Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases

Identifieur interne : 000879 ( Pmc/Corpus ); précédent : 000878; suivant : 000880

Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases

Auteurs : Masahiro Yamashita

Source :

RBID : PMC:4725607

Abstract

The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.


Url:
DOI: 10.4137/CCRPM.S33856
PubMed: 26823655
PubMed Central: 4725607

Links to Exploration step

PMC:4725607

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases</title>
<author>
<name sortKey="Yamashita, Masahiro" sort="Yamashita, Masahiro" uniqKey="Yamashita M" first="Masahiro" last="Yamashita">Masahiro Yamashita</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26823655</idno>
<idno type="pmc">4725607</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725607</idno>
<idno type="RBID">PMC:4725607</idno>
<idno type="doi">10.4137/CCRPM.S33856</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000879</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000879</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases</title>
<author>
<name sortKey="Yamashita, Masahiro" sort="Yamashita, Masahiro" uniqKey="Yamashita M" first="Masahiro" last="Yamashita">Masahiro Yamashita</name>
</author>
</analytic>
<series>
<title level="j">Clinical Medicine Insights. Circulatory, Respiratory and Pulmonary Medicine</title>
<idno type="eISSN">1179-5484</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cushley, Mj" uniqKey="Cushley M">MJ Cushley</name>
</author>
<author>
<name sortKey="Davison, Ag" uniqKey="Davison A">AG Davison</name>
</author>
<author>
<name sortKey="Du Bois, Rm" uniqKey="Du Bois R">RM du Bois</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Travis, Wd" uniqKey="Travis W">WD Travis</name>
</author>
<author>
<name sortKey="Matsui, K" uniqKey="Matsui K">K Matsui</name>
</author>
<author>
<name sortKey="Moss, Je" uniqKey="Moss J">JE Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katzenstein, Al" uniqKey="Katzenstein A">AL Katzenstein</name>
</author>
<author>
<name sortKey="Myers, Jl" uniqKey="Myers J">JL Myers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Basset, F" uniqKey="Basset F">F Basset</name>
</author>
<author>
<name sortKey="Ferrans, Vj" uniqKey="Ferrans V">VJ Ferrans</name>
</author>
<author>
<name sortKey="Soler, P" uniqKey="Soler P">P Soler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katzenstein, Al" uniqKey="Katzenstein A">AL Katzenstein</name>
</author>
<author>
<name sortKey="Myers, Jl" uniqKey="Myers J">JL Myers</name>
</author>
<author>
<name sortKey="Prophet, Wd" uniqKey="Prophet W">WD Prophet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myers, Jl" uniqKey="Myers J">JL Myers</name>
</author>
<author>
<name sortKey="Katzenstein, Al" uniqKey="Katzenstein A">AL Katzenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C Kuhn</name>
</author>
<author>
<name sortKey="Boldt, J" uniqKey="Boldt J">J Boldt</name>
</author>
<author>
<name sortKey="King, Te" uniqKey="King T">TE King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuhn, C" uniqKey="Kuhn C">C Kuhn</name>
</author>
<author>
<name sortKey="Mcdonald, Ja" uniqKey="Mcdonald J">JA McDonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="King, Te" uniqKey="King T">TE King</name>
</author>
<author>
<name sortKey="Schwarz, Mi" uniqKey="Schwarz M">MI Schwarz</name>
</author>
<author>
<name sortKey="Brown, K" uniqKey="Brown K">K Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholson, Ag" uniqKey="Nicholson A">AG Nicholson</name>
</author>
<author>
<name sortKey="Fulford, Lg" uniqKey="Fulford L">LG Fulford</name>
</author>
<author>
<name sortKey="Colby, Tv" uniqKey="Colby T">TV Colby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karpanen, T" uniqKey="Karpanen T">T Karpanen</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H Kim</name>
</author>
<author>
<name sortKey="Kataru, Rp" uniqKey="Kataru R">RP Kataru</name>
</author>
<author>
<name sortKey="Koh, Gy" uniqKey="Koh G">GY Koh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Kaipainen, A" uniqKey="Kaipainen A">A Kaipainen</name>
</author>
<author>
<name sortKey="Joukov, V" uniqKey="Joukov V">V Joukov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Haiko, P" uniqKey="Haiko P">P Haiko</name>
</author>
<author>
<name sortKey="Sainio, K" uniqKey="Sainio K">K Sainio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Kukk, E" uniqKey="Kukk E">E Kukk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veikkola, T" uniqKey="Veikkola T">T Veikkola</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, Er" uniqKey="Clark E">ER Clark</name>
</author>
<author>
<name sortKey="Clark, El" uniqKey="Clark E">EL Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oden, B" uniqKey="Oden B">B Oden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paavonen, K" uniqKey="Paavonen K">K Paavonen</name>
</author>
<author>
<name sortKey="Puolakkainen, P" uniqKey="Puolakkainen P">P Puolakkainen</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
<author>
<name sortKey="Carmeliet, P" uniqKey="Carmeliet P">P Carmeliet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyk Nen, Ai" uniqKey="Nyk Nen A">AI Nykänen</name>
</author>
<author>
<name sortKey="Sandelin, H" uniqKey="Sandelin H">H Sandelin</name>
</author>
<author>
<name sortKey="Krebs, R" uniqKey="Krebs R">R Krebs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerjaschki, D" uniqKey="Kerjaschki D">D Kerjaschki</name>
</author>
<author>
<name sortKey="Huttary, N" uniqKey="Huttary N">N Huttary</name>
</author>
<author>
<name sortKey="Raab, I" uniqKey="Raab I">I Raab</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Hamrah, P" uniqKey="Hamrah P">P Hamrah</name>
</author>
<author>
<name sortKey="Cursiefen, C" uniqKey="Cursiefen C">C Cursiefen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krebs, R" uniqKey="Krebs R">R Krebs</name>
</author>
<author>
<name sortKey="Tikkanen, Jm" uniqKey="Tikkanen J">JM Tikkanen</name>
</author>
<author>
<name sortKey="Ropponen, Jo" uniqKey="Ropponen J">JO Ropponen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baluk, P" uniqKey="Baluk P">P Baluk</name>
</author>
<author>
<name sortKey="Tammela, T" uniqKey="Tammela T">T Tammela</name>
</author>
<author>
<name sortKey="Ator, E" uniqKey="Ator E">E Ator</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huggenberger, R" uniqKey="Huggenberger R">R Huggenberger</name>
</author>
<author>
<name sortKey="Siddiqui, Ss" uniqKey="Siddiqui S">SS Siddiqui</name>
</author>
<author>
<name sortKey="Brander, D" uniqKey="Brander D">D Brander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, M" uniqKey="Yamashita M">M Yamashita</name>
</author>
<author>
<name sortKey="Iwama, N" uniqKey="Iwama N">N Iwama</name>
</author>
<author>
<name sortKey="Date, F" uniqKey="Date F">F Date</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrell, Re" uniqKey="Ferrell R">RE Ferrell</name>
</author>
<author>
<name sortKey="Levinson, Kl" uniqKey="Levinson K">KL Levinson</name>
</author>
<author>
<name sortKey="Esman, Jh" uniqKey="Esman J">JH Esman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witte, Mh" uniqKey="Witte M">MH Witte</name>
</author>
<author>
<name sortKey="Erickson, R" uniqKey="Erickson R">R Erickson</name>
</author>
<author>
<name sortKey="Bernas, M" uniqKey="Bernas M">M Bernas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Ferrell, Re" uniqKey="Ferrell R">RE Ferrell</name>
</author>
<author>
<name sortKey="Lawrence, Ec" uniqKey="Lawrence E">EC Lawrence</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Veikkola, T" uniqKey="Veikkola T">T Veikkola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Der Weid, Py" uniqKey="Von Der Weid P">PY von der Weid</name>
</author>
<author>
<name sortKey="Rehal, S" uniqKey="Rehal S">S Rehal</name>
</author>
<author>
<name sortKey="Ferraz, Jg" uniqKey="Ferraz J">JG Ferraz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schraufnagel, De" uniqKey="Schraufnagel D">DE Schraufnagel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breiteneder Geleff, S" uniqKey="Breiteneder Geleff S">S Breiteneder-Geleff</name>
</author>
<author>
<name sortKey="Matsui, K" uniqKey="Matsui K">K Matsui</name>
</author>
<author>
<name sortKey="Soleiman, A" uniqKey="Soleiman A">A Soleiman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki Inoue, K" uniqKey="Suzuki Inoue K">K Suzuki-Inoue</name>
</author>
<author>
<name sortKey="Kato, Y" uniqKey="Kato Y">Y Kato</name>
</author>
<author>
<name sortKey="Inoue, O" uniqKey="Inoue O">O Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barth, K" uniqKey="Barth K">K Barth</name>
</author>
<author>
<name sortKey="Bl Sche, R" uniqKey="Bl Sche R">R Bläsche</name>
</author>
<author>
<name sortKey="Kasper, M" uniqKey="Kasper M">M Kasper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ord Ez, Ng" uniqKey="Ord Ez N">NG Ordóñez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Am" uniqKey="Muller A">AM Muller</name>
</author>
<author>
<name sortKey="Franke, Fe" uniqKey="Franke F">FE Franke</name>
</author>
<author>
<name sortKey="Muller, Km" uniqKey="Muller K">KM Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawase, A" uniqKey="Kawase A">A Kawase</name>
</author>
<author>
<name sortKey="Ishii, G" uniqKey="Ishii G">G Ishii</name>
</author>
<author>
<name sortKey="Nagai, K" uniqKey="Nagai K">K Nagai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navarro Nu Ez, L" uniqKey="Navarro Nu Ez L">L Navarro-Núñez</name>
</author>
<author>
<name sortKey="Langan, Sa" uniqKey="Langan S">SA Langan</name>
</author>
<author>
<name sortKey="Nash, Gb" uniqKey="Nash G">GB Nash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baluk, P" uniqKey="Baluk P">P Baluk</name>
</author>
<author>
<name sortKey="Adams, A" uniqKey="Adams A">A Adams</name>
</author>
<author>
<name sortKey="Phillips, K" uniqKey="Phillips K">K Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerjaschki, D" uniqKey="Kerjaschki D">D Kerjaschki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, M" uniqKey="Yamashita M">M Yamashita</name>
</author>
<author>
<name sortKey="Iwama, N" uniqKey="Iwama N">N Iwama</name>
</author>
<author>
<name sortKey="Date, F" uniqKey="Date F">F Date</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mori, M" uniqKey="Mori M">M Mori</name>
</author>
<author>
<name sortKey="Andersson, Ck" uniqKey="Andersson C">CK Andersson</name>
</author>
<author>
<name sortKey="Graham, Gj" uniqKey="Graham G">GJ Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banerji, S" uniqKey="Banerji S">S Banerji</name>
</author>
<author>
<name sortKey="Ni, J" uniqKey="Ni J">J Ni</name>
</author>
<author>
<name sortKey="Wang, Sx" uniqKey="Wang S">SX Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, M" uniqKey="Wu M">M Wu</name>
</author>
<author>
<name sortKey="Du, Y" uniqKey="Du Y">Y Du</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blooplatonova, N" uniqKey="Blooplatonova N">N BlooPlatonova</name>
</author>
<author>
<name sortKey="Miquel, G" uniqKey="Miquel G">G Miquel</name>
</author>
<author>
<name sortKey="Regenfuss, B" uniqKey="Regenfuss B">B Regenfuss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, La" uniqKey="Johnson L">LA Johnson</name>
</author>
<author>
<name sortKey="Prevo, R" uniqKey="Prevo R">R Prevo</name>
</author>
<author>
<name sortKey="Clasper, S" uniqKey="Clasper S">S Clasper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, Ej" uniqKey="Gordon E">EJ Gordon</name>
</author>
<author>
<name sortKey="Gale, Nw" uniqKey="Gale N">NW Gale</name>
</author>
<author>
<name sortKey="Harvey, Nl" uniqKey="Harvey N">NL Harvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maruyama, K" uniqKey="Maruyama K">K Maruyama</name>
</author>
<author>
<name sortKey="Ii, M" uniqKey="Ii M">M Ii</name>
</author>
<author>
<name sortKey="Cursiefen, C" uniqKey="Cursiefen C">C Cursiefen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schroedl, F" uniqKey="Schroedl F">F Schroedl</name>
</author>
<author>
<name sortKey="Brehmer, A" uniqKey="Brehmer A">A Brehmer</name>
</author>
<author>
<name sortKey="Neuhuber, Wl" uniqKey="Neuhuber W">WL Neuhuber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tammela, T" uniqKey="Tammela T">T Tammela</name>
</author>
<author>
<name sortKey="Enholm, B" uniqKey="Enholm B">B Enholm</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karpanen, T" uniqKey="Karpanen T">T Karpanen</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nihei, M" uniqKey="Nihei M">M Nihei</name>
</author>
<author>
<name sortKey="Okazaki, T" uniqKey="Okazaki T">T Okazaki</name>
</author>
<author>
<name sortKey="Ebihara, S" uniqKey="Ebihara S">S Ebihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Procino, A" uniqKey="Procino A">A Procino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandt, Md" uniqKey="Brandt M">MD Brandt</name>
</author>
<author>
<name sortKey="Jessberger, S" uniqKey="Jessberger S">S Jessberger</name>
</author>
<author>
<name sortKey="Steiner, B" uniqKey="Steiner B">B Steiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Chemaly, S" uniqKey="El Chemaly S">S El-Chemaly</name>
</author>
<author>
<name sortKey="Malide, D" uniqKey="Malide D">D Malide</name>
</author>
<author>
<name sortKey="Zudaire, E" uniqKey="Zudaire E">E Zudaire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kambouchner, M" uniqKey="Kambouchner M">M Kambouchner</name>
</author>
<author>
<name sortKey="Bernaudin, Jf" uniqKey="Bernaudin J">JF Bernaudin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sozio, F" uniqKey="Sozio F">F Sozio</name>
</author>
<author>
<name sortKey="Rossi, A" uniqKey="Rossi A">A Rossi</name>
</author>
<author>
<name sortKey="Weber, E" uniqKey="Weber E">E Weber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ebina, M" uniqKey="Ebina M">M Ebina</name>
</author>
<author>
<name sortKey="Shibata, N" uniqKey="Shibata N">N Shibata</name>
</author>
<author>
<name sortKey="Ohta, H" uniqKey="Ohta H">H Ohta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kretschmer, S" uniqKey="Kretschmer S">S Kretschmer</name>
</author>
<author>
<name sortKey="Dethlefsen, I" uniqKey="Dethlefsen I">I Dethlefsen</name>
</author>
<author>
