Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption

Identifieur interne : 000331 ( Pmc/Corpus ); précédent : 000330; suivant : 000332

VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption

Auteurs : Harri Nurmi ; Pipsa Saharinen ; Georgia Zarkada ; Wei Zheng ; Marius R. Robciuc ; Kari Alitalo

Source :

RBID : PMC:4644375

Abstract

Vascular endothelial growth factor C (VEGF-C) binding to its tyrosine kinase receptor VEGFR-3 drives lymphatic vessel growth during development and in pathological processes. Although the VEGF-C/VEGFR-3 pathway provides a target for treatment of cancer and lymphedema, the physiological functions of VEGF-C in adult vasculature are unknown. We show here that VEGF-C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine. Following Vegfc gene deletion in adult mice, the intestinal lymphatic vessels, including the lacteal vessels, underwent gradual atrophy, which was aggravated when also Vegfd was deleted. VEGF-C was expressed by a subset of smooth muscle cells adjacent to the lacteals in the villus and in the intestinal wall. The Vegfc-deleted mice showed defective lipid absorption and increased fecal excretion of dietary cholesterol and fatty acids. When fed a high-fat diet, the Vegfc-deficient mice were resistant to obesity and had improved glucose metabolism. Our findings indicate that the lymphangiogenic growth factors provide trophic and dynamic regulation of the intestinal lymphatic vasculature, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.


Url:
DOI: 10.15252/emmm.201505731
PubMed: 26459520
PubMed Central: 4644375

Links to Exploration step

PMC:4644375

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption</title>
<author>
<name sortKey="Nurmi, Harri" sort="Nurmi, Harri" uniqKey="Nurmi H" first="Harri" last="Nurmi">Harri Nurmi</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saharinen, Pipsa" sort="Saharinen, Pipsa" uniqKey="Saharinen P" first="Pipsa" last="Saharinen">Pipsa Saharinen</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zarkada, Georgia" sort="Zarkada, Georgia" uniqKey="Zarkada G" first="Georgia" last="Zarkada">Georgia Zarkada</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Wei" sort="Zheng, Wei" uniqKey="Zheng W" first="Wei" last="Zheng">Wei Zheng</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Robciuc, Marius R" sort="Robciuc, Marius R" uniqKey="Robciuc M" first="Marius R" last="Robciuc">Marius R. Robciuc</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alitalo, Kari" sort="Alitalo, Kari" uniqKey="Alitalo K" first="Kari" last="Alitalo">Kari Alitalo</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26459520</idno>
<idno type="pmc">4644375</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644375</idno>
<idno type="RBID">PMC:4644375</idno>
<idno type="doi">10.15252/emmm.201505731</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000331</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000331</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption</title>
<author>
<name sortKey="Nurmi, Harri" sort="Nurmi, Harri" uniqKey="Nurmi H" first="Harri" last="Nurmi">Harri Nurmi</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saharinen, Pipsa" sort="Saharinen, Pipsa" uniqKey="Saharinen P" first="Pipsa" last="Saharinen">Pipsa Saharinen</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zarkada, Georgia" sort="Zarkada, Georgia" uniqKey="Zarkada G" first="Georgia" last="Zarkada">Georgia Zarkada</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Wei" sort="Zheng, Wei" uniqKey="Zheng W" first="Wei" last="Zheng">Wei Zheng</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Robciuc, Marius R" sort="Robciuc, Marius R" uniqKey="Robciuc M" first="Marius R" last="Robciuc">Marius R. Robciuc</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Alitalo, Kari" sort="Alitalo, Kari" uniqKey="Alitalo K" first="Kari" last="Alitalo">Kari Alitalo</name>
<affiliation>
<nlm:aff id="au1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">EMBO Molecular Medicine</title>
<idno type="ISSN">1757-4676</idno>
<idno type="eISSN">1757-4684</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Vascular endothelial growth factor C (VEGF-C) binding to its tyrosine kinase receptor VEGFR-3 drives lymphatic vessel growth during development and in pathological processes. Although the VEGF-C/VEGFR-3 pathway provides a target for treatment of cancer and lymphedema, the physiological functions of VEGF-C in adult vasculature are unknown. We show here that VEGF-C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine. Following
<italic>Vegfc</italic>
gene deletion in adult mice, the intestinal lymphatic vessels, including the lacteal vessels, underwent gradual atrophy, which was aggravated when also
<italic>Vegfd</italic>
was deleted. VEGF-C was expressed by a subset of smooth muscle cells adjacent to the lacteals in the villus and in the intestinal wall. The 
<italic>Vegfc-</italic>
deleted mice showed defective lipid absorption and increased fecal excretion of dietary cholesterol and fatty acids. When fed a high-fat diet, the
<italic>Vegfc</italic>
-deficient mice were resistant to obesity and had improved glucose metabolism. Our findings indicate that the lymphangiogenic growth factors provide trophic and dynamic regulation of the intestinal lymphatic vasculature, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aspelund, A" uniqKey="Aspelund A">A Aspelund</name>
</author>
<author>
<name sortKey="Tammela, T" uniqKey="Tammela T">T Tammela</name>
</author>
<author>
<name sortKey="Antila, S" uniqKey="Antila S">S Antila</name>
</author>
<author>
<name sortKey="Nurmi, H" uniqKey="Nurmi H">H Nurmi</name>
</author>
<author>
<name sortKey="Leppanen, Vm" uniqKey="Leppanen V">VM Leppanen</name>
</author>
<author>
<name sortKey="Zarkada, G" uniqKey="Zarkada G">G Zarkada</name>
</author>
<author>
<name sortKey="Stanczuk, L" uniqKey="Stanczuk L">L Stanczuk</name>
</author>
<author>
<name sortKey="Francois, M" uniqKey="Francois M">M Francois</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
<author>
<name sortKey="Saharinen, P" uniqKey="Saharinen P">P Saharinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Astin, Jw" uniqKey="Astin J">JW Astin</name>
</author>
<author>
<name sortKey="Haggerty, Mj" uniqKey="Haggerty M">MJ Haggerty</name>
</author>
<author>
<name sortKey="Okuda, Ks" uniqKey="Okuda K">KS Okuda</name>
</author>
<author>
<name sortKey="Le Guen, L" uniqKey="Le Guen L">L Le Guen</name>
</author>
<author>
<name sortKey="Misa, Jp" uniqKey="Misa J">JP Misa</name>
</author>
<author>
<name sortKey="Tromp, A" uniqKey="Tromp A">A Tromp</name>
</author>
<author>
<name sortKey="Hogan, Bm" uniqKey="Hogan B">BM Hogan</name>
</author>
<author>
<name sortKey="Crosier, Ke" uniqKey="Crosier K">KE Crosier</name>
</author>
<author>
<name sortKey="Crosier, Ps" uniqKey="Crosier P">PS Crosier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baldwin, Me" uniqKey="Baldwin M">ME Baldwin</name>
</author>
<author>
<name sortKey="Halford, Mm" uniqKey="Halford M">MM Halford</name>
</author>
<author>
<name sortKey="Roufail, S" uniqKey="Roufail S">S Roufail</name>
</author>
<author>
<name sortKey="Williams, Ra" uniqKey="Williams R">RA Williams</name>
</author>
<author>
<name sortKey="Hibbs, Ml" uniqKey="Hibbs M">ML Hibbs</name>
</author>
<author>
<name sortKey="Grail, D" uniqKey="Grail D">D Grail</name>
</author>
<author>
<name sortKey="Kubo, H" uniqKey="Kubo H">H Kubo</name>
</author>
<author>
<name sortKey="Stacker, Sa" uniqKey="Stacker S">SA Stacker</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baluk, P" uniqKey="Baluk P">P Baluk</name>
</author>
<author>
<name sortKey="Tammela, T" uniqKey="Tammela T">T Tammela</name>
</author>
<author>
<name sortKey="Ator, E" uniqKey="Ator E">E Ator</name>
</author>
<author>
<name sortKey="Lyubynska, N" uniqKey="Lyubynska N">N Lyubynska</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
<author>
<name sortKey="Hicklin, Dj" uniqKey="Hicklin D">DJ Hicklin</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Pytowski, B" uniqKey="Pytowski B">B Pytowski</name>
