage>481</lpage>
.
<pub-id pub-id-type="pmid">15197587</pub-id>
</mixed-citation>
</ref>
<ref id="B209">
<label>209.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stuppia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Calabrese</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gatta</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SHOX mutations detected by FISH and direct sequencing in patients with short stature</article-title>
.
<source>J Med Genet</source>
.
<year>2003</year>
;
<volume>40</volume>
:
<fpage>E11</fpage>
.
<pub-id pub-id-type="pmid">12566529</pub-id>
</mixed-citation>
</ref>
<ref id="B210">
<label>210.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poggi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vera</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Avalos</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A deletion of more than 800 kb is the most recurrent mutation in Chilean patients with SHOX gene defects</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2015</year>
;
<volume>84</volume>
:
<fpage>254</fpage>
<lpage>257</lpage>
.
<pub-id pub-id-type="pmid">26337568</pub-id>
</mixed-citation>
</ref>
<ref id="B211">
<label>211.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funari</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Jorge</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Souza</surname>
<given-names>SC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Usefulness of MLPA in the detection of SHOX deletions</article-title>
.
<source>Eur J Med Genet</source>
.
<year>2010</year>
;
<volume>53</volume>
:
<fpage>234</fpage>
<lpage>238</lpage>
.
<pub-id pub-id-type="pmid">20538086</pub-id>
</mixed-citation>
</ref>
<ref id="B212">
<label>212.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Donze</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Kant</surname>
<given-names>SG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The growth response to GH treatment is greater in patients with SHOX enhancer deletions compared to SHOX defects</article-title>
.
<source>Eur J Endocrinol</source>
.
<year>2015</year>
;
<volume>173</volume>
:
<fpage>611</fpage>
<lpage>621</lpage>
.
<pub-id pub-id-type="pmid">26264720</pub-id>
</mixed-citation>
</ref>
<ref id="B213">
<label>213.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bunyan</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>NS</given-names>
</name>
</person-group>
<article-title>Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5 kb deletion 160 kb downstream with a variable phenotypic effect</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2013</year>
;
<volume>161A</volume>
:
<fpage>1329</fpage>
<lpage>1338</lpage>
.
<pub-id pub-id-type="pmid">23636926</pub-id>
</mixed-citation>
</ref>
<ref id="B214">
<label>214.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verdin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fernández-Miñán</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Benito-Sanz</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape</article-title>
.
<source>Sci Rep</source>
.
<year>2015</year>
;
<volume>5</volume>
:
<fpage>17667</fpage>
.
<pub-id pub-id-type="pmid">26631348</pub-id>
</mixed-citation>
</ref>
<ref id="B215">
<label>215.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bunyan</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Maloney</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Blyth</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Homozygosity for a novel deletion downstream of the SHOX gene provides evidence for an additional long range regulatory region with a mild phenotypic effect</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2014</year>
;
<volume>164A</volume>
:
<fpage>2764</fpage>
<lpage>2768</lpage>
.
<pub-id pub-id-type="pmid">25125269</pub-id>
</mixed-citation>
</ref>
<ref id="B216">
<label>216.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuchiya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Numabe</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Compound heterozygous deletions in pseudoautosomal region 1 in an infant with mild manifestations of Langer mesomelic dysplasia</article-title>
.
<source>Am J Med Genet A</source>
.
<year>2014</year>
;
<volume>164A</volume>
:
<fpage>505</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="pmid">24311385</pub-id>
</mixed-citation>
</ref>
<ref id="B217">
<label>217.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blum</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Crowe</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Quigley</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: two-year results of a randomized, controlled, multicenter trial</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2007</year>
;
<volume>92</volume>
:
<fpage>219</fpage>
<lpage>228</lpage>
.
<pub-id pub-id-type="pmid">17047016</pub-id>
</mixed-citation>
</ref>
<ref id="B218">
<label>218.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Child</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Kalifa</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Radiological features in patients with short stature homeobox-containing (SHOX) gene deficiency and Turner syndrome before and after 2 years of GH treatment</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2015</year>
;
<volume>84</volume>
:
<fpage>14</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="pmid">25967354</pub-id>
</mixed-citation>
</ref>
<ref id="B219">
<label>219.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blum</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Zimmermann</surname>
<given-names>AG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>GH treatment to final height produces similar height gains in patients with SHOX deficiency and Turner syndrome: results of a multicenter trial</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2013</year>
;
<volume>98</volume>
:
<fpage>E1383</fpage>
<lpage>E1392</lpage>
.
<pub-id pub-id-type="pmid">23720786</pub-id>
</mixed-citation>
</ref>
<ref id="B220">
<label>220.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>SHOX haploinsufficiency: lessons from clinical studies</article-title>
.
<source>Curr Opin Endocrinol Diabetes Obes</source>
.
<year>2002</year>
;
<volume>9</volume>
:
<fpage>13</fpage>
<lpage>20</lpage>
.</mixed-citation>
</ref>
<ref id="B221">
<label>221.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Onigata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hotsubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Rappold</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Growth hormone and gonadotropin-releasing hormone analog therapy in haploinsufficiency of SHOX</article-title>
.