<name sortKey="Hagner Benes, S" uniqKey="Hagner Benes S">S Hagner-Benes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Travis, Wd" uniqKey="Travis W">WD Travis</name>
</author>
<author>
<name sortKey="Colby, Tv" uniqKey="Colby T">TV Colby</name>
</author>
<author>
<name sortKey="Koss, Mn" uniqKey="Koss M">MN Koss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandal, Rv" uniqKey="Mandal R">RV Mandal</name>
</author>
<author>
<name sortKey="Mark, Ej" uniqKey="Mark E">EJ Mark</name>
</author>
<author>
<name sortKey="Kradin, Rl" uniqKey="Kradin R">RL Kradin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanak, V" uniqKey="Hanak V">V Hanak</name>
</author>
<author>
<name sortKey="Ryu, Jh" uniqKey="Ryu J">JH Ryu</name>
</author>
<author>
<name sortKey="De Carvalho, E" uniqKey="De Carvalho E">E de Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katzenstein, Al" uniqKey="Katzenstein A">AL Katzenstein</name>
</author>
<author>
<name sortKey="Fiorelli, Rf" uniqKey="Fiorelli R">RF Fiorelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, M" uniqKey="Yamashita M">M Yamashita</name>
</author>
<author>
<name sortKey="Yamauchi, K" uniqKey="Yamauchi K">K Yamauchi</name>
</author>
<author>
<name sortKey="Chiba, R" uniqKey="Chiba R">R Chiba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parra, Er" uniqKey="Parra E">ER Parra</name>
</author>
<author>
<name sortKey="Araujo, Ca" uniqKey="Araujo C">CA Araujo</name>
</author>
<author>
<name sortKey="Lombardi, Jg" uniqKey="Lombardi J">JG Lombardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lara, Ar" uniqKey="Lara A">AR Lara</name>
</author>
<author>
<name sortKey="Cosgrove, Gp" uniqKey="Cosgrove G">GP Cosgrove</name>
</author>
<author>
<name sortKey="Janssen, Wj" uniqKey="Janssen W">WJ Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pierce, Em" uniqKey="Pierce E">EM Pierce</name>
</author>
<author>
<name sortKey="Carpenter, K" uniqKey="Carpenter K">K Carpenter</name>
</author>
<author>
<name sortKey="Jakubzick, C" uniqKey="Jakubzick C">C Jakubzick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pierce, Em" uniqKey="Pierce E">EM Pierce</name>
</author>
<author>
<name sortKey="Carpenter, K" uniqKey="Carpenter K">K Carpenter</name>
</author>
<author>
<name sortKey="Jakubzick, C" uniqKey="Jakubzick C">C Jakubzick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Epler, Gr" uniqKey="Epler G">GR Epler</name>
</author>
<author>
<name sortKey="Colby, Tv" uniqKey="Colby T">TV Colby</name>
</author>
<author>
<name sortKey="Mcloud, Tc" uniqKey="Mcloud T">TC McLoud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serra, Hm" uniqKey="Serra H">HM Serra</name>
</author>
<author>
<name sortKey="Eberhard, Y" uniqKey="Eberhard Y">Y Eberhard</name>
</author>
<author>
<name sortKey="Martin, Ap" uniqKey="Martin A">AP Martín</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerjaschki, D" uniqKey="Kerjaschki D">D Kerjaschki</name>
</author>
<author>
<name sortKey="Regele, Hm" uniqKey="Regele H">HM Regele</name>
</author>
<author>
<name sortKey="Moosberger, I" uniqKey="Moosberger I">I Moosberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, M" uniqKey="Yamashita M">M Yamashita</name>
</author>
<author>
<name sortKey="Mouri, T" uniqKey="Mouri T">T Mouri</name>
</author>
<author>
<name sortKey="Niisato, M" uniqKey="Niisato M">M Niisato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janer, J" uniqKey="Janer J">J Janér</name>
</author>
<author>
<name sortKey="Lassus, P" uniqKey="Lassus P">P Lassus</name>
</author>
<author>
<name sortKey="Haglund, C" uniqKey="Haglund C">C Haglund</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, Lr" uniqKey="Young L">LR Young</name>
</author>
<author>
<name sortKey="Vandyke, R" uniqKey="Vandyke R">R Vandyke</name>
</author>
<author>
<name sortKey="Gulleman, Pm" uniqKey="Gulleman P">PM Gulleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, L" uniqKey="Young L">L Young</name>
</author>
<author>
<name sortKey="Lee, Hs" uniqKey="Lee H">HS Lee</name>
</author>
<author>
<name sortKey="Inoue, Y" uniqKey="Inoue Y">Y Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glasgow, Cg" uniqKey="Glasgow C">CG Glasgow</name>
</author>
<author>
<name sortKey="El Chemaly, S" uniqKey="El Chemaly S">S El-Chemaly</name>
</author>
<author>
<name sortKey="Moss, J" uniqKey="Moss J">J Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teles Grilo Ml, Leite Almeida H" uniqKey="Teles Grilo Ml L">Leite-Almeida H Teles-Grilo ML</name>
</author>
<author>
<name sortKey="J, Martins Dos Santos" uniqKey="J M">Martins dos Santos J</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meinecke, Ak" uniqKey="Meinecke A">AK Meinecke</name>
</author>
<author>
<name sortKey="Nagy, N" uniqKey="Nagy N">N Nagy</name>
</author>
<author>
<name sortKey="Lago, Gd" uniqKey="Lago G">GD Lago</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, Y" uniqKey="Cui Y">Y Cui</name>
</author>
<author>
<name sortKey="Wilder, J" uniqKey="Wilder J">J Wilder</name>
</author>
<author>
<name sortKey="Rietz, C" uniqKey="Rietz C">C Rietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ebina, M" uniqKey="Ebina M">M Ebina</name>
</author>
<author>
<name sortKey="Shimizukawa, M" uniqKey="Shimizukawa M">M Shimizukawa</name>
</author>
<author>
<name sortKey="Shibata, N" uniqKey="Shibata N">N Shibata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cosgrove, Gp" uniqKey="Cosgrove G">GP Cosgrove</name>
</author>
<author>
<name sortKey="Brown, Kk" uniqKey="Brown K">KK Brown</name>
</author>
<author>
<name sortKey="Schiemann, Wp" uniqKey="Schiemann W">WP Schiemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renzoni, Ea" uniqKey="Renzoni E">EA Renzoni</name>
</author>
<author>
<name sortKey="Walsh, Da" uniqKey="Walsh D">DA Walsh</name>
</author>
<author>
<name sortKey="Salmon, M" uniqKey="Salmon M">M Salmon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lappi Blanco, E" uniqKey="Lappi Blanco E">E Lappi-Blanco</name>
</author>
<author>
<name sortKey="Kaarteenaho Wiik, R" uniqKey="Kaarteenaho Wiik R">R Kaarteenaho-Wiik</name>
</author>
<author>
<name sortKey="Soini, Y" uniqKey="Soini Y">Y Soini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchal Somme, J" uniqKey="Marchal Somme J">J Marchal-Sommé</name>
</author>
<author>
<name sortKey="Uzunhan, Y" uniqKey="Uzunhan Y">Y Uzunhan</name>
</author>
<author>
<name sortKey="Marchand Adam, S" uniqKey="Marchand Adam S">S Marchand-Adam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iannuzzi, Mc" uniqKey="Iannuzzi M">MC Iannuzzi</name>
</author>
<author>
<name sortKey="Rybicki, Ba" uniqKey="Rybicki B">BA Rybicki</name>
</author>
<author>
<name sortKey="Teirstein, As" uniqKey="Teirstein A">AS Teirstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosen, Y" uniqKey="Rosen Y">Y Rosen</name>
</author>
<author>
<name sortKey="Vuletin, Jc" uniqKey="Vuletin J">JC Vuletin</name>
</author>
<author>
<name sortKey="Pertschuk, Lp" uniqKey="Pertschuk L">LP Pertschuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kambouchner, M" uniqKey="Kambouchner M">M Kambouchner</name>
</author>
<author>
<name sortKey="Pirici, D" uniqKey="Pirici D">D Pirici</name>
</author>
<author>
<name sortKey="Uhl, Jf" uniqKey="Uhl J">JF Uhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ebina, M" uniqKey="Ebina M">M Ebina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Potter, Pc" uniqKey="Potter P">PC Potter</name>
</author>
<author>
<name sortKey="Klein, M" uniqKey="Klein M">M Klein</name>
</author>
<author>
<name sortKey="Weinberg, Eg" uniqKey="Weinberg E">EG Weinberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celli, Br" uniqKey="Celli B">BR Celli</name>
</author>
<author>
<name sortKey="Decramer, M" uniqKey="Decramer M">M Decramer</name>
</author>
<author>
<name sortKey="Wedzicha, Ja" uniqKey="Wedzicha J">JA Wedzicha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardavella, G" uniqKey="Hardavella G">G Hardavella</name>
</author>
<author>
<name sortKey="Tzortzaki, Eg" uniqKey="Tzortzaki E">EG Tzortzaki</name>
</author>
<author>
<name sortKey="Siozopoulou, V" uniqKey="Siozopoulou V">V Siozopoulou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiels, Ms" uniqKey="Shiels M">MS Shiels</name>
</author>
<author>
<name sortKey="Katki, Ha" uniqKey="Katki H">HA Katki</name>
</author>
<author>
<name sortKey="Freedman, Nd" uniqKey="Freedman N">ND Freedman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Christie, Jd" uniqKey="Christie J">JD Christie</name>
</author>
<author>
<name sortKey="Edwards, Lb" uniqKey="Edwards L">LB Edwards</name>
</author>
<author>
<name sortKey="Kucheryavaya, Ay" uniqKey="Kucheryavaya A">AY Kucheryavaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stewart, S" uniqKey="Stewart S">S Stewart</name>
</author>
<author>
<name sortKey="Fishbein, Mc" uniqKey="Fishbein M">MC Fishbein</name>
</author>
<author>
<name sortKey="Snell, Gi" uniqKey="Snell G">GI Snell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X Xu</name>
</author>
<author>
<name sortKey="Greenland, J" uniqKey="Greenland J">J Greenland</name>
</author>
<author>
<name sortKey="Baluk, P" uniqKey="Baluk P">P Baluk</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Clin Med Insights Circ Respir Pulm Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Clin Med Insights Circ Respir Pulm Med</journal-id>
<journal-id journal-id-type="publisher-id">Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine</journal-id>
<journal-title-group>
<journal-title>Clinical Medicine Insights. Circulatory, Respiratory and Pulmonary Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub">1179-5484</issn>
<publisher>
<publisher-name>Libertas Academica</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26823655</article-id>
<article-id pub-id-type="pmc">4725607</article-id>
<article-id pub-id-type="doi">10.4137/CCRPM.S33856</article-id>
<article-id pub-id-type="publisher-id">ccrpm-suppl.1-2015-111</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Yamashita</surname>
<given-names>Masahiro</given-names>
</name>
<xref ref-type="corresp" rid="c1-ccrpm-suppl.1-2015-111"></xref>
</contrib>
<aff id="af1-ccrpm-suppl.1-2015-111">Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine, Morioka, Japan.</aff>
</contrib-group>
<author-notes>
<corresp id="c1-ccrpm-suppl.1-2015-111">CORRESPONDENCE:
<email>yamam@iwate-med.ac.jp</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>24</day>
<month>1</month>
<year>2016</year>
</pub-date>
<volume>9</volume>
<issue>Suppl 1</issue>
<fpage>111</fpage>
<lpage>121</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>03</day>
<month>11</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>11</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 the author(s), publisher and licensee Libertas Academica Ltd.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access">
<license-p>This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.</license-p>
</license>
</permissions>
<abstract>
<p>The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.</p>
</abstract>
<kwd-group>
<kwd>Fibrogenesis</kwd>
<kwd>Lymphangiogenesis</kwd>
<kwd>Angiogenesis</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>The idiopathic interstitial pneumonias (IIPs) are a heterogeneous group of acute and chronic disorders in which inflammation and fibrosis result from damage to the lung parenchyma, the etiologies of which remain to be fully elucidated. IIPs include idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP), acute interstitial pneumonia (AIP), respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and lymphocytic interstitial pneumonia.
<xref rid="b1-ccrpm-suppl.1-2015-111" ref-type="bibr">1</xref>
The former four IIPs have been of deeper concern because of their relatively higher frequencies and worse prognoses among the seven conditions. The interstitium includes the space between the epithelial and endothelial basement membranes and is the primary site of injury in the IIPs.
<xref rid="b2-ccrpm-suppl.1-2015-111" ref-type="bibr">2</xref>
However, these disorders frequently affect not only the interstitium but also the airspaces, peripheral airways, and vessels, together with their respective epithelial and endothelial linings.
<xref rid="b2-ccrpm-suppl.1-2015-111" ref-type="bibr">2</xref>
The inflammation and fibrosis in IIPs are characterized by spatial and/or temporal heterogeneity as typified by IPF/usual interstitial pneumonia (UIP), and these complexities have inhibited understanding of the pathophysiology in IIPs.
<xref rid="b3-ccrpm-suppl.1-2015-111" ref-type="bibr">3</xref>
,
<xref rid="b4-ccrpm-suppl.1-2015-111" ref-type="bibr">4</xref>
Particularly, intraluminal fibrotic lesions called fibroblastic foci, which are present at the leading edge of fibrogenesis during the development of IPF, have been associated with poor prognoses in IPF.
<xref rid="b5-ccrpm-suppl.1-2015-111" ref-type="bibr">5</xref>
<xref rid="b11-ccrpm-suppl.1-2015-111" ref-type="bibr">11</xref>
</p>
<p>Lymphatic vessels form an elaborate vascular system throughout the skin and in most internal organs and play important functions in interstitial fluid drainage, absorption of lipids and small molecules, and trafficking of antigenpresenting cells into regional lymph nodes in immune responses.
<xref rid="b12-ccrpm-suppl.1-2015-111" ref-type="bibr">12</xref>
Lymphangiogenesis occurs in adult tissues during pathologic conditions such as inflammation, wound healing, and tumor metastasis.
<xref rid="b13-ccrpm-suppl.1-2015-111" ref-type="bibr">13</xref>
Lymphatic sprouting is mediated by vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor (VEGFR)-3, which is a receptor for both VEGF-C and VEGF-D.
<xref rid="b14-ccrpm-suppl.1-2015-111" ref-type="bibr">14</xref>
<xref rid="b18-ccrpm-suppl.1-2015-111" ref-type="bibr">18</xref>
Lymphangiogenesis is closely associated with capillary angiogenesis.
<xref rid="b19-ccrpm-suppl.1-2015-111" ref-type="bibr">19</xref>
<xref rid="b21-ccrpm-suppl.1-2015-111" ref-type="bibr">21</xref>
Lymphangiogenesis generally occurs after capillary angiogenesis, and lymphatic vessels grow to interdigitate blood vessels, followed by their regress in reparable conditions.