</author>
<author>
<name sortKey="Stacker, Sa" uniqKey="Stacker S">SA Stacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breslin, Jw" uniqKey="Breslin J">JW Breslin</name>
</author>
<author>
<name sortKey="Gaudreault, N" uniqKey="Gaudreault N">N Gaudreault</name>
</author>
<author>
<name sortKey="Watson, Kd" uniqKey="Watson K">KD Watson</name>
</author>
<author>
<name sortKey="Reynoso, R" uniqKey="Reynoso R">R Reynoso</name>
</author>
<author>
<name sortKey="Yuan, Sy" uniqKey="Yuan S">SY Yuan</name>
</author>
<author>
<name sortKey="Wu, Mh" uniqKey="Wu M">MH Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cueni, Ln" uniqKey="Cueni L">LN Cueni</name>
</author>
<author>
<name sortKey="Detmar, M" uniqKey="Detmar M">M Detmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dixon, Jb" uniqKey="Dixon J">JB Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dumont, Dj" uniqKey="Dumont D">DJ Dumont</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Taipale, J" uniqKey="Taipale J">J Taipale</name>
</author>
<author>
<name sortKey="Lymboussaki, A" uniqKey="Lymboussaki A">A Lymboussaki</name>
</author>
<author>
<name sortKey="Mustonen, T" uniqKey="Mustonen T">T Mustonen</name>
</author>
<author>
<name sortKey="Pajusola, K" uniqKey="Pajusola K">K Pajusola</name>
</author>
<author>
<name sortKey="Breitman, M" uniqKey="Breitman M">M Breitman</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faivre, S" uniqKey="Faivre S">S Faivre</name>
</author>
<author>
<name sortKey="Demetri, G" uniqKey="Demetri G">G Demetri</name>
</author>
<author>
<name sortKey="Sargent, W" uniqKey="Sargent W">W Sargent</name>
</author>
<author>
<name sortKey="Raymond, E" uniqKey="Raymond E">E Raymond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gogineni, A" uniqKey="Gogineni A">A Gogineni</name>
</author>
<author>
<name sortKey="Caunt, M" uniqKey="Caunt M">M Caunt</name>
</author>
<author>
<name sortKey="Crow, A" uniqKey="Crow A">A Crow</name>
</author>
<author>
<name sortKey="Lee, Cv" uniqKey="Lee C">CV Lee</name>
</author>
<author>
<name sortKey="Fuh, G" uniqKey="Fuh G">G Fuh</name>
</author>
<author>
<name sortKey="Van Bruggen, N" uniqKey="Van Bruggen N">N van Bruggen</name>
</author>
<author>
<name sortKey="Ye, W" uniqKey="Ye W">W Ye</name>
</author>
<author>
<name sortKey="Weimer, Rm" uniqKey="Weimer R">RM Weimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haiko, P" uniqKey="Haiko P">P Haiko</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
<author>
<name sortKey="Keskitalo, S" uniqKey="Keskitalo S">S Keskitalo</name>
</author>
<author>
<name sortKey="Taipale, J" uniqKey="Taipale J">J Taipale</name>
</author>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Baldwin, Me" uniqKey="Baldwin M">ME Baldwin</name>
</author>
<author>
<name sortKey="Stacker, Sa" uniqKey="Stacker S">SA Stacker</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heckman, Ca" uniqKey="Heckman C">CA Heckman</name>
</author>
<author>
<name sortKey="Holopainen, T" uniqKey="Holopainen T">T Holopainen</name>
</author>
<author>
<name sortKey="Wirzenius, M" uniqKey="Wirzenius M">M Wirzenius</name>
</author>
<author>
<name sortKey="Keskitalo, S" uniqKey="Keskitalo S">S Keskitalo</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Yla Herttuala, S" uniqKey="Yla Herttuala S">S Yla-Herttuala</name>
</author>
<author>
<name sortKey="Wedge, Sr" uniqKey="Wedge S">SR Wedge</name>
</author>
<author>
<name sortKey="Jurgensmeier, Jm" uniqKey="Jurgensmeier J">JM Jurgensmeier</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hosoyamada, Y" uniqKey="Hosoyamada Y">Y Hosoyamada</name>
</author>
<author>
<name sortKey="Sakai, T" uniqKey="Sakai T">T Sakai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hosoyamada, Y" uniqKey="Hosoyamada Y">Y Hosoyamada</name>
</author>
<author>
<name sortKey="Sakai, T" uniqKey="Sakai T">T Sakai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamba, T" uniqKey="Kamba T">T Kamba</name>
</author>
<author>
<name sortKey="Tam, By" uniqKey="Tam B">BY Tam</name>
</author>
<author>
<name sortKey="Hashizume, H" uniqKey="Hashizume H">H Hashizume</name>
</author>
<author>
<name sortKey="Haskell, A" uniqKey="Haskell A">A Haskell</name>
</author>
<author>
<name sortKey="Sennino, B" uniqKey="Sennino B">B Sennino</name>
</author>
<author>
<name sortKey="Mancuso, Mr" uniqKey="Mancuso M">MR Mancuso</name>
</author>
<author>
<name sortKey="Norberg, Sm" uniqKey="Norberg S">SM Norberg</name>
</author>
<author>
<name sortKey="O Rien, Sm" uniqKey="O Rien S">SM O’Brien</name>
</author>
<author>
<name sortKey="Davis, Rb" uniqKey="Davis R">RB Davis</name>
</author>
<author>
<name sortKey="Gowen, Lc" uniqKey="Gowen L">LC Gowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Haiko, P" uniqKey="Haiko P">P Haiko</name>
</author>
<author>
<name sortKey="Sainio, K" uniqKey="Sainio K">K Sainio</name>
</author>
<author>
<name sortKey="Partanen, J" uniqKey="Partanen J">J Partanen</name>
</author>
<author>
<name sortKey="Taipale, J" uniqKey="Taipale J">J Taipale</name>
</author>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Jackson, Dg" uniqKey="Jackson D">DG Jackson</name>
</author>
<author>
<name sortKey="Talikka, M" uniqKey="Talikka M">M Talikka</name>
</author>
<author>
<name sortKey="Rauvala, H" uniqKey="Rauvala H">H Rauvala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karkkainen, Mj" uniqKey="Karkkainen M">MJ Karkkainen</name>
</author>
<author>
<name sortKey="Saaristo, A" uniqKey="Saaristo A">A Saaristo</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Karila, Ka" uniqKey="Karila K">KA Karila</name>
</author>
<author>
<name sortKey="Lawrence, Ec" uniqKey="Lawrence E">EC Lawrence</name>
</author>
<author>
<name sortKey="Pajusola, K" uniqKey="Pajusola K">K Pajusola</name>
</author>
<author>
<name sortKey="Bueler, H" uniqKey="Bueler H">H Bueler</name>
</author>
<author>
<name sortKey="Eichmann, A" uniqKey="Eichmann A">A Eichmann</name>
</author>
<author>
<name sortKey="Kauppinen, R" uniqKey="Kauppinen R">R Kauppinen</name>
</author>
<author>
<name sortKey="Kettunen, Mi" uniqKey="Kettunen M">MI Kettunen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Ke" uniqKey="Kim K">KE Kim</name>
</author>
<author>
<name sortKey="Sung, Hk" uniqKey="Sung H">HK Sung</name>
</author>
<author>
<name sortKey="Koh, Gy" uniqKey="Koh G">GY Koh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koltowska, K" uniqKey="Koltowska K">K Koltowska</name>
</author>
<author>
<name sortKey="Betterman, Kl" uniqKey="Betterman K">KL Betterman</name>
</author>
<author>
<name sortKey="Harvey, Nl" uniqKey="Harvey N">NL Harvey</name>
</author>
<author>
<name sortKey="Hogan, Bm" uniqKey="Hogan B">BM Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
<author>
<name sortKey="Veikkola, T" uniqKey="Veikkola T">T Veikkola</name>
</author>
<author>
<name sortKey="Mustjoki, S" uniqKey="Mustjoki S">S Mustjoki</name>
</author>
<author>
<name sortKey="Karpanen, T" uniqKey="Karpanen T">T Karpanen</name>
</author>
<author>
<name sortKey="Catimel, B" uniqKey="Catimel B">B Catimel</name>
</author>
<author>
<name sortKey="Nice, Ec" uniqKey="Nice E">EC Nice</name>
</author>
<author>
<name sortKey="Wise, L" uniqKey="Wise L">L Wise</name>
</author>
<author>
<name sortKey="Mercer, A" uniqKey="Mercer A">A Mercer</name>
</author>
<author>
<name sortKey="Kowalski, H" uniqKey="Kowalski H">H Kowalski</name>
</author>
<author>
<name sortKey="Kerjaschki, D" uniqKey="Kerjaschki D">D Kerjaschki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otway, S" uniqKey="Otway S">S Otway</name>
</author>
<author>
<name sortKey="Robinson, Ds" uniqKey="Robinson D">DS Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paavonen, K" uniqKey="Paavonen K">K Paavonen</name>
</author>
<author>
<name sortKey="Mandelin, J" uniqKey="Mandelin J">J Mandelin</name>
</author>
<author>
<name sortKey="Partanen, T" uniqKey="Partanen T">T Partanen</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Li, Tf" uniqKey="Li T">TF Li</name>
</author>
<author>