<source>Endocr J</source>
.
<year>2001</year>
;
<volume>48</volume>
:
<fpage>317</fpage>
<lpage>322</lpage>
.
<pub-id pub-id-type="pmid">11523902</pub-id>
</mixed-citation>
</ref>
<ref id="B222">
<label>222.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scalco</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Melo</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Pugliese-Pires</surname>
<given-names>PN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effectiveness of the combined recombinant human growth hormone and gonadotropin-releasing hormone analog therapy in pubertal patients with short stature due to SHOX deficiency</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2010</year>
;
<volume>95</volume>
:
<fpage>328</fpage>
<lpage>332</lpage>
.
<pub-id pub-id-type="pmid">19926713</pub-id>
</mixed-citation>
</ref>
<ref id="B223">
<label>223.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Gool</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Kamp</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Visser-van Balen</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Final height outcome after three years of growth hormone and gonadotropin-releasing hormone agonist treatment in short adolescents with relatively early puberty</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2007</year>
;
<volume>92</volume>
:
<fpage>1402</fpage>
<lpage>1408</lpage>
.
<pub-id pub-id-type="pmid">17284626</pub-id>
</mixed-citation>
</ref>
<ref id="B224">
<label>224.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lem</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>van der Kaay</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>de Ridder</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adult height in short children born SGA treated with growth hormone and gonadotropin releasing hormone analog: results of a randomized, dose-response GH trial</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>2012</year>
;
<volume>97</volume>
:
<fpage>4096</fpage>
<lpage>4105</lpage>
.
<pub-id pub-id-type="pmid">22904179</pub-id>
</mixed-citation>
</ref>
<ref id="B225">
<label>225.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wit</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hero</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nunez</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Aromatase inhibitors in pediatrics</article-title>
.
<source>Nat Rev Endocrinol</source>
.
<year>2012</year>
;
<volume>8</volume>
:
<fpage>135</fpage>
<lpage>147</lpage>
.
<pub-id pub-id-type="pmid">22024975</pub-id>
</mixed-citation>
</ref>
<ref id="B226">
<label>226.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranke</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Treatment of children and adolescents with idiopathic short stature</article-title>
.
<source>Nat Rev Endocrinol</source>
.
<year>2013</year>
;
<volume>9</volume>
:
<fpage>325</fpage>
<lpage>334</lpage>
.
<pub-id pub-id-type="pmid">23609338</pub-id>
</mixed-citation>
</ref>
<ref id="B227">
<label>227.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunkel</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Treatment of idiopathic short stature: effects of gonadotropin-releasing hormone analogs, aromatase inhibitors and anabolic steroids</article-title>
.
<source>Horm Res Paediatr</source>
.
<year>2011</year>
;
<volume>76</volume>
(
<issue>suppl 3</issue>
):
<fpage>27</fpage>
<lpage>29</lpage>
.
<pub-id pub-id-type="pmid">21912156</pub-id>
</mixed-citation>
</ref>
<ref id="B228">
<label>228.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geffner</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Aromatase inhibitors to augment height: continued caution and study required</article-title>
.
<source>J Clin Res Pediatr Endocrinol</source>
.
<year>2009</year>
;
<volume>1</volume>
:
<fpage>256</fpage>
<lpage>261</lpage>
.
<pub-id pub-id-type="pmid">21274305</pub-id>
</mixed-citation>
</ref>
<ref id="B229">
<label>229.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rappold</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Durand</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marchini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>KU</given-names>
</name>
</person-group>
<article-title>New roles of SHOX as regulator of target genes</article-title>
.
<source>Pediatr Endocrinol Rev</source>
.
<year>2012</year>
;
<volume>9</volume>
(
<issue>suppl 2</issue>
):
<fpage>733</fpage>
<lpage>738</lpage>
.
<pub-id pub-id-type="pmid">22946287</pub-id>
</mixed-citation>
</ref>
<ref id="B230">
<label>230.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukami</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nishi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Statural growth in 31 Japanese patients with SHOX haploinsufficiency: support for a disadvantageous effect of gonadal estrogens</article-title>
.
<source>Endocr J</source>
.
<year>2004</year>
;
<volume>51</volume>
:
<fpage>197</fpage>
<lpage>200</lpage>
.
<pub-id pub-id-type="pmid">15118270</pub-id>
</mixed-citation>
</ref>
<ref id="B231">
<label>231.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kosowicz</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The carpal sign in gonadal dysgenesis</article-title>
.
<source>J Clin Endocrinol Metab</source>
.
<year>1962</year>
;
<volume>22</volume>
:
<fpage>949</fpage>
<lpage>952</lpage>
.
<pub-id pub-id-type="pmid">14035011</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000881 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000881 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4971310
   |texte=   A Track Record on SHOX: From Basic Research to Complex Models and Therapy
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27355317" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024