<xref rid="b21-ccrpm-suppl.1-2015-111" ref-type="bibr">21</xref>
The balanced interrelationship between the two types of angiogenesis is considered to be essential for maintaining homeostasis.
<xref rid="b22-ccrpm-suppl.1-2015-111" ref-type="bibr">22</xref>
Lymphangiogenesis can be either a beneficial or a detrimental phenomenon in pathologic conditions, depending on the pathophysiology of the underlying disease. Lymphangiogenesis worsens immune diseases such as the rejection response after transplantation.
<xref rid="b23-ccrpm-suppl.1-2015-111" ref-type="bibr">23</xref>
<xref rid="b26-ccrpm-suppl.1-2015-111" ref-type="bibr">26</xref>
In contrast, lymphangiogenesis facilitates the resolution of tissue edema and the mobilization of inflammatory cells in acute and chronic inflammatory settings.
<xref rid="b27-ccrpm-suppl.1-2015-111" ref-type="bibr">27</xref>
,
<xref rid="b28-ccrpm-suppl.1-2015-111" ref-type="bibr">28</xref>
Excessive lymphangiogenesis could be a cause of dehydration in interstitial tissues and can facilitate scar formation and the maturation of fibrosis.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
Conversely, impaired lymphangiogenesis invites lymphedema,
<xref rid="b30-ccrpm-suppl.1-2015-111" ref-type="bibr">30</xref>
<xref rid="b33-ccrpm-suppl.1-2015-111" ref-type="bibr">33</xref>
and Crohn’s disease can be caused by a failure of the lymphatic vessels to transport inflammatory cells and lipids.
<xref rid="b34-ccrpm-suppl.1-2015-111" ref-type="bibr">34</xref>
</p>
<p>Lymphangiogenesis has been investigated in several lung diseases including airway and interstitial lung diseases, and potential roles are emerging for the measurement of lymphatic endothelial cell markers in making diagnoses, assigning prognoses, exploring the pathogenesis, and developing new treatments.
<xref rid="b35-ccrpm-suppl.1-2015-111" ref-type="bibr">35</xref>
Particularly, growing interest has been generated regarding the relationship between IIPs and lymphangiogenesis since lymphangiogenesis is deeply linked with tissue repair. The pulmonary fibrosis associated with IIPs is hypothesized to be an aberrant healing process for tissue injury. This review provides an overview of the immunohistochemical characterization of lymphangiogenesis, the quantification of lymphangiogenic factors in IIPs and other related diseases in comparison to normal lungs, and recent advances in animal models. The possible roles of lymphangiogenesis in the pathogeneses of these conditions are discussed.</p>
</sec>
<sec>
<title>Application of Lymphatic Markers for Immunohistochemistry</title>
<p>The growing body of information about the expression of various markers by lymphatic endothelial cells allows the immunohistochemical identification of lymphatic vessels. Major markers for the detection of lymphatic vessels and the cells other than lymphatic endothelial cells that can express those markers are summarized in
<xref ref-type="table" rid="t1-ccrpm-suppl.1-2015-111">Table 1</xref>
.</p>
<p>Podoplanin is a transmembrane mucoprotein (38 kDa), a partial epitope of which is recognized by the D2-40 monoclonal antibody.
<xref rid="b36-ccrpm-suppl.1-2015-111" ref-type="bibr">36</xref>
Podoplanin induces the aggregation of platelets via its receptor C-type lectin-like receptor 2 (CLEC-2).
<xref rid="b37-ccrpm-suppl.1-2015-111" ref-type="bibr">37</xref>
Podoplanin is expressed in alveolar epithelial cells, pleural mesothelial cells, and fibroblasts in the lungs of human and mouse, in addition to lymphatic vessels.
<xref rid="b36-ccrpm-suppl.1-2015-111" ref-type="bibr">36</xref>
,
<xref rid="b38-ccrpm-suppl.1-2015-111" ref-type="bibr">38</xref>
<xref rid="b41-ccrpm-suppl.1-2015-111" ref-type="bibr">41</xref>
Mice lacking podoplanin show abnormal lung development during late gestation with narrower airspaces and thicker mesenchyme. These mice fail to expand their alveolar sacs at birth, resulting in perinatal respiratory failure and mortality.
<xref rid="b42-ccrpm-suppl.1-2015-111" ref-type="bibr">42</xref>
Mice deficient in CLEC-2 also show reduced airspace in the lung alveoli and fluid present in the larger lung airways and fail to inflate their lungs normally at birth.
<xref rid="b42-ccrpm-suppl.1-2015-111" ref-type="bibr">42</xref>
Podoplanin is too strongly expressed by murine epithelial cells to be used as a specific marker for the detection of lymphatic vessels in lungs.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
In human lung specimens, its expression can be varied. Anti-D2-40 antibody has been used alone for the detection of lymphatic vessels in many morphologic studies using human lung specimens because the degree of podoplanin expression does not appear to disturb the utility of anti-podoplanin antibody in lung tissues. As D2-40 is not necessarily specific to lymphatic vessels in human lungs, the identification of lymphatic vessels appears to have often been made with the assistance of information about the shape and distribution of the structures stained. Because the primary antibody against D2-40 allows robust detection of lymphatic vessels in human lung specimens, this antibody is widely used at the moment. When the detection of lymphatic vasculatures in human lungs is performed, the identification of lymphatic vessels using other markers in addition to podoplanin, such as lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), VEGFR-3, and prospero-related homeobox transcription factor (PROX-1), is strongly recommended.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
,
<xref rid="b44-ccrpm-suppl.1-2015-111" ref-type="bibr">44</xref>
<xref rid="b46-ccrpm-suppl.1-2015-111" ref-type="bibr">46</xref>
Nevertheless, it might be not necessarily easy to determine the optimal antigen retrieval of VEGFR-3 and PROX-1 in human tissues, depending on the methods of tissue fixation.</p>
<p>LYVE-1 is a hyaluronan receptor that was identified through its homology with the inflammatory leukocyte homing receptor CD44.
<xref rid="b47-ccrpm-suppl.1-2015-111" ref-type="bibr">47</xref>
The physiological roles of LYVE-1 in lymphatic vessels have not been clarified fully. It has been reported that LYVE-1 may regulate lymphangiogenesis via a stimulation driven by low molecular hyaluronic acid and the interaction with basic fibroblast growth factor (FGF-2).
<xref rid="b48-ccrpm-suppl.1-2015-111" ref-type="bibr">48</xref>
,
<xref rid="b49-ccrpm-suppl.1-2015-111" ref-type="bibr">49</xref>
The expression of LYVE-1 was found to be decreased in inflammatory conditions.
<xref rid="b50-ccrpm-suppl.1-2015-111" ref-type="bibr">50</xref>
The expression of LYVE-1 is detectable in lymphatic vessels, blood endothelial cells, and macrophages in normal human and murine lungs.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
,
<xref rid="b46-ccrpm-suppl.1-2015-111" ref-type="bibr">46</xref>
,
<xref rid="b51-ccrpm-suppl.1-2015-111" ref-type="bibr">51</xref>
<xref rid="b53-ccrpm-suppl.1-2015-111" ref-type="bibr">53</xref>
In normal murine lungs, LYVE-1 is much more strongly expressed in blood vessels ranging from larger diameter vessels to capillaries, although its expression in capillaries can be decreased in inflammatory conditions. It seems to be difficult to differentiate lymphatic and blood vessels primarily by anti-LYVE-1 antibody staining in the lung parenchyma. Thus, the two types of vessels appear to be confused in murine parenchymal models, even if the expression of LYVE-1 is locally confirmed by other lymphatic markers such as VEGFR-3 and PROX-1.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
</p>
<p>VEGFR-3, a receptor of the lymphangiogenic factors VEGF-C and -D, is initially expressed by embryonic blood vessels during development, but its expression is subsequently restricted to lymphatic vessels once they are committed to that lineage and express additional lymphatic markers.
<xref rid="b54-ccrpm-suppl.1-2015-111" ref-type="bibr">54</xref>
,
<xref rid="b55-ccrpm-suppl.1-2015-111" ref-type="bibr">55</xref>
VEGFR-3 expression can also be detected in cells of the monocyte lineage.
<xref rid="b23-ccrpm-suppl.1-2015-111" ref-type="bibr">23</xref>
,
<xref rid="b52-ccrpm-suppl.1-2015-111" ref-type="bibr">52</xref>
As a detection marker for lymphatic vessels in lung models, VEGFR-3 allows the clear discrimination of lymphatic vessels from blood capillary vascularities.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
,
<xref rid="b56-ccrpm-suppl.1-2015-111" ref-type="bibr">56</xref>
Based on the currently available evidence, VEGFR-3 should be chosen as the primary lymphatic marker in parenchymal models of mice.
<xref ref-type="fig" rid="f1-ccrpm-suppl.1-2015-111">Figures 1</xref>
and
<xref ref-type="fig" rid="f2-ccrpm-suppl.1-2015-111">2</xref>
show VEGFR-3
<sup>+</sup>
lymphatic vessels in intra-alveolar fibrotic lesions in a bleomycin-induced mouse model of pulmonary fibrosis in our study (unpublished data). LYVE-1 was robustly expressed in VEGFR-3
<sup></sup>
blood vessels and capillaries in addition to VEGFR-3
<sup>+</sup>
lymphatic vessels.</p>
<p>PROX-1 is a transcription factor specific to lymphatic endothelial cells. PROX-1 can be expressed by the progenitor cells of monocytic lineages.
<xref rid="b24-ccrpm-suppl.1-2015-111" ref-type="bibr">24</xref>
,
<xref rid="b52-ccrpm-suppl.1-2015-111" ref-type="bibr">52</xref>
Recently, PROX-1 was reported to be associated with obesity and neurogenesis.
<xref rid="b57-ccrpm-suppl.1-2015-111" ref-type="bibr">57</xref>
,
<xref rid="b58-ccrpm-suppl.1-2015-111" ref-type="bibr">58</xref>
In immunohistochemistry, PROX-1 staining is detected in the nucleus. A limited number of studies have used a primary antibody against PROX-1 in morphometric analyses,
<xref rid="b24-ccrpm-suppl.1-2015-111" ref-type="bibr">24</xref>
whereas it has often been immunohistochemically stained for the confirmation of other lymphatic markers in human and murine models.</p>
</sec>
<sec>
<title>Structure and Distribution of Lymphatic Vessels in Normal Lungs</title>
<p>Unlike blood vessels, lymphatic vessels have a discontinuous or fenestrated basement membrane and lack tight interendothelial junctions and are therefore permeable to interstitial fluid and cells. Through specialized anchoring filaments, lymphatic vessels stay open when the tissue pressure rises. Compared with blood vessels, lymphatic vessels are a low-flow and low-pressure system. In normal lungs, lymphatic vessels had classically been considered to be distributed in the pleura, the interlobular septa, and around the bronchovascular bundle. El-Chemaly et al.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
reported that in normal alveolar spaces, small CD34
<sup>+</sup>
capillaries were found, but no immunoreactivity for podoplanin was detected. Kambouchner and Bernaudin
<xref rid="b60-ccrpm-suppl.1-2015-111" ref-type="bibr">60</xref>
explored the distribution of lymphatics within lobules in normal regions of human lungs using anti-D2-40 antibody. They showed the presence of lymphatic vessels not only in the connective tissue surrounding the respiratory bronchioles but also in the interlobular region, detecting lymphatic vessels with diameters ranging from 10 to 20 µm in the interalveolar walls. Sozio et al.
<xref rid="b61-ccrpm-suppl.1-2015-111" ref-type="bibr">61</xref>
reported that most of the intralobular lymphatic vessels in normal lungs were in close contact with a blood vessel, either alone or within a bronchovascular bundle, whereas 7% were associated with a bronchiole and <1% were not connected to blood vessels or bronchioles. They additionally demonstrated an association between the shapes and sizes of lymphatic vessels and their anatomical locations.
<xref rid="b61-ccrpm-suppl.1-2015-111" ref-type="bibr">61</xref>
The shapes of peribronchiolar and interlobular lymphatic vessels were characterized as having a marginally increased roundness and circularity and greater elongation, respectively, compared with the other type of vessel. Intralobular lymphatic size progressively decreased from bronchovascular lymphatic vessels through to the peribronchiolar, perivascular, and interalveolar lymphatics. Very limited information is available regarding the presence of the lymphatic capillaries that lie together side-by-side like beads along the alveolar septa in the intralobular region and construct an intertwined structure with blood capillaries. In this context, Ebina et al.
<xref rid="b62-ccrpm-suppl.1-2015-111" ref-type="bibr">62</xref>
reported that lymphatic vessels were barely observed in the alveolar septa. Based on the studies that used D2-40 as a lymphatic marker, intralo-bular lymphatic vessels in normal lungs appear to start from the alveolar septa, possibly near venules, although the exact anatomical starting points of the lymphatic vessels in the distal site of the parenchyma have not been determined.</p>
<p>The amount of information available regarding the distribution of lymphatic vessels in the lungs of mice has been limited because reliable and realizable methods to recognize the lymphatic vessels have rarely been used. Baluk et al.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
explored the anatomical distribution of lymphatic vessels in mice, mainly using PROX-1-enhanced, green fluorescence protein transgenic mice with fluorescent green lymphatic vessels and staining with anti-VEGFR-3 antibody. Their study found that most lymphatic vessels in normal lungs were located around large bronchi and major blood vessels near the hilum, while a seemingly separate lymphatic network surrounded the pulmonary veins. Lymphatic vessels accompanied airways and blood vessels into the lung parenchyma. The lymphatic network extended further distally along the branches of pulmonary veins than it did along pulmonary arteries or airways of comparable diameter. The smallest lymphatic vessels were detected on the terminal branches of pulmonary veins. Even near alveoli and visceral pleura, lymphatic vessels were typically associated with airways and blood vessels. Few lymphatic vessels were located within or beneath the visceral pleura. Kretschmer et al.
<xref rid="b63-ccrpm-suppl.1-2015-111" ref-type="bibr">63</xref>
reported similar results in their analyses of lymphatic vessels visualized by immunostaining using anti-CD90/Thy-1 primary antibody.</p>
</sec>
<sec>
<title>Lymphangiogenesis in IIPs</title>
<sec>
<title>Diffuse alveolar damage</title>
<p>Lymphangiogenesis has been explored in AIP/diffuse alveolar damage (DAD), IPF/UIP, NSIP, and COP. Lymphangiogenesis and capillary angiogen-esis of DAD were characterized in three consecutive stages defined on the basis of histopathologic evidence, such as exudative, defined by the formation of a hyaline membrane and edema of the alveolar wall; proliferative, defined by the presence of intra-alveolar fibrosis; and fibrotic, defined by a shrunken interstitium and neighboring dilated air spaces (honeycomb formation).