<name sortKey="Ristimaki, A" uniqKey="Ristimaki A">A Ristimaki</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
<author>
<name sortKey="Konttinen, Yt" uniqKey="Konttinen Y">YT Konttinen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paquet Fifield, S" uniqKey="Paquet Fifield S">S Paquet-Fifield</name>
</author>
<author>
<name sortKey="Levy, Sm" uniqKey="Levy S">SM Levy</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Shayan, R" uniqKey="Shayan R">R Shayan</name>
</author>
<author>
<name sortKey="Karnezis, T" uniqKey="Karnezis T">T Karnezis</name>
</author>
<author>
<name sortKey="Davydova, N" uniqKey="Davydova N">N Davydova</name>
</author>
<author>
<name sortKey="Nowell, Cj" uniqKey="Nowell C">CJ Nowell</name>
</author>
<author>
<name sortKey="Roufail, S" uniqKey="Roufail S">S Roufail</name>
</author>
<author>
<name sortKey="Ma, Gz" uniqKey="Ma G">GZ Ma</name>
</author>
<author>
<name sortKey="Zhang, Yf" uniqKey="Zhang Y">YF Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Partanen, Ta" uniqKey="Partanen T">TA Partanen</name>
</author>
<author>
<name sortKey="Arola, J" uniqKey="Arola J">J Arola</name>
</author>
<author>
<name sortKey="Saaristo, A" uniqKey="Saaristo A">A Saaristo</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Ora, A" uniqKey="Ora A">A Ora</name>
</author>
<author>
<name sortKey="Miettinen, M" uniqKey="Miettinen M">M Miettinen</name>
</author>
<author>
<name sortKey="Stacker, Sa" uniqKey="Stacker S">SA Stacker</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
<author>
<name sortKey="Alitalo, K" uniqKey="Alitalo K">K Alitalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rissanen, Tt" uniqKey="Rissanen T">TT Rissanen</name>
</author>
<author>
<name sortKey="Markkanen, Je" uniqKey="Markkanen J">JE Markkanen</name>
</author>
<author>
<name sortKey="Gruchala, M" uniqKey="Gruchala M">M Gruchala</name>
</author>
<author>
<name sortKey="Heikura, T" uniqKey="Heikura T">T Heikura</name>
</author>
<author>
<name sortKey="Puranen, A" uniqKey="Puranen A">A Puranen</name>
</author>
<author>
<name sortKey="Kettunen, Mi" uniqKey="Kettunen M">MI Kettunen</name>
</author>
<author>
<name sortKey="Kholova, I" uniqKey="Kholova I">I Kholova</name>
</author>
<author>
<name sortKey="Kauppinen, Ra" uniqKey="Kauppinen R">RA Kauppinen</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
<author>
<name sortKey="Stacker, Sa" uniqKey="Stacker S">SA Stacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalaby, F" uniqKey="Shalaby F">F Shalaby</name>
</author>
<author>
<name sortKey="Rossant, J" uniqKey="Rossant J">J Rossant</name>
</author>
<author>
<name sortKey="Yamaguchi, Tp" uniqKey="Yamaguchi T">TP Yamaguchi</name>
</author>
<author>
<name sortKey="Gertsenstein, M" uniqKey="Gertsenstein M">M Gertsenstein</name>
</author>
<author>
<name sortKey="Wu, Xf" uniqKey="Wu X">XF Wu</name>
</author>
<author>
<name sortKey="Breitman, Ml" uniqKey="Breitman M">ML Breitman</name>
</author>
<author>
<name sortKey="Schuh, Ac" uniqKey="Schuh A">AC Schuh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veikkola, T" uniqKey="Veikkola T">T Veikkola</name>
</author>
<author>
<name sortKey="Jussila, L" uniqKey="Jussila L">L Jussila</name>
</author>
<author>
<name sortKey="Makinen, T" uniqKey="Makinen T">T Makinen</name>
</author>
<author>
<name sortKey="Karpanen, T" uniqKey="Karpanen T">T Karpanen</name>
</author>
<author>
<name sortKey="Jeltsch, M" uniqKey="Jeltsch M">M Jeltsch</name>
</author>
<author>
<name sortKey="Petrova, Tv" uniqKey="Petrova T">TV Petrova</name>
</author>
<author>
<name sortKey="Kubo, H" uniqKey="Kubo H">H Kubo</name>
</author>
<author>
<name sortKey="Thurston, G" uniqKey="Thurston G">G Thurston</name>
</author>
<author>
<name sortKey="Mcdonald, Dm" uniqKey="Mcdonald D">DM McDonald</name>
</author>
<author>
<name sortKey="Achen, Mg" uniqKey="Achen M">MG Achen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ventura, A" uniqKey="Ventura A">A Ventura</name>
</author>
<author>
<name sortKey="Kirsch, Dg" uniqKey="Kirsch D">DG Kirsch</name>
</author>
<author>
<name sortKey="Mclaughlin, Me" uniqKey="Mclaughlin M">ME McLaughlin</name>
</author>
<author>
<name sortKey="Tuveson, Da" uniqKey="Tuveson D">DA Tuveson</name>
</author>
<author>
<name sortKey="Grimm, J" uniqKey="Grimm J">J Grimm</name>
</author>
<author>
<name sortKey="Lintault, L" uniqKey="Lintault L">L Lintault</name>
</author>
<author>
<name sortKey="Newman, J" uniqKey="Newman J">J Newman</name>
</author>
<author>
<name sortKey="Reczek, Ee" uniqKey="Reczek E">EE Reczek</name>
</author>
<author>
<name sortKey="Weissleder, R" uniqKey="Weissleder R">R Weissleder</name>
</author>
<author>
<name sortKey="Jacks, T" uniqKey="Jacks T">T Jacks</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">EMBO Mol Med</journal-id>
<journal-id journal-id-type="iso-abbrev">EMBO Mol Med</journal-id>
<journal-id journal-id-type="publisher-id">emmm</journal-id>
<journal-title-group>
<journal-title>EMBO Molecular Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1757-4676</issn>
<issn pub-type="epub">1757-4684</issn>
<publisher>
<publisher-name>John Wiley & Sons, Ltd</publisher-name>
<publisher-loc>Chichester, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26459520</article-id>
<article-id pub-id-type="pmc">4644375</article-id>
<article-id pub-id-type="doi">10.15252/emmm.201505731</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Reports</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Nurmi</surname>
<given-names>Harri</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saharinen</surname>
<given-names>Pipsa</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zarkada</surname>
<given-names>Georgia</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zheng</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Robciuc</surname>
<given-names>Marius R</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
<xref ref-type="author-notes" rid="fn1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Alitalo</surname>
<given-names>Kari</given-names>
</name>
<xref ref-type="aff" rid="au1"></xref>
<xref ref-type="corresp" rid="cor1">*</xref>
<xref ref-type="author-notes" rid="fn1"></xref>
</contrib>
<aff id="au1">
<institution>Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki</institution>
<addr-line>Helsinki, Finland</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">* Corresponding author. Tel: +358 2 941 25511, E-mail:
<email>kari.alitalo@helsinki.fi</email>
</corresp>
<fn>
<p>
<bold>Subject Categories</bold>
Development & Differentiation; Vascular Biology & Angiogenesis</p>
</fn>
<fn id="fn1">
<label></label>
<p>These authors contributed equally to this work</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>11</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>10</month>
<year>2015</year>
</pub-date>
<volume>7</volume>
<issue>11</issue>
<fpage>1418</fpage>
<lpage>1425</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>9</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>9</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 The Authors. Published under the terms of the CC BY 4.0 license</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Vascular endothelial growth factor C (VEGF-C) binding to its tyrosine kinase receptor VEGFR-3 drives lymphatic vessel growth during development and in pathological processes. Although the VEGF-C/VEGFR-3 pathway provides a target for treatment of cancer and lymphedema, the physiological functions of VEGF-C in adult vasculature are unknown. We show here that VEGF-C is necessary for perinatal lymphangiogenesis, but required for adult lymphatic vessel maintenance only in the intestine. Following
<italic>Vegfc</italic>
gene deletion in adult mice, the intestinal lymphatic vessels, including the lacteal vessels, underwent gradual atrophy, which was aggravated when also
<italic>Vegfd</italic>
was deleted. VEGF-C was expressed by a subset of smooth muscle cells adjacent to the lacteals in the villus and in the intestinal wall. The 
<italic>Vegfc-</italic>
deleted mice showed defective lipid absorption and increased fecal excretion of dietary cholesterol and fatty acids. When fed a high-fat diet, the