<xref rid="b64-ccrpm-suppl.1-2015-111" ref-type="bibr">64</xref>
In our study, lymphangiogenesis was characterized in the three stages of idiopathic DAD mainly using antibodies specific to podoplanin.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
Although lymphangiogenesis was barely increased in the exudative stage, newly formed lymphatic vessels were found in the proliferative stage, primarily in the intra-alveolar fibrotic lesions. Three-dimensional images using serial sections demonstrated that some of the lymphatic vessels in the intra-alveolar fibrotic lesions had no connection to the existing ones, thus representing de novo lymphangiogenesis. Macrophages, which can potentially transdifferentiate into lymphatic endothelial cells, were expected to form de novo lymphangiogenesis by lymphovasculogenesis.
<xref rid="b24-ccrpm-suppl.1-2015-111" ref-type="bibr">24</xref>
,
<xref rid="b45-ccrpm-suppl.1-2015-111" ref-type="bibr">45</xref>
,
<xref rid="b52-ccrpm-suppl.1-2015-111" ref-type="bibr">52</xref>
,
<xref rid="b58-ccrpm-suppl.1-2015-111" ref-type="bibr">58</xref>
In contrast, capillaries were absent from the intra-alveolar fibrotic lesions. Lymphatic vessels were not found abundantly in the alveolar septa in the exudative and proliferative stages of DAD, whereas there was an active capillary angiogenesis during these stages in the same area. Lymphatic vessels persisted in the fibrotic stage. Collectively, a remarkable unbalance was observed between the two types of angiogenesis during the development of DAD. It was speculated that lymphangiogenesis plays a role in the maturation of fibrotic tissue, facilitating tissue remodeling via fluid drainage.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
In organizing pneumonia of acute respiratory distress syndrome-associated DAD, Mandal et al.
<xref rid="b65-ccrpm-suppl.1-2015-111" ref-type="bibr">65</xref>
reported that the diameters of lymphatic vessels in survivors were larger than those in nonsurvivors. They speculated that the need for a greater capacity of lymphatic vessels to clear alveolar and interstitial fluids may be associated with the expansion of peribronchial lymphatics and that the obstruction of lymphatic flow might lead to unfavorable consequences through the development of intra-alveolar edema. However, it was unclear whether lymphatic density could predict prognoses in a homogeneous patient population.</p>
</sec>
<sec>
<title>IPF/UIP and NSIP</title>
<p>IPF is heterogeneously character-ized by chronic interstitial pneumonia, intraluminal fibrosis with small aggregates of myofibroblasts and fibroblasts (termed
<italic>fibroblastic foci</italic>
), dense collagen, and honeycomb histological changes.
<xref rid="b4-ccrpm-suppl.1-2015-111" ref-type="bibr">4</xref>
Fibroblastic foci consist of an extracellular matrix, an overlying epithelium, and a small aggregate of fibroblasts expressing procollagen proteins.
<xref rid="b4-ccrpm-suppl.1-2015-111" ref-type="bibr">4</xref>
It has been considered that fibroblastic foci represent a leading edge of fibrogenesis during the development of IPF.
<xref rid="b5-ccrpm-suppl.1-2015-111" ref-type="bibr">5</xref>
<xref rid="b9-ccrpm-suppl.1-2015-111" ref-type="bibr">9</xref>
Fibroblastic foci were reported to be a predictor of poor prognosis in patients with IPF, although conflicting data have been reported.
<xref rid="b10-ccrpm-suppl.1-2015-111" ref-type="bibr">10</xref>
,
<xref rid="b11-ccrpm-suppl.1-2015-111" ref-type="bibr">11</xref>
,
<xref rid="b66-ccrpm-suppl.1-2015-111" ref-type="bibr">66</xref>
Massive fibrosis is predominant in subpleural and interlobular lesions of the periphery rather than the central intralobular region.
<xref rid="b4-ccrpm-suppl.1-2015-111" ref-type="bibr">4</xref>
On the other hand, NSIP shows a relatively good clinical response to immunosuppressive therapy, and patients with NSIP typically have a better prognosis than those with IPF. In particular, NSIP is pathologically distinguished from IPF/UIP by dense or loose interstitial fibrosis with a uniform appearance, lung architecture is frequently preserved, and fibroblastic foci are less frequently observed in NSIP than in IPF/UIP.
<xref rid="b67-ccrpm-suppl.1-2015-111" ref-type="bibr">67</xref>
Several papers are available regarding lymphangiogenesis in IPF and/or NSIP.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
,
<xref rid="b62-ccrpm-suppl.1-2015-111" ref-type="bibr">62</xref>
,
<xref rid="b68-ccrpm-suppl.1-2015-111" ref-type="bibr">68</xref>
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
Lymphatic vessels have been found to be absent from fibroblastic foci and mainly detectable in the fibrotic interstitium, including fibrotic lesions around fibroblastic foci.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
,
<xref rid="b68-ccrpm-suppl.1-2015-111" ref-type="bibr">68</xref>
Lymphangiogenesis has been increasingly associated with the severity of fibrosis.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
,
<xref rid="b69-ccrpm-suppl.1-2015-111" ref-type="bibr">69</xref>
,
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
In this context, Lara et al.
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
showed the absence of definable differences between IPF/UIP and (possibly fibrosing) idiopathic NSIP, suggesting that lymphatic vessels are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. Some reports have suggested that increased lymphangiogenesis can actively facilitate fibrogenesis in IPF/UIP, although the degree of the contribution by lymphangiogenesis in whole signals associated with fibrogenesis of this condition has remained to be elucidated.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
,
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
CCL21 expressed in the lymphatic endothelium induces migratory and proliferative responses in CCR7
<sup>+</sup>
fibroblasts.
<xref rid="b71-ccrpm-suppl.1-2015-111" ref-type="bibr">71</xref>
,
<xref rid="b72-ccrpm-suppl.1-2015-111" ref-type="bibr">72</xref>
In the study by Lara et al.
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
, it was noted that the results of morphometric analyses showed considerable differences between the length and volume densities of lymphatic endothelium.</p>
<p>On the other hand, Ebina et al.
<xref rid="b62-ccrpm-suppl.1-2015-111" ref-type="bibr">62</xref>
performed the char-acterization of lymphatic vessels among healthy controls and patients with IPF/UIP, cellular nonspecific interstitial pneumonia (cNSIP), and COP, particularly focusing on the subpleural and interlobular lesions. Using 3D images reconstructed from serial sections, they detected the destruction of subpleural lymphatics by fibrosis in IPF/UIP but not in the normal controls. In morphometric analyses, subpleural and interlobular lymphatic area and length densities and intralobular number density were decreased in IPF/UIP relative to cNSIP and COP, suggesting less lymphangiogenesis in IPF/UIP. They speculated that less lymphangiogenesis in subpleural lesions may be associated with poor prognoses in IPF/UIP via impaired alveolar clearance.</p>
<p>A comparative analysis of lymphangiogenesis among the subtypes of IIPs, including DAD, COP, cNSIP, and IPF/UIP, was also reported by Parra et al.
<xref rid="b69-ccrpm-suppl.1-2015-111" ref-type="bibr">69</xref>
They estimated the amount of lymphangiogenesis by measuring the number density of lymphatic endothelial cells. DAD showed less lymphangiogenesis relative to the other IIP subtypes, although detailed information regarding the stages of DAD development was missing. On the other hand, no differences were observed among the remaining three subtypes. Although it is very important to give differential diagnoses of IPF/UIP from NSIP in clinical practice, the immunohistopathologic analyses of lymphangiogenesis generally appear to have a limited contributive value for the differentiation.</p>
</sec>
<sec>
<title>COP and cNSIP</title>
<p>COP has a much better prognosis than other IIPs.
<xref rid="b73-ccrpm-suppl.1-2015-111" ref-type="bibr">73</xref>
Most patients with COP recover either spontaneously or after treatment. Organizing pneumonia is histologically characterized primarily by the involvement of alveolar ducts and alveoli with a patchy distribution.
<xref rid="b64-ccrpm-suppl.1-2015-111" ref-type="bibr">64</xref>
,
<xref rid="b73-ccrpm-suppl.1-2015-111" ref-type="bibr">73</xref>
There is a mild associated interstitial inflammatory infiltrate, type II cell metaplasia, and an increase in alveolar macrophages, some of which may be foamy. There is a relatively good preservation of the background lung architecture.
<xref rid="b64-ccrpm-suppl.1-2015-111" ref-type="bibr">64</xref>
,
<xref rid="b73-ccrpm-suppl.1-2015-111" ref-type="bibr">73</xref>
cNSIP is one of the three major groups described by Katzenstein and Fiorelli
<xref rid="b67-ccrpm-suppl.1-2015-111" ref-type="bibr">67</xref>
and primarily manifests as a pure interstitial pneumonia, occasionally accompanied by organizing pneumonia. Clinically, cNSIP also shows a relatively good prognosis, similar to that of COP.</p>
<p>Conflicting data have been reported regarding the relative amount of lymphangiogenesis among IIP subtypes. Ebina et al.
<xref rid="b62-ccrpm-suppl.1-2015-111" ref-type="bibr">62</xref>
showed increased lymphangiogenesis in COP and cNSIP relative to that found in IPF/UIP, whereas Parra et al.
<xref rid="b69-ccrpm-suppl.1-2015-111" ref-type="bibr">69</xref>
reported no differences among the three subtypes. Both reports showed the appearance of new lymphatics in intraluminal fibrosis. The collective data regarding lymphangiogenesis in IIPs are summarized in
<xref ref-type="table" rid="t2-ccrpm-suppl.1-2015-111">Table 2</xref>
.</p>
</sec>
<sec>
<title>Expression of VEGF-C and -D and CCL21 in IIPs and other conditions</title>
<p>VEGF-C and -D are ligands for VEGFR-3, and these signals induce lymphangiogenesis via lymphatic sprouting. Macrophages are a major source of these growth factors in inflamed tissues and fibrotic conditions.
<xref rid="b45-ccrpm-suppl.1-2015-111" ref-type="bibr">45</xref>
An increasing body of recent information has revealed that lymphatic endothelial cells express a variety of chemokines and cell surface markers. CCL21, also known as the secondary lymphoid chemokine, which is exclusively secreted by lymphatic endothelial cells in afferent lymphatic vessels, attracts activated antigen-presenting cells that express the CCL21 receptor CCR7, and CCL21/CCR7-mediated signaling can function as an active regulator of immune responses.
<xref rid="b74-ccrpm-suppl.1-2015-111" ref-type="bibr">74</xref>
,
<xref rid="b75-ccrpm-suppl.1-2015-111" ref-type="bibr">75</xref>
Information regarding the bronchoalveolar lavage fluid (BALF) levels of lymphatics-related mediators in patients with IPF was first reported by El-Chemaly et al.
<xref rid="b59-ccrpm-suppl.1-2015-111" ref-type="bibr">59</xref>
BALF VEGF-C was significantly decreased in patients with IPF relative to that of healthy controls, while BALF VEGF-D showed no difference between the patients with IPF and healthy subjects. On the other hand, BALF CCL21 was significantly increased in patients with IPF. These results were generally confirmed by our studies.
<xref rid="b76-ccrpm-suppl.1-2015-111" ref-type="bibr">76</xref>
El-Chemaly et al. reported that VEGF-C was immunohistochemically expressed in the airway epithelium, alveolar epithelial cells, and alveolar macrophages. In our immunohistochemical analyses, VEGF-C was remarkably expressed in alveolar macrophages near lymphatic vessels in the intra-alveolar fibrotic lesions of DAD, suggesting an important role for the participation of macrophages in the lymphangiogenesis of fibrotic diseases.
<xref rid="b45-ccrpm-suppl.1-2015-111" ref-type="bibr">45</xref>
CCL21 expression was exclusively detected in lymphatic vessels in IPF but not in DAD.
<xref rid="b45-ccrpm-suppl.1-2015-111" ref-type="bibr">45</xref>
In contrast, CCL19 expression was observed in lymphatic endothelial cells in DAD.
<xref rid="b45-ccrpm-suppl.1-2015-111" ref-type="bibr">45</xref>
Janér et al measured VEGF-C levels in tracheal aspirate fluid in 54 preterm infants and reported the highest levels during the first two postnatal days. Decreased level or the immunohistochemical absence of VEGF-C in preterm infants was associated with physiologic dysplasia of the lymphatic system in the lungs.
<xref rid="b77-ccrpm-suppl.1-2015-111" ref-type="bibr">77</xref>
</p>
<p>In conditions other than IIPs, diagnostic values of serum and/or BALF VEGF-D have been recently determined. Some papers have reported that serum VEGF-D reflects disease activity and is a predictor of prognosis in lymphangioleiomyomatosis (LAM).
<xref rid="b78-ccrpm-suppl.1-2015-111" ref-type="bibr">78</xref>
,
<xref rid="b79-ccrpm-suppl.1-2015-111" ref-type="bibr">79</xref>
LAM is an extremely rare multisystemic disease and has recently been regarded as a neoplastic disease characterized by self-multiplication of lymphatic endothelial cells. Another review provides detailed information regarding LAM and lymphangiogenesis.
<xref rid="b80-ccrpm-suppl.1-2015-111" ref-type="bibr">80</xref>
</p>
</sec>
<sec>
<title>Lymphangiogenesis in animal fibrosis models</title>
<p>Whether lymphangiogenesis directly reflects the fibrogenesis in IIPs remains to be elucidated. Teles-Grilo et al were the first to report the existence of lymphangiogenesis in the bleomycin-induced pulmonary fibrosis rat model. After the intratracheal administration of bleomycin, new blood vessels were formed and new lymphatics were morphologically detected in the lesions associated with collagen deposition on day 21 after bleomycin exposure.
<xref rid="b81-ccrpm-suppl.1-2015-111" ref-type="bibr">81</xref>
Meinecke et al.
<xref rid="b82-ccrpm-suppl.1-2015-111" ref-type="bibr">82</xref>
reported that LYVE-1
<sup>+</sup>
vessels exhibited ectopic mural cell coverage by smooth muscle actin-positive cells in the intraperitoneally administrated bleomycin-induced murine model. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by the expression of platelet-derived growth factor (PDGF) B in lymphatic endothelial cells and signaling through PDGF receptor β in associated mural cells. They speculated that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes. Wilder et al.
<xref rid="b83-ccrpm-suppl.1-2015-111" ref-type="bibr">83</xref>
characterized LYVE-1
<sup>+</sup>
vessels in radiation-induced murine fibrosis models. The LYVE-1
<sup>+</sup>
vessel density was estimated at 1, 4, 8, and 16 weeks after bleomycin exposure and was decreased in the bleomycin-exposed animals relative to that of the controls.</p>
</sec>
<sec>
<title>Several issues in exploring the relationship between IIPs and lymphangiogenesis</title>
<p>Several issues should be discussed regarding the characterization of lymphangiogenesis in IIPs and its pathogenic roles. The first is the possibility of methodologic bias in morphometric analyses, as mentioned above.
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
It was noted that considerable differences between the length and volume densities of lymphatic endothelium were observed in severe fibrosis. Lymphangiogenesis persisted in dense or severe fibrosis as represented in idiopathic DAD and IPF/UIP, while capillary angiogenesis regressed.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
,
<xref rid="b84-ccrpm-suppl.1-2015-111" ref-type="bibr">84</xref>
Active lymphangiogenesis beyond capillary angiogenesis would induce a decrease of interstitial pressure in the tissues, resulting in the collapse of lymphatic vessels even in active lymphangiogenic conditions. Because the volume density of the lymphatic endothelium likely creates bias for the estimation of lymphangiogenesis via the influence of interstitial pressure, length density should also be measured at the same time. In addition, these densities should be standardized by interstitial density because the deviation of airspace can create bias in the measurement of these densities (
<xref ref-type="table" rid="t2-ccrpm-suppl.1-2015-111">Table 2</xref>
).</p>
<p>Furthermore, an unbalance between capillary angiogenesis and lymphangiogenesis might be linked to the prognosis of pulmonary fibrosis. Several reports showed the association between the presence of lymphangiogenesis without capillary angiogenesis and prognoses in IIPs.
<xref rid="b62-ccrpm-suppl.1-2015-111" ref-type="bibr">62</xref>
,
<xref rid="b65-ccrpm-suppl.1-2015-111" ref-type="bibr">65</xref>
,
<xref rid="b68-ccrpm-suppl.1-2015-111" ref-type="bibr">68</xref>
However, as summarized in
<xref ref-type="table" rid="t3-ccrpm-suppl.1-2015-111">Table 3</xref>
, it is difficult to determine whether lymphangiogenesis in the alveolar septa and intraluminal fibrosis gives a fair or biased insight into pulmonary fibrosis associated with interstitial pneumonia. Lymphangiogenesis was active in intraluminal fibrosis of DAD but inactive in IPF/UIP. The two conditions commonly show poor prognoses. In addition, it was also active in COP, which generally has a good prognosis. In fibrosis in the alveolar septa, similar inconsistency was also observed between IPF/UIP and DAD. On the other hand, several reports are available regarding capillary angiogenesis in IIPs. Blood vessels were reported to be absent in the fibroblastic foci of IPF,
<xref rid="b85-ccrpm-suppl.1-2015-111" ref-type="bibr">85</xref>
whereas new capillaries were found to appear in the same lesions in the later pathologic stage, albeit to a lesser degree than in healthy tissue.
<xref rid="b68-ccrpm-suppl.1-2015-111" ref-type="bibr">68</xref>
In contrast, capillary density was increased in mild interstitial fibrotic lesions but decreased with the advancement of fibrosis.
<xref rid="b86-ccrpm-suppl.1-2015-111" ref-type="bibr">86</xref>
In DAD, the capillary density was increased in the alveolar septa in the exudative stage, followed by regression in the fibrotic stage, and blood vessels were absent from the intra-alveolar fibrotic lesions in the proliferative stage.
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
The imbalance between capillary angiogenesis and lymphangiogenesis is common to both IPF and DAD. In contrast, both blood and lymphatic vessels are detectable in intraluminal fibrosis in COP.
<xref rid="b69-ccrpm-suppl.1-2015-111" ref-type="bibr">69</xref>
,
<xref rid="b87-ccrpm-suppl.1-2015-111" ref-type="bibr">87</xref>
The discrepancy between the two types of angiogenesis might be related to poor prognoses of IIPs based on the results provided by immunohistochemistry, although capillary angiogenesis remains to be explored in interstitial lesions in COP and NSIP. This hypothesis would need to be confirmed by morphometric analyses.</p>
<p>The heterogeneities in the affected area and pathologic changes inhibit understanding of the roles of lymphangiogenesis in IIPs. Lower levels of lymphangiogenesis appear to be related to undesirable events in inflammatory lesions because of dysfunctional fluid drainage, and excessive lymphangiogenesis is also evidently associated with massive fibrosis. IIPs are occasionally accompanied with lymphoid hyperplasia in addition to inflammation and fibrosis, and dendritic cells (DC) have been reported to be associated with IPF.
<xref rid="b88-ccrpm-suppl.1-2015-111" ref-type="bibr">88</xref>
Recent reports have demonstrated an association between bronchus-associated lymphoid tissue and lymphangiogenesis.
<xref rid="b43-ccrpm-suppl.1-2015-111" ref-type="bibr">43</xref>
Lymphangiogenesis also has the potential to contribute to the immune response in IIPs. Although animal models are needed to clarify the general roles and define new functions of the lymphatic system in fibrogenesis, they might be inadequate for determining the localized roles of lymphangiogenesis in these heterogeneous and complex fibrotic diseases in humans. In the future, the development of useful methods for regionally investigating the function of lymphatic vessels might help to achieve a better understanding of the various roles of lymphangiogenesis in IIPs. Schematic images regarding the possible roles of lymphangiogenesis in IIPs are shown in
<xref ref-type="fig" rid="f3-ccrpm-suppl.1-2015-111">Figure 3</xref>
.</p>
</sec>
</sec>
<sec>
<title>Lymphangiogenesis in Granulomatous Lung Diseases</title>
<sec>
<title>Sarcoidosis</title>
<p>Sarcoidosis is a systemic granulomatous disorder of unknown etiology involving multiple organs. Inhalation of some kind of airborne antigens has been assumed to be the cause for this disease because >90% of the studied sarcoidosis cases have been found to involve the lungs with presentation of small, reticular, nodular shadows or bilateral hilar lymphadenopathy in chest radiographs.
<xref rid="b89-ccrpm-suppl.1-2015-111" ref-type="bibr">89</xref>
Noncaseating sarcoid granulomas are an organized collection of macrophages and epithelioid cells and are frequently covered by a ring of fibrosis. Particularly in the lungs, sarcoid granulomas are usually distributed along lymphogenous routes such as the alveolar septa and the bronchovascular bundle, in which existing lymphatic vessels are generally located.
<xref rid="b89-ccrpm-suppl.1-2015-111" ref-type="bibr">89</xref>
,
<xref rid="b90-ccrpm-suppl.1-2015-111" ref-type="bibr">90</xref>
</p>
<p>Two studies have reported findings on lymphangiogen-esis in patients with sarcoidosis.
<xref rid="b79-ccrpm-suppl.1-2015-111" ref-type="bibr">79</xref>
,
<xref rid="b91-ccrpm-suppl.1-2015-111" ref-type="bibr">91</xref>
Kambouchner et al.
<xref rid="b91-ccrpm-suppl.1-2015-111" ref-type="bibr">91</xref>
reported the important information that lymphatic vessels were observed in approximately 68% of intralobular sarcoid granulomas in lung specimens obtained from patients with pulmonary sarcoidosis, implying that sarcoid granulomas were more strongly associated with lymphatic vessels than with blood vessels. In our study, consequently, the serum and BALF concentrations of VEGF-A and VEGF-C were significantly increased in patients with pulmonary sarcoidosis relative to those of healthy controls and patients with IPF/UIP.
<xref rid="b79-ccrpm-suppl.1-2015-111" ref-type="bibr">79</xref>
The results of immunohistochemical analyses demonstrated that VEGF-A and -C were expressed in sarcoid granulomas. Immunostaining with anti-podoplanin antibody for the detection of lymphatic vasculatures showed the presence of usual lymphatics and atypical tubular structures around sarcoid granulomas. Atypical tubular structures were characterized by a thin membrane, with weak expression of podoplanin and a membrane deficit in a part of the borderline. The structures were observed in ~58.6% of 193 granulomas, whereas usual lymphatic vessels were limited in 15.6% of those granulomas. A portion of the tubular structures was connected to CD73
<sup>+</sup>
afferent lymphatic vessels.
<xref rid="b79-ccrpm-suppl.1-2015-111" ref-type="bibr">79</xref>
Two types of cells were observed within the lumens of atypical tubular structures: one type with positivity for S100 protein, a pan DC marker, and the other type with positivity for CD1a, a marker of a subset of myeloid DCs. It was speculated that atypical tubular structures are involved in the trafficking of antigen-presenting cells and the antigen itself into regional lymph nodes through a connection to the usual lymphatic vessels.</p>
</sec>
</sec>
<sec>
<title>Lymphangiogenesis in Airway Lung Diseases</title>
<sec>
<title>Bronchial asthma</title>
<p>Asthma is a chronic inflammatory disease of the airways that occasionally presents as a life-threatening condition. Ebina
<xref rid="b92-ccrpm-suppl.1-2015-111" ref-type="bibr">92</xref>
characterized the lymphatic vessels in airway walls using specimens obtained from autopsied patients with fatal asthma. The distribution of lymphatic vessels, as estimated by the area density, was decreased in the airway walls consisting of muscle bundles and fibroconnective tissues. They speculated that the augmentation of these tissues in airway walls disrupts lymphatic vessels, resulting in the impairment of airway clearance and the acceleration of mucosal edema. Thus, the dysfunction of lymphatics causes the refractory status of these patients. However, patients with near-fatal asthma often fall into generalized dehydration.
<xref rid="b93-ccrpm-suppl.1-2015-111" ref-type="bibr">93</xref>
The possibility that the decreased area density of lymphatic vessels in fatal asthma is a result of generalized dehydration was not excluded.</p>
</sec>
<sec>
<title>Chronic obstructive pulmonary disease</title>
<p>Chronic obstructive pulmonary disease (COPD) is a chronic, inflammatory lung disease with high mortality and morbidity.
<xref rid="b94-ccrpm-suppl.1-2015-111" ref-type="bibr">94</xref>
Long-term smoke exposure is the primary cause for developing COPD. Several reports are available regarding COPD and lymphangiogenesis.
<xref rid="b46-ccrpm-suppl.1-2015-111" ref-type="bibr">46</xref>
,
<xref rid="b95-ccrpm-suppl.1-2015-111" ref-type="bibr">95</xref>
Mori et al rigorously reported the characteristics of lymphangiogenesis in COPD. In their report, the severe stages of COPD were associated with increases in the standardized lengths and number densities of alveolar lymphatic vessels.
<xref rid="b46-ccrpm-suppl.1-2015-111" ref-type="bibr">46</xref>
Increased numbers of CCL21
<sup>+</sup>
and D6
<sup>+</sup>
lymphatics were observed in the alveolar parenchyma of subjects with advanced COPD compared with those in controls. It was hypothesized that lymphangiogenesis was involved in the trafficking of distal lung immune cells in advanced COPD. It would be interesting to know how this increase in the number of lymphatic vessels in the advanced stages of COPD is linked to the comorbidity caused by this condition. It was noted that the anti-D6 antibody used in this study might be a useful marker for immunohistochemically evaluating the function of lymphatic vessels in human lungs. Shiels et al.
<xref rid="b96-ccrpm-suppl.1-2015-111" ref-type="bibr">96</xref>
reported that the serum levels of soluble VEGFR-3 (sVEGFR-3) in current and past smokers were significantly increased relative to the levels detected in those who have never smoked, although the pathogenic relevance of this finding has been unclear.</p>
</sec>
<sec>
<title>Experimental obliterative bronchiolitis</title>
<p>Obliterative bronchiolitis (OB) is the pulmonary manifestation of chronic transplant rejection and remains the leading cause of morbidity and mortality after lung transplantation.
<xref rid="b97-ccrpm-suppl.1-2015-111" ref-type="bibr">97</xref>
,
<xref rid="b98-ccrpm-suppl.1-2015-111" ref-type="bibr">98</xref>
Krebs et al.
<xref rid="b26-ccrpm-suppl.1-2015-111" ref-type="bibr">26</xref>
reported a role for lymphangiogenesis during the development of experimental OB in rat tracheal allografts. Adenovirus vectors were used in this study to overexpress and inhibit VEGF-C. VEGF-C overexpression in tracheal allografts induced intense inflammation followed by enhanced lymphangiogenesis and the development of OB. In contrast, the inhibition of VEGF-C activity inhibited lymphangiogenesis and reduced the infiltration of CD4
<sup>+</sup>
T-cells and the development of OB. Lymphangiogenesis was linked to T-cell responses during the development of OB, and VEGF-C/VEGFR-3 signaling modulated innate and adaptive immune responses in the development of OB in this model, consistent with the previous reports related to transplantation.
<xref rid="b25-ccrpm-suppl.1-2015-111" ref-type="bibr">25</xref>
</p>
</sec>
<sec>
<title>Animal infectious models</title>
<p>Several reports are available regarding airway infection and lymphangiogenesis in mouse models, although there is limited information on this topic in humans. Baluk et al studied the roles of lymphangiogenesis in the airways using mouse models of chronic respiratory tract infection with
<italic>Mycoplasma pulmonis</italic>
by adenoviral transduction of airway epithelium with sVEGFR-3. Lymphangiogenesis robustly occurred in the infected airways. Inhibition of VEGFR-3 signaling by the intravenous adenovirus delivery of sVEGFR-3 completely prevented the growth of lymphatic vessels as estimated using anti-LYVE-1 and anti-VEGFR-3 antibodies. Lack of lymphatic growth exaggerated mucosal edema and reduced the hypertrophy of draining lymph nodes.
<xref rid="b27-ccrpm-suppl.1-2015-111" ref-type="bibr">27</xref>
It was noted that after antibiotic treatment of the infection, the inflammation and remodeling of blood vessels quickly subsided, but those of lymphatic vessels persisted. Xu et al.
<xref rid="b99-ccrpm-suppl.1-2015-111" ref-type="bibr">99</xref>
reported protective roles of cathepsin L in reducing severity in acute and chronic airway infection models and its involvement in active lymphangiogenesis.</p>
<p>On the other hand, Nihei et al.