<italic>Vegfc</italic>
-deficient mice were resistant to obesity and had improved glucose metabolism. Our findings indicate that the lymphangiogenic growth factors provide trophic and dynamic regulation of the intestinal lymphatic vasculature, which could be especially important in the dietary regulation of adiposity and cholesterol metabolism.</p>
</abstract>
<kwd-group>
<kwd>cholesterol</kwd>
<kwd>lipid absorption</kwd>
<kwd>lymphatic vasculature</kwd>
<kwd>obesity</kwd>
<kwd>VEGF-C</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Lymphatic vessels regulate tissue fluid homeostasis, immune cell trafficking, and dietary fat absorption, and their malfunction leads to chronic edema and impaired immune responses (Cueni & Detmar,
<xref rid="b7" ref-type="bibr">2008</xref>
; Alitalo,
<xref rid="b1" ref-type="bibr">2011</xref>
; Koltowska
<italic>et al</italic>
,
<xref rid="b20" ref-type="bibr">2013</xref>
). Lymphangiogenesis occurs during pathological processes such as inflammation and tumor metastasis and inhibitors of lymphangiogenic growth factors and their receptors are currently in clinical trials in human cancer patients (Alitalo,
<xref rid="b1" ref-type="bibr">2011</xref>
). The development of the lymphatic vasculature is guided primarily by VEGF-C-mediated activation of VEGFR-3, which is the main VEGF receptor expressed by lymphatic endothelial cells (Makinen
<italic>et al</italic>
,
<xref rid="b21" ref-type="bibr">2001</xref>
; Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
). In the absence of VEGF-C, the development of lymphatic vessels is arrested during their initial spouting from embryonic veins (Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
). VEGF-D, the second VEGFR-3 ligand, cannot compensate for the absence of VEGF-C during development, but it induces lymphangiogenesis when overexpressed and its deletion during development results in mild lymphatic vessel atrophy in the skin (Rissanen
<italic>et al</italic>
,
<xref rid="b26" ref-type="bibr">2003</xref>
; Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
; Alitalo,
<xref rid="b1" ref-type="bibr">2011</xref>
; Paquet-Fifield
<italic>et al</italic>
,
<xref rid="b24" ref-type="bibr">2013</xref>
; Astin
<italic>et al</italic>
,
<xref rid="b3" ref-type="bibr">2014</xref>
).</p>
<p>During the postnatal period, the lymphatic vessels continue to expand, and in the intestine, the lacteal vessels grow into the intestinal villi to facilitate lipid absorption from the fat-rich milk (Kim
<italic>et al</italic>
,
<xref rid="b19" ref-type="bibr">2007</xref>
). Lipid absorption allowed Gaspare Aselli to discover lymphatic vessels by their content of milky fluid in the 17
<sup>th</sup>
century (Dixon,
<xref rid="b8" ref-type="bibr">2010</xref>
). Recent studies have shown that the lacteal vessels are actively involved in lipid transport from the small intestinal epithelium to the lymphatic system and further to the blood circulation, although the detailed mechanisms have not been elucidated (Dixon,
<xref rid="b8" ref-type="bibr">2010</xref>
). In several genetic mouse models of impaired lymphatic development, including
<italic>Vegfr3</italic>
and
<italic>Vegfc</italic>
hypomorphic mice, and
<italic>Chy</italic>
mice that have a missense point mutation in
<italic>Vegfr3</italic>
, lipid-rich chylous ascites develops after birth but resolves before weaning (Karkkainen
<italic>et al</italic>
,
<xref rid="b18" ref-type="bibr">2001</xref>
,
<xref rid="b17" ref-type="bibr">2004</xref>
; Haiko
<italic>et al</italic>
,
<xref rid="b12" ref-type="bibr">2008</xref>
). However, the possible function of lymphangiogenic growth factors in the normally developed adult intestine is not known.</p>
<p>Here we have studied the role of VEGF-C in lymphatic vessel growth, maintenance, and function in neonatal and adult mice by using a mouse model that allows effective
<italic>Vegfc</italic>
gene deletion by the Cre-Lox system (Aspelund
<italic>et al</italic>
,
<xref rid="b2" ref-type="bibr">2014</xref>
). We demonstrate that VEGF-C has a crucial role in the maintenance of the intestinal lymphatic vessels and dietary fat absorption.</p>
</sec>
<sec>
<title>Results and Discussion</title>
<sec>
<title>
<italic>Vegfc</italic>
gene deletion arrests lymphatic vessel growth in the developing intestine</title>
<p>In
<italic>Vegfc</italic>
gene-deleted embryos, lymphatic vessel sprouting from the major embryonic veins at embryonic day (E) 10.5 is arrested and the embryos die between E15.5 and E17.5 (Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
). To study how the loss of VEGF-C affects lymphatic vessel development during the last trimester of fetal development, we crossed the
<italic>Vegfc</italic>
<sup>
<italic>flox/flox</italic>
</sup>
mice (Aspelund
<italic>et al</italic>
,
<xref rid="b2" ref-type="bibr">2014</xref>
) with mice expressing the universal deletor
<italic>R26Cre-ERT2</italic>
(Ventura
<italic>et al</italic>
,
<xref rid="b29" ref-type="bibr">2007</xref>
). To delete
<italic>Vegfc</italic>
in the
<italic>R26Cre-ERT2;Vegfc</italic>
<sup>
<italic>flox/flox</italic>
</sup>
embryos, pregnant females were injected with 4-OH tamoxifen at E12.5 and E13.5. Analysis at E18.5 indicated that the
<italic>Vegfc</italic>
-deleted (VCiΔR26) embryos lack mesenteric lymphatic vessels either completely (data not shown) or exhibit lymphatic vessel fragments and blind-ended lymphatic stubs that extend toward the intestinal wall (Fig
<xref ref-type="fig" rid="fig01">1A</xref>
and
<xref ref-type="fig" rid="fig01">B</xref>
). Deletion of
<italic>Vegfc</italic>
at E14.5 blocked the maturation of the mesenteric collecting lymphatic vessels. The developing vessels lacked valves and were much thinner than in the wild-type (WT)
<italic>Vegfc</italic>
<sup>
<italic>flox/flox</italic>
</sup>
embryos (Fig
<xref ref-type="fig" rid="fig01">1C</xref>
and
<xref ref-type="fig" rid="fig01">D</xref>
). In addition, the lymphatic vessels in the intestinal wall failed to develop in the VCiΔR26 embryos, whereas the blood vessels were not affected (Fig
<xref ref-type="fig" rid="fig01">1E</xref>
<xref ref-type="fig" rid="fig01">H</xref>
).</p>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<title>VEGF-C is required for lymphatic vessel growth in the developing intestine and for the intestinal lymphatic vessel maintenance in adult mice</title>
<p>Mice received tamoxifen as indicated in the figure. Immunofluorescence analyses from the intestine were performed in (A–H) embryos, (I–L) pups, and (M–U) adults.</p>
<p>
<list list-type="simple">
<list-item>
<p>A–D Mesenteric blood (PECAM1, red) and lymphatic vessels (LYVE1, green; PROX1, gray). Asterisks indicate lymphatic valves, arrow indicates a lymphatic vessel stub, and arrowhead indicates an isolated lymphatic vessel fragment </p>
</list-item>
<list-item>
<p>E–H Blood vessels (PECAM1, green) and lymphatic vessels (VEGFR-3, red) in the small intestinal wall. </p>
</list-item>
<list-item>
<p>I, J Detection of chylous ascites (arrows) in the VCiΔR26 mice at P6. </p>
</list-item>
<list-item>
<p>K, L LYVE1 staining of intestinal lymphatic vessels at P6. </p>
</list-item>
<list-item>
<p>M–T LYVE1 staining of lymphatic vessels in the intestinal wall in adult mice. Genotypes and deletion lengths are indicated in (U). </p>
</list-item>
<list-item>
<p>U Quantification of LYVE1 areas in (M–T). Length of the
<italic>i</italic>
<italic>Vegfc</italic>
gene deletion is indicated in months (mo), and
<italic>Vegfd</italic>
indicates the VEGF-D genotype. Data are represented as mean ± SEM. Significant differences were determined using one-way ANOVA and Bonferroni
<italic>post hoc</italic>
analysis compared to WT intestine represented in (M).
<italic>*P = </italic>
0.003,
<italic>**P = </italic>
0.001,
<italic>***P = </italic>
0.0008,
<sup></sup>
<italic>P = </italic>
0.0002,
<sup>§</sup>
<italic>P = </italic>
0.0001. </p>
</list-item>
</list>
</p>
<p>Data information: Scale bars: 200 μm in (A–H) and 400 μm in (K–T).