<xref rid="b56-ccrpm-suppl.1-2015-111" ref-type="bibr">56</xref>
reported a relationship between lymphangiogenesis and worsened inflammation in aspiration pneumonia models. In their model, food suspended in phosphate-buffered saline that was adjusted to low pH (pH 1.6) using pepsin was given together with lipopolysaccharide as an intranasal challenge daily 5 days a week, for a maximum of 28 days. Lung inflammation and active lymphangiogenesis were increasingly observed during the 28-day challenge period. The administration of inhibitors of lymphangiogenesis including axitinib and SAR131675 decreased the lymphatic area density, as estimated by anti-VEGFR-3 antibody in lungs, and improved oxygenation in an aspiration pneumonia model relative to that of controls. It was speculated that increased lymphangiogenesis worsened the inflammation in this model. The results appear to be inconsistent with those provided by the previous two reports in terms of the causal relationship between lymphangiogenesis and inflammation, which remains to be fully elucidated.</p>
</sec>
</sec>
<sec>
<title>Conclusion</title>
<p>Lymphangiogenesis plays various roles in lung diseases, including interstitial fluid drainage, absorption of small molecules, clearance of inflammatory cells, and trafficking of antigen-presenting cells into regional lymph nodes in immune responses. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. In the future, it is expected that new assessment tools, potentially including staining for CCL21 and D6, can help to define the localized functions of lymphatic vessels. In addition, research on lymphangiogenesis in IIPs might allow the heterogeneity of these complicated diseases to be better understood in terms of the regional functions of lymphatic vessels.</p>
</sec>
</body>
<back>
<fn-group>
<fn id="fn1-ccrpm-suppl.1-2015-111">
<p>
<bold>ACADEMIC EDITOR:</bold>
Hussein D. Foda, Editor in Chief</p>
</fn>
<fn id="fn2-ccrpm-suppl.1-2015-111">
<p>
<bold>PEER REVIEW:</bold>
Five peer reviewers contributed to the peer review report. Reviewers’ reports totaled 975 words, excluding any confidential comments to the academic editor.</p>
</fn>
<fn id="fn3-ccrpm-suppl.1-2015-111">
<p>
<bold>FUNDING:</bold>
Author discloses no external funding sources.</p>
</fn>
<fn id="fn4-ccrpm-suppl.1-2015-111">
<p>
<bold>COMPETING INTERESTS:</bold>
Author discloses no potential conflicts of interest.</p>
</fn>
<fn id="fn5-ccrpm-suppl.1-2015-111">
<p>Paper subject to independent expert blind peer review. All editorial decisions made by independent academic editor. Upon submission manuscript was subject to anti-plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and legal requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating to human and animal study participants, and compliance with any copyright requirements of third parties. This journal is a member of the Committee on Publication Ethics (COPE).</p>
</fn>
<fn id="fn6-ccrpm-suppl.1-2015-111">
<p>
<bold>Author Contributions</bold>
</p>
<p>Conceived the concepts: MY. Analyzed the data: MY. Wrote the first draft of the manuscript: MY. Contributed to the writing of the manuscript: MY. Agree with manuscript results and conclusions: MY. Developed the structure and arguments for the paper: MY. Made critical revisions and approved final version: MY. The author reviewed and approved of the final manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="b1-ccrpm-suppl.1-2015-111">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>American Thoracic Society</collab>
</person-group>
<article-title>European Respiratory Society. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2002</year>
<volume>165</volume>
<issue>2</issue>
<fpage>277</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">11790668</pub-id>
</element-citation>
</ref>
<ref id="b2-ccrpm-suppl.1-2015-111">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cushley</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Davison</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>du Bois</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The diagnosis, assessment and treatment of diffuse parenchymal lung disease in adults</article-title>
<source>Thorax</source>
<year>1999</year>
<volume>54</volume>
<fpage>S1</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">11006787</pub-id>
</element-citation>
</ref>
<ref id="b3-ccrpm-suppl.1-2015-111">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Travis</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>JE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Idiopathic nonspecific interstitial pneumonia: prognostic significance of cellular and fibrosing patterns. Survival comparison with usual interstitial pneumonia and desquamative interstitial pneumonia</article-title>
<source>Am J Surg Pathol</source>
<year>2000</year>
<volume>24</volume>
<fpage>19</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">10632484</pub-id>
</element-citation>
</ref>
<ref id="b4-ccrpm-suppl.1-2015-111">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katzenstein</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification</article-title>
<source>Am J Respir Crit Care Med</source>
<year>1998</year>
<volume>157</volume>
<fpage>1301</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">9563754</pub-id>
</element-citation>
</ref>
<ref id="b5-ccrpm-suppl.1-2015-111">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Basset</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ferrans</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Soler</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intraluminal fibrosis in interstitial lung disorders</article-title>
<source>Am J Pathol</source>
<year>1986</year>
<volume>122</volume>
<fpage>443</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="pmid">3953768</pub-id>
</element-citation>
</ref>
<ref id="b6-ccrpm-suppl.1-2015-111">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katzenstein</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Prophet</surname>
<given-names>WD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bronchiolitis obliterans and usual interstitial pneumonia. A comparative clinicopathologic study</article-title>
<source>Am J Surg Pathol</source>
<year>1986</year>
<volume>10</volume>
<fpage>373</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">3717494</pub-id>
</element-citation>
</ref>
<ref id="b7-ccrpm-suppl.1-2015-111">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Myers</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Katzenstein</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia</article-title>
<source>Chest</source>
<year>1988</year>
<volume>94</volume>
<fpage>1309</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">3191777</pub-id>
</element-citation>
</ref>
<ref id="b8-ccrpm-suppl.1-2015-111">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuhn</surname>
<given-names>C</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Boldt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>King</surname>
<given-names>TE</given-names>
<suffix>Jr</suffix>
</name>
<etal></etal>
</person-group>
<article-title>An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis</article-title>
<source>Am Rev Respir Dis</source>
<year>1989</year>
<volume>140</volume>
<fpage>1693</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="pmid">2604297</pub-id>
</element-citation>
</ref>
<ref id="b9-ccrpm-suppl.1-2015-111">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuhn</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis</article-title>
<source>Am J Pathol</source>
<year>1991</year>
<volume>138</volume>
<fpage>1257</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">2024710</pub-id>
</element-citation>
</ref>
<ref id="b10-ccrpm-suppl.1-2015-111">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>King</surname>
<given-names>TE</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Schwarz</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2001</year>
<volume>164</volume>
<fpage>1025</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">11587991</pub-id>
</element-citation>
</ref>
<ref id="b11-ccrpm-suppl.1-2015-111">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholson</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Fulford</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Colby</surname>
<given-names>TV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2002</year>
<volume>166</volume>
<fpage>173</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">12119229</pub-id>
</element-citation>
</ref>
<ref id="b12-ccrpm-suppl.1-2015-111">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The lymphatic vasculature in disease</article-title>
<source>Nat Med</source>
<year>2011</year>
<volume>17</volume>
<fpage>1371</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">22064427</pub-id>
</element-citation>
</ref>
<ref id="b13-ccrpm-suppl.1-2015-111">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karpanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Lymphatic vessels as targets of tumor therapy?</article-title>
<source>J Exp Med</source>
<year>2001</year>
<volume>194</volume>
<fpage>F37</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">11561002</pub-id>
</element-citation>
</ref>
<ref id="b14-ccrpm-suppl.1-2015-111">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kataru</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>GY</given-names>
</name>
</person-group>
<article-title>Regulation and implications of inflammatory lymphangiogenesis</article-title>
<source>Trends Immunol</source>
<year>2012</year>
<volume>33</volume>
<fpage>350</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">22579522</pub-id>
</element-citation>
</ref>
<ref id="b15-ccrpm-suppl.1-2015-111">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaipainen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Joukov</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hyperplasia of lymphatic vessels in VEGF-C transgenic mice</article-title>
<source>Science</source>
<year>1997</year>
<volume>276</volume>
<fpage>1423</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">9162011</pub-id>
</element-citation>
</ref>
<ref id="b16-ccrpm-suppl.1-2015-111">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Haiko</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sainio</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins</article-title>
<source>Nat Immunol</source>
<year>2004</year>
<volume>5</volume>
<fpage>74</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">14634646</pub-id>
</element-citation>
</ref>
<ref id="b17-ccrpm-suppl.1-2015-111">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kukk</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4)</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>548</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">9435229</pub-id>
</element-citation>
</ref>
<ref id="b18-ccrpm-suppl.1-2015-111">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veikkola</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice</article-title>
<source>EMBO J</source>
<year>2001</year>
<volume>20</volume>
<fpage>1223</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">11250889</pub-id>
</element-citation>
</ref>
<ref id="b19-ccrpm-suppl.1-2015-111">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>EL</given-names>
</name>
</person-group>
<article-title>Observations on the new growth of lymphatic vessels as seen in transparent chambers introduced into the rabbit’s ear</article-title>
<source>Am J Anat</source>
<year>1932</year>
<volume>51</volume>
<fpage>43</fpage>
<lpage>87</lpage>
</element-citation>
</ref>
<ref id="b20-ccrpm-suppl.1-2015-111">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oden</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A micro-lymphangiographic study of experimental wounds by second intention</article-title>
<source>Acta Chir Scand</source>
<year>1960</year>
<volume>120</volume>
<fpage>100</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">13730277</pub-id>
</element-citation>
</ref>
<ref id="b21-ccrpm-suppl.1-2015-111">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paavonen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Puolakkainen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing</article-title>
<source>Am J Pathol</source>
<year>2000</year>
<volume>156</volume>
<fpage>1499</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="pmid">10793061</pub-id>
</element-citation>
</ref>
<ref id="b22-ccrpm-suppl.1-2015-111">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Carmeliet</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of lymphangiogenesis in health and disease</article-title>
<source>Cancer Cell</source>
<year>2002</year>
<volume>1</volume>
<fpage>219</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">12086857</pub-id>
</element-citation>
</ref>
<ref id="b23-ccrpm-suppl.1-2015-111">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nykänen</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Sandelin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts</article-title>
<source>Circulation</source>
<year>2010</year>
<volume>121</volume>
<fpage>1413</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">20231530</pub-id>
</element-citation>
</ref>
<ref id="b24-ccrpm-suppl.1-2015-111">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Huttary</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Raab</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants</article-title>
<source>Nat Med</source>
<year>2006</year>
<volume>12</volume>
<fpage>230</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">16415878</pub-id>
</element-citation>
</ref>
<ref id="b25-ccrpm-suppl.1-2015-111">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hamrah</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cursiefen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity</article-title>
<source>Nat Med</source>
<year>2004</year>
<volume>10</volume>
<fpage>813</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">15235599</pub-id>
</element-citation>
</ref>
<ref id="b26-ccrpm-suppl.1-2015-111">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krebs</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tikkanen</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ropponen</surname>
<given-names>JO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis</article-title>
<source>Am J Pathol</source>
<year>2012</year>
<volume>181</volume>
<fpage>1607</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">22959907</pub-id>
</element-citation>
</ref>
<ref id="b27-ccrpm-suppl.1-2015-111">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baluk</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ator</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation</article-title>
<source>J Clin Invest</source>
<year>2005</year>
<volume>115</volume>
<fpage>247</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">15668734</pub-id>
</element-citation>
</ref>
<ref id="b28-ccrpm-suppl.1-2015-111">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huggenberger</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Brander</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An important role of lymphatic vessel activation in limiting acute inflammation</article-title>
<source>Blood</source>
<year>2011</year>
<volume>117</volume>
<fpage>4667</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">21364190</pub-id>
</element-citation>
</ref>
<ref id="b29-ccrpm-suppl.1-2015-111">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Iwama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Date</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of lymphangiogenesis in various stages of idiopathic diffuse alveolar damage</article-title>
<source>Hum Pathol</source>
<year>2009</year>
<volume>40</volume>
<fpage>542</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">19121841</pub-id>
</element-citation>
</ref>
<ref id="b30-ccrpm-suppl.1-2015-111">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrell</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Levinson</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Esman</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hereditary lymphedema: evidence for linkage and genetic heterogeneity</article-title>
<source>Hum Mol Genet</source>
<year>1998</year>
<volume>7</volume>
<fpage>2073</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">9817924</pub-id>
</element-citation>
</ref>
<ref id="b31-ccrpm-suppl.1-2015-111">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Witte</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bernas</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phenotypic and genotypic heterogeneity in familial Milroy lymphedema</article-title>
<source>Lymphology</source>
<year>1998</year>
<volume>31</volume>
<fpage>145</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">9949386</pub-id>
</element-citation>
</ref>
<ref id="b32-ccrpm-suppl.1-2015-111">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Ferrell</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>EC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema</article-title>
<source>Nat Genet</source>
<year>2000</year>
<volume>25</volume>
<fpage>153</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">10835628</pub-id>
</element-citation>
</ref>
<ref id="b33-ccrpm-suppl.1-2015-111">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3</article-title>
<source>Nat Med</source>
<year>2001</year>
<volume>7</volume>
<fpage>199</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="pmid">11175851</pub-id>
</element-citation>
</ref>
<ref id="b34-ccrpm-suppl.1-2015-111">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von der Weid</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Rehal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferraz</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Role of the lymphatic system in the pathogenesis of Crohn’s disease</article-title>
<source>Curr Opin Gastroenterol</source>
<year>2011</year>
<volume>27</volume>
<fpage>335</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">21543977</pub-id>
</element-citation>
</ref>
<ref id="b35-ccrpm-suppl.1-2015-111">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schraufnagel</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Lung lymphatics: why should a clinician care?</article-title>
<source>Ann Am Thorac Soc</source>
<year>2013</year>
<volume>10</volume>
<fpage>148</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">23607845</pub-id>
</element-citation>
</ref>
<ref id="b36-ccrpm-suppl.1-2015-111">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breiteneder-Geleff</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Soleiman</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis</article-title>
<source>Am J Pathol</source>
<year>1997</year>
<volume>151</volume>
<fpage>1141</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">9327748</pub-id>
</element-citation>
</ref>
<ref id="b37-ccrpm-suppl.1-2015-111">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki-Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells</article-title>
<source>J Biol Chem</source>
<year>2007</year>
<volume>282</volume>
<fpage>25993</fpage>
<lpage>6001</lpage>
<pub-id pub-id-type="pmid">17616532</pub-id>
</element-citation>
</ref>
<ref id="b38-ccrpm-suppl.1-2015-111">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barth</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bläsche</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kasper</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>T1alpha/podoplanin shows raft-associated distribution in mouse lung alveolar epithelial E10 cells</article-title>
<source>Cell Physiol Biochem</source>
<year>2010</year>
<volume>25</volume>
<fpage>103</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">20054149</pub-id>
</element-citation>
</ref>
<ref id="b39-ccrpm-suppl.1-2015-111">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ordóñez</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma</article-title>
<source>Hum Pathol</source>
<year>2005</year>
<volume>36</volume>
<fpage>372</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">15891998</pub-id>
</element-citation>
</ref>
<ref id="b40-ccrpm-suppl.1-2015-111">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Franke</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>D2-40: a reliable marker in the diagnosis of pleural mesothelioma</article-title>
<source>Pathobiology</source>
<year>2006</year>
<volume>73</volume>
<fpage>50</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">16785767</pub-id>
</element-citation>
</ref>
<ref id="b41-ccrpm-suppl.1-2015-111">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawase</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma</article-title>
<source>Int J Cancer</source>
<year>2008</year>
<volume>123</volume>
<fpage>1053</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18546264</pub-id>
</element-citation>
</ref>
<ref id="b42-ccrpm-suppl.1-2015-111">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Navarro-Núñez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Langan</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Nash</surname>
<given-names>GB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The physiological and pathophysiological roles of platelet CLEC-2</article-title>
<source>Thromb Haemost</source>
<year>2013</year>
<volume>109</volume>
<fpage>991</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">23572154</pub-id>
</element-citation>
</ref>
<ref id="b43-ccrpm-suppl.1-2015-111">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baluk</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation</article-title>
<source>Am J Pathol</source>
<year>2014</year>
<volume>184</volume>
<fpage>1577</fpage>
<lpage>1592</lpage>
<pub-id pub-id-type="pmid">24631179</pub-id>
</element-citation>
</ref>
<ref id="b44-ccrpm-suppl.1-2015-111">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Lymphatic neoangiogenesis in renal transplants: a driving force of chronic rejection?</article-title>
<source>J Nephrol</source>
<year>2006</year>
<volume>19</volume>
<fpage>403</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">17048196</pub-id>
</element-citation>
</ref>
<ref id="b45-ccrpm-suppl.1-2015-111">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Iwama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Date</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Macrophages participate in lymphangio-genesis in idiopathic diffuse alveolar damage through CCL19-CCR7 signal</article-title>
<source>Hum Pathol</source>
<year>2009</year>
<volume>40</volume>
<fpage>1553</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">19540558</pub-id>
</element-citation>
</ref>
<ref id="b46-ccrpm-suppl.1-2015-111">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mori</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD</article-title>
<source>Respir Res</source>
<year>2013</year>
<volume>14</volume>
<fpage>65</fpage>
<pub-id pub-id-type="pmid">23758732</pub-id>
</element-citation>
</ref>
<ref id="b47-ccrpm-suppl.1-2015-111">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banerji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ni</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>SX</given-names>
</name>
<etal></etal>
</person-group>
<article-title>LYVE-1, a new homologue of the CD44 glycopro-tein, is a lymph-specific receptor for hyaluronan</article-title>
<source>J Cell Biol</source>
<year>1999</year>
<volume>144</volume>
<fpage>789</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="pmid">10037799</pub-id>
</element-citation>
</ref>
<ref id="b48-ccrpm-suppl.1-2015-111">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e92857</fpage>
<pub-id pub-id-type="pmid">24667755</pub-id>
</element-citation>
</ref>
<ref id="b49-ccrpm-suppl.1-2015-111">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>BlooPlatonova</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Miquel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Regenfuss</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1</article-title>
<source>Blood</source>
<year>2013</year>
<volume>121</volume>
<fpage>1229</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="pmid">23264596</pub-id>
</element-citation>
</ref>
<ref id="b50-ccrpm-suppl.1-2015-111">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Prevo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Clasper</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1</article-title>
<source>J Biol Chem</source>
<year>2007</year>
<volume>282</volume>
<fpage>33671</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">17884820</pub-id>
</element-citation>
</ref>
<ref id="b51-ccrpm-suppl.1-2015-111">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>NW</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>NL</given-names>
</name>
</person-group>
<article-title>Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels</article-title>
<source>Dev Dyn</source>
<year>2008</year>
<volume>237</volume>
<fpage>1901</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18570254</pub-id>
</element-citation>
</ref>
<ref id="b52-ccrpm-suppl.1-2015-111">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maruyama</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ii</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cursiefen</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages</article-title>
<source>J Clin Invest</source>
<year>2005</year>
<volume>115</volume>
<issue>9</issue>
<fpage>2363</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">16138190</pub-id>
</element-citation>
</ref>
<ref id="b53-ccrpm-suppl.1-2015-111">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schroedl</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Brehmer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Neuhuber</surname>
<given-names>WL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages</article-title>
<source>Invest Ophthalmol Vis Sci</source>
<year>2008</year>
<volume>49</volume>
<fpage>5222</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18689706</pub-id>
</element-citation>
</ref>
<ref id="b54-ccrpm-suppl.1-2015-111">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tammela</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Enholm</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The biology of vascular endothelial growth factors</article-title>
<source>Cardiovasc Res</source>
<year>2005</year>
<volume>65</volume>
<fpage>550</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">15664381</pub-id>
</element-citation>
</ref>
<ref id="b55-ccrpm-suppl.1-2015-111">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karpanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Molecular biology and pathology of lymphangiogenesis</article-title>
<source>Annu Rev Pathol</source>
<year>2008</year>
<volume>3</volume>
<fpage>367</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">18039141</pub-id>
</element-citation>
</ref>
<ref id="b56-ccrpm-suppl.1-2015-111">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nihei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Okazaki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ebihara</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chronic inflammation, lymphangio-genesis, and effect of an anti-VEGFR therapy in a mouse model and in human patients with aspiration pneumonia</article-title>
<source>J Pathol</source>
<year>2015</year>
<volume>235</volume>
<fpage>632</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">25348279</pub-id>
</element-citation>
</ref>
<ref id="b57-ccrpm-suppl.1-2015-111">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Procino</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Overexpression of Prox-1 gene in omental adipose tissue and adi-pocytes compared with subcutaneous adipose tissue and adipocytes in healthy patients</article-title>
<source>Cell Biol Int</source>
<year>2014</year>
<volume>38</volume>
<fpage>888</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">24604595</pub-id>
</element-citation>
</ref>
<ref id="b58-ccrpm-suppl.1-2015-111">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandt</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Jessberger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Steiner</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neuro-genesis of mice</article-title>
<source>Mol Cell Neurosci</source>
<year>2003</year>
<volume>24</volume>
<fpage>603</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">14664811</pub-id>
</element-citation>
</ref>
<ref id="b59-ccrpm-suppl.1-2015-111">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>El-Chemaly</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Malide</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zudaire</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>3958</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">19237567</pub-id>
</element-citation>
</ref>
<ref id="b60-ccrpm-suppl.1-2015-111">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kambouchner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bernaudin</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Intralobular pulmonary lymphatic distribution in normal human lung using D2-40 antipodoplanin immunostaining</article-title>
<source>J Histochem Cytochem</source>
<year>2009</year>
<volume>57</volume>
<fpage>643</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">19289553</pub-id>
</element-citation>
</ref>
<ref id="b61-ccrpm-suppl.1-2015-111">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sozio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Morphometric analysis of intralobular, interlob-ular and pleural lymphatics in normal human lung</article-title>
<source>J Anat</source>
<year>2012</year>
<volume>220</volume>
<fpage>396</fpage>
<lpage>404</lpage>
<pub-id pub-id-type="pmid">22283705</pub-id>
</element-citation>
</ref>
<ref id="b62-ccrpm-suppl.1-2015-111">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ebina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The disappearance of subpleural and interlobular lymphatics in idiopathic pulmonary fibrosis</article-title>
<source>Lymphat Res Biol</source>
<year>2010</year>
<volume>8</volume>
<fpage>199</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="pmid">21190492</pub-id>
</element-citation>
</ref>
<ref id="b63-ccrpm-suppl.1-2015-111">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kretschmer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dethlefsen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hagner-Benes</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e55201</fpage>
<pub-id pub-id-type="pmid">23408960</pub-id>
</element-citation>
</ref>
<ref id="b64-ccrpm-suppl.1-2015-111">
<label>64</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Travis</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Colby</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Koss</surname>
<given-names>MN</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Non-neoplastic disorders of the lower respiratory tract</article-title>
<person-group person-group-type="editor">
<name>
<surname>West King</surname>
<given-names>D</given-names>
</name>
</person-group>
<source>Atlas of Non-Tumor Pathology</source>
<publisher-loc>Washington, DC</publisher-loc>
<publisher-name>American Registry of Pathology and Armed Forces Institute of Pathology</publisher-name>
<year>2002</year>
<fpage>89</fpage>
<lpage>106</lpage>
</element-citation>
</ref>
<ref id="b65-ccrpm-suppl.1-2015-111">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mandal</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Mark</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Kradin</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Organizing pneumonia and pulmonary lymphatic architecture in diffuse alveolar damage</article-title>
<source>Hum Pathol</source>
<year>2008</year>
<volume>39</volume>
<fpage>1234</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">18602671</pub-id>
</element-citation>
</ref>
<ref id="b66-ccrpm-suppl.1-2015-111">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanak</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>de Carvalho</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Profusion of fibroblast foci in patients with idiopathic pulmonary fibrosis does not predict outcome</article-title>
<source>Respir Med</source>
<year>2008</year>
<volume>102</volume>
<fpage>852</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">18314323</pub-id>
</element-citation>
</ref>
<ref id="b67-ccrpm-suppl.1-2015-111">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katzenstein</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Fiorelli</surname>
<given-names>RF</given-names>
</name>
</person-group>
<article-title>Nonspecific interstitial pneumonia/fibrosis. Histo-logic features and clinical significance</article-title>
<source>Am J Surg Pathol</source>
<year>1994</year>
<volume>18</volume>
<fpage>136</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">8291652</pub-id>
</element-citation>
</ref>
<ref id="b68-ccrpm-suppl.1-2015-111">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamauchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chiba</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The definition of fibrogenic processes in fibroblastic foci of idiopathic pulmonary fibrosis based on morphometric quantification of extracellular matrices</article-title>
<source>Hum Pathol</source>
<year>2009</year>
<volume>40</volume>
<fpage>1278</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">19386353</pub-id>
</element-citation>
</ref>
<ref id="b69-ccrpm-suppl.1-2015-111">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parra</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Araujo</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Lombardi</surname>
<given-names>JG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic fluctuation in the paren-chymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis</article-title>
<source>Braz J Med Biol Res</source>
<year>2012</year>
<volume>45</volume>
<fpage>466</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="pmid">22488224</pub-id>
</element-citation>
</ref>
<ref id="b70-ccrpm-suppl.1-2015-111">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lara</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Cosgrove</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>WJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased lymphatic vessel length is associated with the fibroblast reticulum and disease severity in usual interstitial pneumonia and nonspecific interstitial pneumonia</article-title>
<source>Chest</source>
<year>2012</year>
<volume>142</volume>
<fpage>1569</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">22797508</pub-id>
</element-citation>
</ref>
<ref id="b71-ccrpm-suppl.1-2015-111">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pierce</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Carpenter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jakubzick</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Idiopathic pulmonary fibrosis fibroblasts migrate and proliferate to CC chemokine ligand 21</article-title>
<source>Eur Respir J</source>
<year>2007</year>
<volume>29</volume>
<fpage>1082</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">17331965</pub-id>
</element-citation>
</ref>
<ref id="b72-ccrpm-suppl.1-2015-111">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pierce</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Carpenter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jakubzick</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice</article-title>
<source>Am J Pathol</source>
<year>2007</year>
<volume>170</volume>
<fpage>1152</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="pmid">17392156</pub-id>
</element-citation>
</ref>
<ref id="b73-ccrpm-suppl.1-2015-111">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Epler</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Colby</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>McLoud</surname>
<given-names>TC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bronchiolitis obliterans organizing pneumonia</article-title>
<source>N Engl J Med</source>
<year>1985</year>
<volume>312</volume>
<fpage>152</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">3965933</pub-id>
</element-citation>
</ref>
<ref id="b74-ccrpm-suppl.1-2015-111">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serra</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Eberhard</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Martín</surname>
<given-names>AP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Secondary lymphoid tissue chemokine (CCL21) is upregulated in allergic contact dermatitis</article-title>
<source>Int Arch Allergy Immunol</source>
<year>2004</year>
<volume>133</volume>
<fpage>64</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">14726633</pub-id>
</element-citation>
</ref>
<ref id="b75-ccrpm-suppl.1-2015-111">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Regele</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Moosberger</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates</article-title>
<source>J Am Soc Nephrol</source>
<year>2004</year>
<volume>15</volume>
<fpage>603</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">14978162</pub-id>
</element-citation>
</ref>
<ref id="b76-ccrpm-suppl.1-2015-111">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mouri</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Niisato</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterogeneous characteristics of lymphatic microvasculatures associated with pulmonary sarcoid granulomas</article-title>
<source>Ann Am Thorac Soc</source>
<year>2013</year>
<volume>10</volume>
<fpage>90</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23607836</pub-id>
</element-citation>
</ref>
<ref id="b77-ccrpm-suppl.1-2015-111">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janér</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lassus</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Haglund</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pulmonary vascular endothelial growth factor-C in development and lung injury in preterm infants</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2006</year>
<volume>174</volume>
<fpage>326</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">16690974</pub-id>
</element-citation>
</ref>
<ref id="b78-ccrpm-suppl.1-2015-111">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Vandyke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gulleman</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases</article-title>
<source>Chest</source>
<year>2010</year>
<volume>138</volume>
<fpage>674</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">20382711</pub-id>
</element-citation>
</ref>
<ref id="b79-ccrpm-suppl.1-2015-111">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serum VEGF-D a concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of the multicenter international lymphangioleiomyomatosis efficacy of sirolimus (MILES) trial</article-title>
<source>Lancet Respir Med</source>
<year>2013</year>
<volume>1</volume>
<fpage>445</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">24159565</pub-id>
</element-citation>
</ref>
<ref id="b80-ccrpm-suppl.1-2015-111">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glasgow</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>El-Chemaly</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Lymphatics in lymphangioleiomyomatosis and idiopathic pulmonary fibrosis</article-title>
<source>Eur Respir Rev</source>
<year>2012</year>
<volume>21</volume>
<fpage>196</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="pmid">22941884</pub-id>
</element-citation>
</ref>
<ref id="b81-ccrpm-suppl.1-2015-111">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teles-Grilo ML</surname>