<italic></italic>
=
<italic> </italic>
25 (M); 5 (N); 8 (O); 7 (P); 6 (Q); 5 (R); 6 (S); 3 (T).</p>
</caption>
<graphic xlink:href="emmm0007-1418-f1"></graphic>
</fig>
<p>Lacteal lymphatic vessels develop after birth and are involved in the absorption of dietary lipids from milk (Kim
<italic>et al</italic>
,
<xref rid="b19" ref-type="bibr">2007</xref>
). In order to determine whether VEGF-C is necessary for the formation of lacteal vessels, we deleted
<italic>Vegfc</italic>
by daily 4-OH tamoxifen injections to VCiΔR26 and WT pups from postnatal day 1 (P1) to P4. Upon necropsy at P6, chylous ascites was observed in the VCiΔR26 pups, but not in the WT littermates (Fig
<xref ref-type="fig" rid="fig01">1I</xref>
and
<xref ref-type="fig" rid="fig01">J</xref>
). Immunofluorescence staining of intestinal cross sections at P6 revealed that the lacteal vessels failed to develop in the VCiΔR26 pups (Fig
<xref ref-type="fig" rid="fig01">1K</xref>
and
<xref ref-type="fig" rid="fig01">L</xref>
and Appendix Fig S1A and B). Lymphatic vessels of the intestinal wall, which develop during the intrauterine period, failed to expand upon
<italic>Vegfc</italic>
deletion in postnatal period (Appendix Fig S1C–H). The lymphatic vessel density in the skin was also reduced in the VCiΔR26 pups when compared to their WT littermates (Appendix Fig S1I and J), whereas no changes were observed in the blood vessel density (Appendix Fig S1K and L). Taken together, these results indicate that VEGF-C is required for developmental and early postnatal lymphangiogenesis.</p>
</sec>
<sec>
<title>VEGF-C is needed for lymphatic vessel maintenance only in the intestine</title>
<p>The VCiΔR26 mouse model allowed us to determine the role of VEGF-C in the maintenance of lymphatic vessels in adult mice. To induce
<italic>Vegfc</italic>
gene deletion, we administered tamoxifen to the mice starting at 8 weeks of age. Real-time PCR analysis of several tissues indicated that
<italic>Vegfc</italic>
mRNA levels in VCiΔR26 mice were reduced to 2–15% of the levels in WT mice 3 months after tamoxifen treatment (Appendix Table S1). Notably, whole-mount LYVE1 staining revealed that the lymphatic vessels of the intestinal wall undergo a gradual atrophy in the VCiΔR26 mice (Fig
<xref ref-type="fig" rid="fig01">1M</xref>
<xref ref-type="fig" rid="fig01">U</xref>
). Shorter lacteals were observed already 3 weeks after
<italic>Vegfc</italic>
gene deletion (Appendix Fig S2A), and after 3 months, the lacteals were strikingly thinner and shorter, containing a reduced number of lymphatic endothelial cells, suggesting that vessel atrophy was due to cell loss (Appendix Fig S2B). Thus, the lymphatic vessel atrophy started from lacteals and then progressed to the lymphatic network in the intestinal wall. In contrast, even when
<italic>Vegfc</italic>
was effectively deleted for 6 months, there were no changes in lymphatic vessel density in the lymph nodes, ears, or trachea (Appendix Fig S3A–E).</p>
<p>The development of the lymphatic vasculature relies principally on VEGF-C/VEGFR-3 signaling, while VEGF-D, the other known ligand for VEGFR-3, cannot compensate for the lack of VEGF-C signaling in
<italic>Vegfc</italic>
<sup>−/−</sup>
embryos (Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
). Yet, VEGF-D was found to induce lymphangiogenesis when overexpressed in mouse tissues (Veikkola
<italic>et al</italic>
,
<xref rid="b28" ref-type="bibr">2001</xref>
; Baluk
<italic>et al</italic>
,
<xref rid="b5" ref-type="bibr">2005</xref>
). Constitutive deletion of
<italic>Vegfd</italic>
had no effect on lymphatic vasculature in the adult mouse intestine, in agreement with previous reports (Fig
<xref ref-type="fig" rid="fig01">1U</xref>
) (Baldwin
<italic>et al</italic>
,
<xref rid="b4" ref-type="bibr">2005</xref>
). Surprisingly, however, conditional deletion of
<italic>Vegfc</italic>
in the
<italic>Vegfd</italic>
<sup>−/−</sup>
mice resulted in more severe atrophy of the intestinal lymphatic vessels than
<italic>Vegfc</italic>
deletion alone (Fig
<xref ref-type="fig" rid="fig01">1M</xref>
<xref ref-type="fig" rid="fig01">U</xref>
). These data indicate that VEGF-C is the primary trophic signal for the maintenance of the intestinal lymphatic vessels, but VEGF-D can partially compensate for the absence of VEGF-C. Because we did not observe changes in
<italic>Vegfd</italic>
mRNA expression levels upon
<italic>Vegfc</italic>
deletion (WT = 1.02 ± SEM 0.14 vs. VCiΔR26 = 0.98 ± SEM 0.16), it is likely that increased bioactive VEGF-D or increased VEGF-D binding to VEGFR-3 partially compensates for the loss of VEGF-C.</p>
</sec>
<sec>
<title>VEGF-C is expressed by a subset of smooth muscle cells in the intestine</title>
<p>Next, we sought to identify the cell types that express VEGF-C in the adult intestine. Previous work from our laboratory showed that VEGF-C is expressed in arterial smooth muscle cells (SMCs) both in mice and humans (Partanen
<italic>et al</italic>
,
<xref rid="b25" ref-type="bibr">2000</xref>
; Paavonen
<italic>et al</italic>
,
<xref rid="b23" ref-type="bibr">2002</xref>
; Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
). To define the cells expressing VEGF-C and its receptors, we performed β-Gal staining of intestines from
<italic>Vegfc</italic>
/LacZ (Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
),
<italic>Vegfr3</italic>
/LacZ (Dumont
<italic>et al</italic>
,
<xref rid="b9" ref-type="bibr">1998</xref>
), and
<italic>Vegfr2</italic>
/LacZ (Shalaby
<italic>et al</italic>
,
<xref rid="b27" ref-type="bibr">1995</xref>
) mice. VEGF-C staining in the villi was weak in comparison with VEGFR-3 and VEGFR-2 stainings, in lymphatic and blood vessels, respectively (Fig
<xref ref-type="fig" rid="fig02">2A</xref>
and
<xref ref-type="fig" rid="fig02">B</xref>
). Higher resolution analysis combined with immunohistochemistry demonstrated VEGF-C expression in SMCs, in the inner circular muscle layer of the intestinal wall, in arterial smooth muscle, and in a subset of the SMC fibers in the villus (Fig
<xref ref-type="fig" rid="fig02">2C</xref>
). In the villi, the VEGF-C β-Gal signal was most prominent adjacent to the LYVE1-counterstained lymphatic vessels (Fig
<xref ref-type="fig" rid="fig02">2D</xref>
). The intestinal wall of the
<italic>Vegfc</italic>
/LacZ mice showed a prominent arterial β-Gal staining pattern, which was further analyzed by PECAM-1 counterstaining of cross sections (Fig
<xref ref-type="fig" rid="fig02">2E</xref>
), which confirmed VEGF-C expression in the arterial SMCs. Whole-mount confocal microscopy showed a close contact between the lacteal vessels and the SMC fibers in the basal part of the villus where also β-Gal staining of VEGF-C was detected (Fig
<xref ref-type="fig" rid="fig02">2D</xref>
and
<xref ref-type="fig" rid="fig02">F</xref>
). These results suggest that SMCs in the villi and in the intestinal wall provide an important source for VEGF-C, which is required to maintain the lymphatic vessel architecture in the intestine. It should be noted that SMC contractility in the villi has been suggested to be important for dietary lipid absorption and that VEGF-C can induce contraction of the SMCs around the collecting lymphatic vessels in normal and pathological conditions (Hosoyamada & Sakai,
<xref rid="b14" ref-type="bibr">2005</xref>
,
<xref rid="b15" ref-type="bibr">2007</xref>
; Breslin
<italic>et al</italic>
,
<xref rid="b6" ref-type="bibr">2007</xref>
; Gogineni
<italic>et al</italic>
,
<xref rid="b11" ref-type="bibr">2013</xref>
).</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<title>Smooth muscle cells are the main source of VEGF-C in adult intestine</title>
<p>
<list list-type="alpha-upper">
<list-item>
<p>Overview of the small intestine cross section stained with nuclear red and highlighting the location of higher magnification images in (B–F); (I) for the entire villus and (II) for the villus base. β-Gal staining pattern of the villus in wild-type (Ctrl),
<italic>Vegfc</italic>
/LacZ (VC),
<italic>Vegfr3</italic>
/LacZ (VR-3), and
<italic>Vegfr2</italic>
/LacZ (VR-2) mice. </p>
</list-item>
<list-item>
<p>Higher magnification images representing β-Gal staining of the villus base in
<italic>Vegfc</italic>
/LacZ mice. </p>
</list-item>
<list-item>
<p>
<italic>Vegfc</italic>
/LacZ β-Gal staining reaction with smooth muscle actin (SMA) peroxidase staining. </p>
</list-item>
<list-item>
<p>
<italic>Vegfc</italic>
/LacZ β-Gal staining and LYVE1 peroxidase staining. </p>
</list-item>
<list-item>
<p>Surface image of
<italic>Vegfc</italic>
/LacZ β-Gal-stained intestine (left) and cross section counterstaining with PECAM1 (right). </p>
</list-item>
<list-item>
<p>Immunofluorescence staining of lacteal lymphatic vessel (LYVE1), blood capillaries (PECAM1), and smooth muscle cells (SMA). </p>
</list-item>
</list>
</p>
<p>Data information: Arrows indicate the VEGF-C expression in arterial SMC, arrowheads indicate the VEGF-C expression in SMC fibers in the villus, and asterisks highlight the VEGF-C expression in circular smooth muscle cell layer of the intestinal wall. Scale bars: 50 μm, except (C) inset 25 μm.</p>
</caption>
<graphic xlink:href="emmm0007-1418-f2"></graphic>
</fig>
<p>To determine whether the effect of VEGF-C on intestinal lymphatic vessels is dependent on VEGFR-3, we analyzed the
<italic>Rosa26CreERT2;Vegr3</italic>
<sup>
<italic>flox/flox</italic>
</sup>
(R3iΔR26) mouse model (Haiko
<italic>et al</italic>
,
<xref rid="b12" ref-type="bibr">2008</xref>
). As expected, deletion of
<italic>Vegfr3</italic>
for 3 months induced lacteal vessel regression, similar to VEGF-C deletion (Appendix Fig S4A and B). However, lymphatic vessel density in the intestinal wall was not altered, suggesting that VEGF-C can signal via VEGFR-2 to stabilize the lymphatic plexus. We have previously shown that the tyrosine kinase inhibitor cediranib inhibits lymphangiogenesis induced by adenoviral VEGF-C delivery into adult mouse skin (Heckman
<italic>et al</italic>
,
<xref rid="b13" ref-type="bibr">2008</xref>
). However, administration of the tyrosine kinase inhibitor sunitinib at doses that block VEGFR-2 and VEGFR-3 (K
<sub>i</sub>
: VEGFR-3 17 nM/VEGFR-2 9 nM) (Faivre
<italic>et al</italic>
,
<xref rid="b10" ref-type="bibr">2007</xref>
) had no effect on the lacteal vessels, although sunitinib significantly reduced blood vessel density in the intestinal villi (Appendix Fig S4C–E), in line with a previous report (Kamba
<italic>et al</italic>
,
<xref rid="b16" ref-type="bibr">2006</xref>
). Thus, lacteal vessels appear to be more resistant than blood vessels in the intestinal villus toward VEGFR tyrosine kinase inhibition.</p>
</sec>
<sec>
<title>
<italic>Vegfc</italic>
deletion reduces lipid absorption, inducing resistance to diet-induced obesity</title>
<p>To determine whether VEGF-C is important for lipid absorption by the intestinal lymphatic vessels, we performed an oral fat tolerance test in mice in which VEGF-C had been deleted 3 months earlier. The clearance of triglycerides from plasma was blocked by injection of Triton WR 1339, an inhibitor of lipoprotein lipase activity (Otway & Robinson,
<xref rid="b22" ref-type="bibr">1967</xref>
). Analysis of triglyceride levels in serum after the administration of an oil bolus showed that the VCiΔR26 mice have impaired lipid absorption when compared to WT mice (Appendix Fig S5A). Although these results correlate with the lacteal regression, we cannot exclude the involvement of possible other effects of
<italic>Vegfc</italic>
deletion.</p>
<p>We further studied whether the reduction in dietary lipid absorption observed in the VCiΔR26 mice has an impact on diet-induced obesity in mice fed high-fat diet (HFD). Initial experiments in the 129SV/C57Bl/6J mixed genetic background did not reveal major differences in body weight, but indicated that the VCiΔR26 mice have an improved glucose metabolism compared to WT mice (Appendix Fig S5B and C). Interestingly, in the mixed background, the
<italic>Vegfc</italic>
-deleted mice had reduced serum cholesterol levels, whereas fecal cholesterol and free fatty acid (FFA) levels were increased in the VCiΔR26 mice, indicating impaired dietary lipid absorption (Appendix Fig S5D). We further performed HFD feeding experiments in the pure C57Bl/6J background, an established model of diet-induced obesity. We deleted
<italic>Vegfc</italic>
in 8-week-old male mice and started HFD feeding 4 weeks later. The VCiΔR26 mice gained significantly less weight and had better glucose tolerance than their WT littermates, independently of concurrent
<italic>Vegfd</italic>
deletion (Fig
<xref ref-type="fig" rid="fig03">3A</xref>
<xref ref-type="fig" rid="fig03">C</xref>
and Appendix Fig S5E and F). At necropsy after HFD, very low amounts of chyle were detected in one out of 16
<italic>Vegfc</italic>
-deleted mice and in two out of five
<italic>Vegfc-</italic>
plus
<italic>Vegfd</italic>
-deleted mice, indicating mild lymphatic leakage. Body composition analysis showed that the VCiΔR26 mice had a significant reduction in total fat weight and fat percentage, but no changes in lean weight in comparison with WT littermates (Fig
<xref ref-type="fig" rid="fig03">3D</xref>
and Appendix Fig S5G). The changes in fat accumulation could not be explained by reduced caloric intake, since food consumption was similar between the VCiΔR26 and WT mice (Fig
<xref ref-type="fig" rid="fig03">3E</xref>
). As expected on the basis of our results from the mixed background,
<italic>Vegfc</italic>
deletion induced intestinal lymphatic vessel atrophy and increased lipid excretion into the feces also in the C57Bl/6J background (Fig
<xref ref-type="fig" rid="fig03">3F</xref>
<xref ref-type="fig" rid="fig03">H</xref>
). No difference in body weight was observed between WT and
<italic>Vegfc</italic>
-deleted mice on regular diet in which the majority of calories are derived from carbohydrate. This further indicates that the reduced body weight of the
<italic>Vegfc</italic>
-deleted mice on HFD is a result of reduced dietary lipid absorption.</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<title>Intestinal lymphatic vessel regression leads to impaired lipid absorption and resistance to diet-induced obesity</title>
<p>Two-month-old mice received tamoxifen and were fed on high-fat diet (HFD) for seven weeks before analysis.</p>
<p>
<list list-type="alpha-upper">
<list-item>
<p>Body weight change during seven weeks of HFD, expressed as average fold change in comparison with the starting weight.
<italic></italic>
=
<italic> </italic>
16, WT;
<italic></italic>
=
<italic> </italic>
6,
<italic>Vegfd</italic>
<sup>−/−</sup>
;
<italic></italic>
=
<italic> </italic>
16, VCiΔR26;
<italic></italic>
=
<italic> </italic>
5,
<italic>Vegfd</italic>
<sup>−/−</sup>
; VCiΔR26. </p>
</list-item>
<list-item>
<p>Body weight comparisons at seven weeks of HFD. Significant differences were determined using one-way ANOVA and Bonferroni
<italic>post hoc</italic>
analysis compared to WT.
<italic>*P </italic>
=
<italic> </italic>
0.004; **
<italic></italic>
=
<italic> </italic>
0.003.
<italic></italic>
=
<italic> </italic>
16, WT;
<italic></italic>
=
<italic> </italic>
6,
<italic>Vegfd</italic>
<sup>−/−</sup>
;
<italic></italic>
=
<italic> </italic>
16, VCiΔR26;
<italic></italic>
=
<italic> </italic>
5,
<italic>Vegfd</italic>
<sup>−/−</sup>
; VCiΔR26. </p>
</list-item>
<list-item>
<p>Glucose tolerance test (GTT) after six weeks of HFD. Significant differences were determined using unpaired two-tailed
<italic>t</italic>
-test.
<italic>*P </italic>
=
<italic> </italic>
0.014; **
<italic></italic>
=
<italic> </italic>
0.041.
<italic></italic>
=
<italic> </italic>
5, WT;
<italic></italic>
=
<italic> </italic>
6, VCiΔR26. </p>
</list-item>
<list-item>
<p>Total fat weight, fat percentage from body composition measurements after six weeks of HFD, and weights of visceral fat (VF) and subcutaneous fat (SF) at the time of necropsy. Significant differences were determined using unpaired two-tailed
<italic>t</italic>
-test.
<italic>*P </italic>
=
<italic> </italic>
0.006; **
<italic></italic>
=
<italic> </italic>
0.001;
<sup>#</sup>
<italic></italic>
=
<italic> </italic>
0.008;
<sup>§</sup>
<italic></italic>
=
<italic> </italic>
0.006.
<italic></italic>
=
<italic> </italic>
4 in each group. </p>
</list-item>
<list-item>
<p>Food consumption during the fifth week of HFD.