<given-names>Leite-Almeida H</given-names>
</name>
<name>
<surname>J</surname>
<given-names>Martins dos Santos</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential expression of collagens type I and type IV in lymphangiogenesis during the angiogenic process associated with bleomycin-induced pulmonary fibrosis in rat</article-title>
<source>Lymphology</source>
<year>2005</year>
<volume>38</volume>
<fpage>130</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">16353490</pub-id>
</element-citation>
</ref>
<ref id="b82-ccrpm-suppl.1-2015-111">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meinecke</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Nagy</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lago</surname>
<given-names>GD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis</article-title>
<source>Blood</source>
<year>2012</year>
<volume>119</volume>
<fpage>5931</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">22547584</pub-id>
</element-citation>
</ref>
<ref id="b83-ccrpm-suppl.1-2015-111">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wilder</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rietz</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Radiation-induced impairment in lung lymphatic vasculature</article-title>
<source>Lymphat Res Biol</source>
<year>2014</year>
<volume>12</volume>
<fpage>238</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">25412238</pub-id>
</element-citation>
</ref>
<ref id="b84-ccrpm-suppl.1-2015-111">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ebina</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shimizukawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2004</year>
<volume>169</volume>
<fpage>1203</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">14754760</pub-id>
</element-citation>
</ref>
<ref id="b85-ccrpm-suppl.1-2015-111">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cosgrove</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Schiemann</surname>
<given-names>WP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pigment epithelium derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2004</year>
<volume>170</volume>
<fpage>242</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">15117744</pub-id>
</element-citation>
</ref>
<ref id="b86-ccrpm-suppl.1-2015-111">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Renzoni</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Salmon</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interstitial vascularity in fibrosing alveolitis</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2003</year>
<volume>167</volume>
<fpage>438</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">12406847</pub-id>
</element-citation>
</ref>
<ref id="b87-ccrpm-suppl.1-2015-111">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lappi-Blanco</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kaarteenaho-Wiik</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Soini</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia are highly capillarized</article-title>
<source>Hum Pathol</source>
<year>1999</year>
<volume>30</volume>
<fpage>1192</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">10534166</pub-id>
</element-citation>
</ref>
<ref id="b88-ccrpm-suppl.1-2015-111">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchal-Sommé</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Uzunhan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Marchand-Adam</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dendritic cells accumulate in human fibrotic interstitial lung disease</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2007</year>
<volume>176</volume>
<fpage>1007</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">17717200</pub-id>
</element-citation>
</ref>
<ref id="b89-ccrpm-suppl.1-2015-111">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iannuzzi</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Rybicki</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Teirstein</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Sarcoidosis</article-title>
<source>N Engl J Med</source>
<year>2007</year>
<volume>357</volume>
<fpage>2153</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">18032765</pub-id>
</element-citation>
</ref>
<ref id="b90-ccrpm-suppl.1-2015-111">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vuletin</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Pertschuk</surname>
<given-names>LP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sarcoidosis: from the pathologist’s vantage point</article-title>
<source>Pathol Annu</source>
<year>1979</year>
<volume>14</volume>
<fpage>405</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">229453</pub-id>
</element-citation>
</ref>
<ref id="b91-ccrpm-suppl.1-2015-111">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kambouchner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pirici</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Uhl</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphatic and blood microvasculature organisation in pulmonary sarcoid granulomas</article-title>
<source>Eur Respir J</source>
<year>2011</year>
<volume>37</volume>
<fpage>835</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">20650995</pub-id>
</element-citation>
</ref>
<ref id="b92-ccrpm-suppl.1-2015-111">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ebina</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Remodeling of airway walls in fatal asthmatics decreases lymphatic distribution; beyond thickening of airway smooth muscle layers</article-title>
<source>Allergol Int</source>
<year>2008</year>
<volume>57</volume>
<fpage>165</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">18349592</pub-id>
</element-citation>
</ref>
<ref id="b93-ccrpm-suppl.1-2015-111">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Potter</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>EG</given-names>
</name>
</person-group>
<article-title>Hydration in severe acute asthma</article-title>
<source>Arch Dis Child</source>
<year>1991</year>
<volume>66</volume>
<fpage>216</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">2001106</pub-id>
</element-citation>
</ref>
<ref id="b94-ccrpm-suppl.1-2015-111">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Celli</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Decramer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wedzicha</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An official American Thoracic Society/European Respiratory Society statement: research questions in chronic obstructive pulmonary disease</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2015</year>
<volume>191</volume>
<fpage>e4</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">25830527</pub-id>
</element-citation>
</ref>
<ref id="b95-ccrpm-suppl.1-2015-111">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardavella</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tzortzaki</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Siozopoulou</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lymphangiogenesis in COPD: another link in the pathogenesis of the disease</article-title>
<source>Respir Med</source>
<year>2012</year>
<volume>106</volume>
<fpage>687</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">22154125</pub-id>
</element-citation>
</ref>
<ref id="b96-ccrpm-suppl.1-2015-111">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiels</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Katki</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Freedman</surname>
<given-names>ND</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cigarette smoking and variations in systemic immune and inflammation markers</article-title>
<source>J Natl Cancer Inst</source>
<year>2014</year>
<volume>106</volume>
<fpage>dju294</fpage>
<pub-id pub-id-type="pmid">25274579</pub-id>
</element-citation>
</ref>
<ref id="b97-ccrpm-suppl.1-2015-111">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christie</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Kucheryavaya</surname>
<given-names>AY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report – 2010</article-title>
<source>J Heart Lung Transplant</source>
<year>2010</year>
<volume>29</volume>
<fpage>1104</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">20870165</pub-id>
</element-citation>
</ref>
<ref id="b98-ccrpm-suppl.1-2015-111">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stewart</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fishbein</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Snell</surname>
<given-names>GI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection</article-title>
<source>J Heart Lung Transplant</source>
<year>2007</year>
<volume>26</volume>
<fpage>1229</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">18096473</pub-id>
</element-citation>
</ref>
<ref id="b99-ccrpm-suppl.1-2015-111">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Greenland</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baluk</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cathepsin L protects mice from mycoplasmal infection and is essential for airway lymphangiogenesis</article-title>
<source>Am J Respir Cell Mol Biol</source>
<year>2013</year>
<volume>49</volume>
<fpage>437</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">23600672</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ccrpm-suppl.1-2015-111" position="float">
<label>Figure 1</label>
<caption>
<p>VEGFR-3
<sup>+</sup>
lymphatic vessels in a bleomycin-induced mouse model.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
and
<bold>B</bold>
) Serial sections of lung tissue. (
<bold>A</bold>
) Staining for type I collagen revealed fibrosis in the interstitium and intra-alveolar lesions. (
<bold>B</bold>
) Irregularly shaped and variously sized lymphatic vessels were identified by VEGFR-3 staining in the fibrotic lesions. Scale bar, 100 µm.</p>
</caption>
<graphic xlink:href="ccrpm-suppl.1-2015-111f1"></graphic>
</fig>
<fig id="f2-ccrpm-suppl.1-2015-111" position="float">
<label>Figure 2</label>
<caption>
<p>VEGFR-3
<sup>+</sup>
LYVE-1
<sup>+</sup>
lymphatic vessels and VEGFR-3
<sup></sup>
LYVE-1
<sup>+</sup>
blood vessels in a bleomycin-induced mouse model.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
) VEGFR-3 (
<italic>red</italic>
) was expressed in lymphatic vessels (arrows) but not blood vessels (arrowheads). (
<bold>B</bold>
) Lyve-1 (
<italic>green</italic>
) was detectable both in VEGFR-3
<sup>+</sup>
lymphatic vessels (arrows) and in VEGFR-3
<sup></sup>
blood vessels and capillaries (arrowheads). (
<bold>C</bold>
) Merged image. These results indicate that LYVE-1 has poor specificity as a detection marker for lymphatic vessels in bleomycin-induced pulmonary fibrosis lung model. All figures are previously unpublished data. Scale bar, 50 µm.</p>
</caption>
<graphic xlink:href="ccrpm-suppl.1-2015-111f2"></graphic>
</fig>
<fig id="f3-ccrpm-suppl.1-2015-111" position="float">
<label>Figure 3</label>
<caption>
<p>A schema explaining the possible roles of lymphangiogenesis in IIPs.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
) Increased capillary angiogenesis and less lymphangiogenesis are observed in the lesions with alveolitis and mild fibrosis. The imbalance between the two types of angiogenesis is involved in impaired drainage of interstitial fluid and small molecules. (
<bold>B</bold>
) Increased lymphangiogenesis is observed around lymphoid follicles. Increased expression of CCL21 in lymphatic endothelial cells around lymphoid follicles facilitates the trafficking of CCR7
<sup>+</sup>
antigen-presenting cells such as dendritic cells. (
<bold>C</bold>
) Increased lymphangiogenesis is observed in active fibrotic lesions. Increased expression of CCL21 in lymphatic endothelial cells in the lesions with active interstitial fibrosis facilitates the migration and the proliferation of CCR7
<sup>+</sup>
fibroblasts. (
<bold>D</bold>
) Less capillary angiogenesis and increased lymphangiogenesis are observed in the lesions with mature fibrosis. The imbalance between the two types of angiogenesis facilitates tissue remodeling via excessive drainage of interstitial fluid and small molecules.</p>
<p>
<bold>Abbreviations:</bold>
Bv, blood vessels; Ly, lymphatic vessels; DCs, dendritic cells; APC, antigen-presenting cells.</p>
</caption>
<graphic xlink:href="ccrpm-suppl.1-2015-111f3"></graphic>
</fig>
<table-wrap id="t1-ccrpm-suppl.1-2015-111" position="float">
<label>Table 1</label>
<caption>
<p>Lymphatic markers expressed in various types of cells in adult human and mouse lung tissues.</p>
</caption>
<table frame="box" rules="rows">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1"></th>
<th valign="top" align="left" rowspan="1" colspan="1">LYMPHATICS</th>
<th valign="top" align="left" rowspan="1" colspan="1">BLOOD VESSEL</th>
<th valign="top" align="left" rowspan="1" colspan="1">EPITHELIAL CELL</th>
<th valign="top" align="left" rowspan="1" colspan="1">FIBROBLAST</th>
<th valign="top" align="left" rowspan="1" colspan="1">MACROPHAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Podoplanin/D2-40</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">LYVE-1</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">VEGFR-3</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">PROX-1</td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">+</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t2-ccrpm-suppl.1-2015-111" position="float">
<label>Table 2</label>
<caption>
<p>Summary of the current reports regarding lymphangiogenesis in IIPs.</p>
</caption>
<table frame="box" rules="rows">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">AUTHORS</th>
<th valign="top" align="left" rowspan="1" colspan="1">TYPES OF IIPs</th>
<th valign="top" align="left" rowspan="1" colspan="1">PATIENT NUMBER</th>
<th valign="top" align="left" rowspan="1" colspan="1">ANTIBODY USED</th>
<th valign="top" align="left" rowspan="1" colspan="1">MORPHOMETRY MEASUREMENT</th>
<th valign="top" align="left" rowspan="1" colspan="1">HYPOTHESIZED PATHOGENIC ROLE OF LYMPHANGIOGENESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Mandal
<xref rid="b67-ccrpm-suppl.1-2015-111" ref-type="bibr">67</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">DAD (ARDS)</td>
<td valign="top" align="left" rowspan="1" colspan="1">26</td>
<td valign="top" align="left" rowspan="1" colspan="1">D2-40</td>
<td valign="top" align="left" rowspan="1" colspan="1">Diameter</td>
<td valign="top" align="left" rowspan="1" colspan="1">Improve tissue damage via fluid drainage</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Yamashita
<xref rid="b29-ccrpm-suppl.1-2015-111" ref-type="bibr">29</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">DAD</td>
<td valign="top" align="left" rowspan="1" colspan="1">13</td>
<td valign="top" align="left" rowspan="1" colspan="1">Podoplanin, VEGFR-3, PROX-1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Length density</td>
<td valign="top" align="left" rowspan="1" colspan="1">Resultantly facilitating tissue remodeling via fluid drainage</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">El-Chemaly
<xref rid="b61-ccrpm-suppl.1-2015-111" ref-type="bibr">61</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">UIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">D2-40</td>
<td valign="top" align="left" rowspan="1" colspan="1">Area density</td>
<td valign="top" align="left" rowspan="1" colspan="1">Acitvely contributing to fibrogenesis</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Yamashita
<xref rid="b70-ccrpm-suppl.1-2015-111" ref-type="bibr">70</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">UIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">16</td>
<td valign="top" align="left" rowspan="1" colspan="1">Podoplanin</td>
<td valign="top" align="left" rowspan="1" colspan="1">None</td>
<td valign="top" align="left" rowspan="1" colspan="1">No mention</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Ebina
<xref rid="b64-ccrpm-suppl.1-2015-111" ref-type="bibr">64</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">UIP/cNSIP/COP</td>
<td valign="top" align="left" rowspan="1" colspan="1">10/6/6</td>
<td valign="top" align="left" rowspan="1" colspan="1">Podoplanin</td>
<td valign="top" align="left" rowspan="1" colspan="1">Area and length density</td>
<td valign="top" align="left" rowspan="1" colspan="1">Improve tissue damage via fluid drainage</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Lara
<xref rid="b72-ccrpm-suppl.1-2015-111" ref-type="bibr">72</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">UIP/fNSIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">20/13</td>
<td valign="top" align="left" rowspan="1" colspan="1">D2-40</td>
<td valign="top" align="left" rowspan="1" colspan="1">Area and length density</td>
<td valign="top" align="left" rowspan="1" colspan="1">Actively contributing to fibrogenesis</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Parra
<xref rid="b71-ccrpm-suppl.1-2015-111" ref-type="bibr">71</xref>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">UIP/cNSIP/COP/DAD</td>
<td valign="top" align="left" rowspan="1" colspan="1">19/20/6/24</td>
<td valign="top" align="left" rowspan="1" colspan="1">D2-40</td>
<td valign="top" align="left" rowspan="1" colspan="1">Number of lymphatic endothelial cells</td>
<td valign="top" align="left" rowspan="1" colspan="1">Resultantly facilitating tissue remodeling via fluid drainage</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn1-ccrpm-suppl.1-2015-111">
<p>
<bold>Abbreviations:</bold>
IIPs, idiopathic interstitial pneumonias; DAD, diffuse alveolar damage; ARDS, acute respiratory distress syndrome; UIP, usual interstitial pneumonia; cNSIP, cellular nonspecific interstitial pneumonia; COP, cryptogenic organizing pneumonia; fNSIP, fibrosing nonspecific interstitial pneumonia.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="t3-ccrpm-suppl.1-2015-111" position="float">
<label>Table 3</label>
<caption>
<p>Heterogeneous characteristics of lymphangiogenesis in principal fibrotic lesions of IIPs.</p>
</caption>
<table frame="box" rules="rows">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1"></th>
<th valign="top" align="left" rowspan="1" colspan="1">FIBROSIS IN ALVEOLAR SEPTA</th>
<th valign="top" align="left" rowspan="1" colspan="1">INTRALUMINAL FIBROSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">IPF/UIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Increase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Not prominent</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">fNSIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Increase</td>
<td valign="top" align="left" rowspan="1" colspan="1">Not prominent</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">cNSIP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Conflicting</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">COP</td>
<td valign="top" align="left" rowspan="1" colspan="1">Conflicting</td>
<td valign="top" align="left" rowspan="1" colspan="1">Increase</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">DAD</td>
<td valign="top" align="left" rowspan="1" colspan="1">Not prominent</td>
<td valign="top" align="left" rowspan="1" colspan="1">Increase</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn2-ccrpm-suppl.1-2015-111">
<p>
<bold>Abbreviations:</bold>
IIPs, idiopathic interstitial pneumonias; DAD, diffuse alveolar damage; ARDS, acute respiratory distress syndrome; UIP, usual interstitial pneumonia; cNSIP, cellular nonspecific interstitial pneumonia; COP, cryptogenic organizing pneumonia; fNSIP, fibrosing nonspecific interstitial pneumonia.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000879 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000879 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4725607
   |texte=   Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26823655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024