<italic></italic>
=
<italic> </italic>
9, WT;
<italic></italic>
=
<italic> </italic>
10, VCiΔR26. </p>
</list-item>
<list-item>
<p>Whole-mount immunofluorescence staining of blood (PECAM1, red) and lymphatic vessels (LYVE1, green) in intestinal villi and intestinal wall. </p>
</list-item>
<list-item>
<p>Quantification of the lacteal and villus length (solid and striped color bars, respectively) and the intestinal wall LYVE1
<sup>+</sup>
area percentage from images represented in (F). Significant differences were determined using unpaired two-tailed
<italic>t</italic>
-test.
<italic>*P </italic>
=
<italic> </italic>
0.0002; **
<italic></italic>
=
<italic> </italic>
0.00007.
<italic></italic>
=
<italic> </italic>
5, WT;
<italic></italic>
=
<italic> </italic>
6, VCiΔR26. </p>
</list-item>
<list-item>
<p>Free fatty acid (FFA) and cholesterol measurements from the feces after six weeks of HFD. Significant differences were determined using unpaired two-tailed
<italic>t</italic>
-test.
<italic>*P </italic>
=
<italic> </italic>
0.001; **
<italic></italic>
=
<italic> </italic>
0.007.
<italic></italic>
=
<italic> </italic>
5, WT;
<italic></italic>
=
<italic> </italic>
6, VCiΔR26. </p>
</list-item>
</list>
</p>
<p>Data information: Scale bars: 100 μm (villi) and 300 μm (intestinal wall). Data are represented as mean ± SEM.</p>
</caption>
<graphic xlink:href="emmm0007-1418-f3"></graphic>
</fig>
<p>Use of the newly established
<italic>Vegfc</italic>
gene targeted mouse model allowed us to determine the effect of chronic VEGF-C deficiency in adult mice, where lymphatic vasculature is normally in a quiescent state (Aspelund
<italic>et al</italic>
,
<xref rid="b2" ref-type="bibr">2014</xref>
). The results of this study show that intestinal lymphatic vessels in adults require trophic signals from VEGF-C and that VEGF-D can only partially compensate for the loss of VEGF-C to maintain their structure and function. The unexpected finding that VEGF-C blockade affects only intestinal lymphatic vasculature and lipid absorption may provide new therapeutic opportunities. The specific VEGF-C/VEGFR-3 inhibitors that are currently in phase I clinical trials for cancer treatment could provide additional benefit for the treatment of obesity and cardiovascular disease by reducing the absorption of excess dietary lipids. Further studies should address lacteal vessel atrophy and dietary fat absorption in clinical trials employing VEGF-C/VEGFR-3 blocking therapeutics.</p>
</sec>
</sec>
<sec sec-type="methods">
<title>Materials and Methods</title>
<sec>
<title>Study approval</title>
<p>National Animal Experiment Board in Finland approved all experiments involving the use of mice.</p>
</sec>
<sec>
<title>Mice and tissues</title>
<p>The mouse lines
<italic>Vegfc</italic>
<sup>
<italic>fl/fl</italic>
</sup>
(Aspelund
<italic>et al</italic>
,
<xref rid="b2" ref-type="bibr">2014</xref>
),
<italic>Vegfr3</italic>
<sup>
<italic>fl/fl</italic>
</sup>
(Haiko
<italic>et al</italic>
,
<xref rid="b12" ref-type="bibr">2008</xref>
),
<italic>Rosa26-CreERT2</italic>
(Ventura
<italic>et al,</italic>
<xref rid="b29" ref-type="bibr">2007</xref>
<italic>), Vegfd</italic>
(Baldwin
<italic>et al</italic>
,
<xref rid="b4" ref-type="bibr">2005</xref>
),
<italic>Vegfc</italic>
/LacZ (Karkkainen
<italic>et al</italic>
,
<xref rid="b17" ref-type="bibr">2004</xref>
),
<italic>Vegfr3</italic>
/LacZ (Dumont
<italic>et al</italic>
,
<xref rid="b9" ref-type="bibr">1998</xref>
), and
<italic>Vegfr2</italic>
/LacZ (Shalaby
<italic>et al</italic>
,
<xref rid="b27" ref-type="bibr">1995</xref>
) have been described previously. We used VCiΔR26 mice in the mixed C57Bl/6J and 129SV background or after backcrossing to the C57Bl/6J strain for at least 7 generations. For induction of Cre-mediated recombination in embryos, the mother was injected at the indicated days with two consecutive intragastric doses of 4-OH tamoxifen (4-OHT) (Sigma) (25 mg/ml dissolved in 100 μl ethanol/olive oil). In the neonatal VCiΔR26 or WT mice, the Cre-mediated recombination was induced between P1 and P4 by daily intragastric administration of 2 μl 4-OHT (25 mg/ml dissolved in ethanol). Recombination in adult mice (7–8 weeks old) was done by intragastric tamoxifen (Sigma, dissolved in corn oil at 2 mg/ml, 100 μl) administration during five consecutive days. Detailed animal experiment information can be found in the Appendix Supplementary Materials and Methods.</p>
</sec>
<sec>
<title>Statistics</title>
<p>Quantitative data were compared between groups by two-tailed unpaired
<italic>t</italic>
-test or one-way ANOVA followed by Bonferroni
<italic>post hoc</italic>
 test for multiple comparisons. Values are expressed as mean ± SEM.
<italic>P</italic>
-value < 0.05 was considered significant.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank Jarmo Koponen, Essi Salminen, Maija Atuegwu, Mari Jokinen, Tapio Tainola, and Kirsi Mänttäri for technical assistance, the personnel of the Biomedicum Imaging Unit for microscopy service and the Laboratory Animal Center of the University of Helsinki for animal housing. This study was supported in part by the Leducq Transatlantic Network of Excellence in Lymph Vessels in Obesity and Cardiovascular Disease (grant no: 11CVD03), the Marie Curie ITN Vessel consortium (grant no: 317250) of the Seventh Framework Program of European Union, Academy of Finland Centre of Excellence in Translational Cancer Biology 2014-2019 (grant no: 271845), the European Research Council (ERC-2010-AdG-268804); the Finnish Cancer Research Organizations, the Sigrid Juselius Foundation, and by the Biomedicum Helsinki Foundation and Ida Montin Foundation (to H.N.).</p>
</ack>
<sec>
<title>Author contributions</title>
<p>HN and MRR designed and performed experiments, data acquisition, analysis and interpretation of data, and wrote the manuscript; PS designed and produced the VCiΔR26 mice; GZ and WZ performed experiments; and KA designed experiments, conducted scientific direction, and wrote the manuscript
<bold>.</bold>
</p>
</sec>
<sec>
<title>Conflict of interest</title>
<p>The authors declare that they have no conflict of interest.</p>
<boxed-text position="float">
<caption>
<title>The paper explained</title>
</caption>
<sec>
<title>Problem</title>
<p>Specific VEGF-C/VEGFR-3 inhibitors are currently in phase I clinical trials for cancer treatment, but the effects of long-term inhibition of these pathways in adults are still incompletely known. Preclinical long-term follow-up studies of VEGF-C/VEGFR-3 signaling deficiency are now possible by using the novel mouse model that allows effective
<italic>Vegfc</italic>
gene deletion by the Cre-Lox system. This eliminates the confounding effects of developmental defects observed in previous mouse models.</p>
</sec>
<sec>
<title>Results</title>
<p>The mouse model used in this study allowed effective, timed, and long-lasting gene deletion of
<italic>Vegfc</italic>
. Surprisingly, in adults with normally developed lymphatic system,
<italic>Vegfc</italic>
was required only for the maintenance of intestinal lymphatic vessel structure and function. Regression of lymphatic vessels in the intestine induced by
<italic>Vegfc</italic>
deletion had no effects on animal welfare but protected the mice from the obesogenic effect of excessive dietary lipid uptake.</p>
</sec>
<sec>
<title>Impact</title>
<p>Long-term inhibition of VEGF-C/VEGFR-3 is very well tolerated in animal models. VEGF-C blockade induces atrophy of intestinal lymphatic vessels and inhibits dietary lipid absorption, which could provide new therapeutic opportunities for the treatment of obesity and cardiovascular diseases.</p>
</sec>
</boxed-text>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The lymphatic vasculature in disease</article-title>
<source>Nat Med</source>
<year>2011</year>
<volume>17</volume>
<fpage>1371</fpage>
<lpage>1380</lpage>
<pub-id pub-id-type="pmid">22064427</pub-id>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aspelund</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Antila</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nurmi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Leppanen</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Zarkada</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stanczuk</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Francois</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Saharinen</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel</article-title>
<source>J Clin Invest</source>
<year>2014</year>
<volume>124</volume>
<fpage>3975</fpage>
<lpage>3986</lpage>
<pub-id pub-id-type="pmid">25061878</pub-id>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Astin</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Haggerty</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Okuda</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Le Guen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Misa</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tromp</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Crosier</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Crosier</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting</article-title>
<source>Development</source>
<year>2014</year>
<volume>141</volume>
<fpage>2680</fpage>
<lpage>2690</lpage>
<pub-id pub-id-type="pmid">24903752</pub-id>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baldwin</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Halford</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Roufail</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Hibbs</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Grail</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor D is dispensable for development of the lymphatic system</article-title>
<source>Mol Cell Biol</source>
<year>2005</year>
<volume>25</volume>
<fpage>2441</fpage>
<lpage>2449</lpage>
<pub-id pub-id-type="pmid">15743836</pub-id>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baluk</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ator</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lyubynska</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Hicklin</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Pytowski</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation</article-title>
<source>J Clin Invest</source>
<year>2005</year>
<volume>115</volume>
<fpage>247</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="pmid">15668734</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breslin</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Gaudreault</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Reynoso</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2007</year>
<volume>293</volume>
<fpage>H709</fpage>
<lpage>H718</lpage>
<pub-id pub-id-type="pmid">17400713</pub-id>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cueni</surname>
<given-names>LN</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The lymphatic system in health and disease</article-title>
<source>Lymphat Res Biol</source>
<year>2008</year>
<volume>6</volume>
<fpage>109</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="pmid">19093783</pub-id>
</element-citation>
</ref>
<ref id="b8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dixon</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Lymphatic lipid transport: sewer or subway?</article-title>
<source>Trends Endocrinol Metab</source>
<year>2010</year>
<volume>21</volume>
<fpage>480</fpage>
<lpage>487</lpage>
<pub-id pub-id-type="pmid">20541951</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dumont</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lymboussaki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mustonen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pajusola</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Breitman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Cardiovascular failure in mouse embryos deficient in VEGF receptor-3</article-title>
<source>Science</source>
<year>1998</year>
<volume>282</volume>
<fpage>946</fpage>
<lpage>949</lpage>
<pub-id pub-id-type="pmid">9794766</pub-id>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faivre</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Demetri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sargent</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Raymond</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Molecular basis for sunitinib efficacy and future clinical development</article-title>
<source>Nat Rev Drug Discov</source>
<year>2007</year>
<volume>6</volume>
<fpage>734</fpage>
<lpage>745</lpage>
<pub-id pub-id-type="pmid">17690708</pub-id>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gogineni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Caunt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Crow</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>CV</given-names>
</name>
<name>
<surname>Fuh</surname>
<given-names>G</given-names>
</name>
<name>
<surname>van Bruggen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Weimer</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Inhibition of VEGF-C modulates distal lymphatic remodeling and secondary metastasis</article-title>
<source>PLoS ONE</source>
<year>2013</year>
<volume>8</volume>
<fpage>e68755</fpage>
<pub-id pub-id-type="pmid">23874750</pub-id>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haiko</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Keskitalo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Baldwin</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos</article-title>
<source>Mol Cell Biol</source>
<year>2008</year>
<volume>28</volume>
<fpage>4843</fpage>
<lpage>4850</lpage>
<pub-id pub-id-type="pmid">18519586</pub-id>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heckman</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Holopainen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wirzenius</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Keskitalo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yla-Herttuala</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wedge</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Jurgensmeier</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis</article-title>
<source>Cancer Res</source>
<year>2008</year>
<volume>68</volume>
<fpage>4754</fpage>
<lpage>4762</lpage>
<pub-id pub-id-type="pmid">18559522</pub-id>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hosoyamada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Structural and mechanical architecture of the intestinal villi and crypts in the rat intestine: integrative reevaluation from ultrastructural analysis</article-title>
<source>Anat Embryol</source>
<year>2005</year>
<volume>210</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">16044319</pub-id>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hosoyamada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Mechanical components of rat intestinal villi as revealed by ultrastructural analysis with special reference to the axial smooth muscle cells in the villi</article-title>
<source>Arch Histol Cytol</source>
<year>2007</year>
<volume>70</volume>
<fpage>107</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">17827668</pub-id>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamba</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>BY</given-names>
</name>
<name>
<surname>Hashizume</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Haskell</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sennino</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mancuso</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Norberg</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>O’Brien</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Gowen</surname>
<given-names>LC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature</article-title>
<source>Am J Physiol Heart Circ Physiol</source>
<year>2006</year>
<volume>290</volume>
<fpage>H560</fpage>
<lpage>H576</lpage>
<pub-id pub-id-type="pmid">16172168</pub-id>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Haiko</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sainio</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Partanen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Taipale</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Talikka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rauvala</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins</article-title>
<source>Nat Immunol</source>
<year>2004</year>
<volume>5</volume>
<fpage>74</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">14634646</pub-id>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karkkainen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Saaristo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Karila</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Pajusola</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bueler</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Eichmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kauppinen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kettunen</surname>
<given-names>MI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A model for gene therapy of human hereditary lymphedema</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>12677</fpage>
<lpage>12682</lpage>
<pub-id pub-id-type="pmid">11592985</pub-id>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>GY</given-names>
</name>
</person-group>
<article-title>Lymphatic development in mouse small intestine</article-title>
<source>Dev Dyn</source>
<year>2007</year>
<volume>236</volume>
<fpage>2020</fpage>
<lpage>2025</lpage>
<pub-id pub-id-type="pmid">17576138</pub-id>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koltowska</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Betterman</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature</article-title>
<source>Development</source>
<year>2013</year>
<volume>140</volume>
<fpage>1857</fpage>
<lpage>1870</lpage>
<pub-id pub-id-type="pmid">23571211</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Veikkola</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mustjoki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Catimel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Nice</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Wise</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mercer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3</article-title>
<source>EMBO J</source>
<year>2001</year>
<volume>20</volume>
<fpage>4762</fpage>
<lpage>4773</lpage>
<pub-id pub-id-type="pmid">11532940</pub-id>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otway</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>The effect of a non-ionic detergent (Triton WR 1339) on the removal of triglyceride fatty acids from the blood of the rat</article-title>
<source>J Physiol</source>
<year>1967</year>
<volume>190</volume>
<fpage>309</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="pmid">6049000</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paavonen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mandelin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Partanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Ristimaki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Konttinen</surname>
<given-names>YT</given-names>
</name>
</person-group>
<article-title>Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium</article-title>
<source>J Rheumatol</source>
<year>2002</year>
<volume>29</volume>
<fpage>39</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">11824969</pub-id>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paquet-Fifield</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shayan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Karnezis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Davydova</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nowell</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Roufail</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>GZ</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Vascular endothelial growth factor-d modulates caliber and function of initial lymphatics in the dermis</article-title>
<source>J Invest Dermatol</source>
<year>2013</year>
<volume>133</volume>
<fpage>2074</fpage>
<lpage>2084</lpage>
<pub-id pub-id-type="pmid">23439394</pub-id>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Partanen</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Arola</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Saaristo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ora</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miettinen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues</article-title>
<source>FASEB J</source>
<year>2000</year>
<volume>14</volume>
<fpage>2087</fpage>
<lpage>2096</lpage>
<pub-id pub-id-type="pmid">11023993</pub-id>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rissanen</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Markkanen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Gruchala</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Heikura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Puranen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kettunen</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Kholova</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kauppinen</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Stacker</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses</article-title>
<source>Circ Res</source>
<year>2003</year>
<volume>92</volume>
<fpage>1098</fpage>
<lpage>1106</lpage>
<pub-id pub-id-type="pmid">12714562</pub-id>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalaby</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rossant</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Gertsenstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>XF</given-names>
</name>
<name>
<surname>Breitman</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Schuh</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice</article-title>
<source>Nature</source>
<year>1995</year>
<volume>376</volume>
<fpage>62</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">7596435</pub-id>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veikkola</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jussila</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Makinen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Karpanen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jeltsch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Petrova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Thurston</surname>
<given-names>G</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Achen</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice</article-title>
<source>EMBO J</source>
<year>2001</year>
<volume>20</volume>
<fpage>1223</fpage>
<lpage>1231</lpage>
<pub-id pub-id-type="pmid">11250889</pub-id>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ventura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kirsch</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>McLaughlin</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Tuveson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Grimm</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lintault</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reczek</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Weissleder</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jacks</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Restoration of p53 function leads to tumour regression in vivo</article-title>
<source>Nature</source>
<year>2007</year>
<volume>445</volume>
<fpage>661</fpage>
<lpage>665</lpage>
<pub-id pub-id-type="pmid">17251932</pub-id>
</element-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="sd1">
<p>
<bold>Appendix</bold>
</p>
<media mimetype="pdf" mime-subtype="pdf" xlink:href="emmm0007-1418-sd1.pdf" xlink:type="simple" id="d36e2695" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="sd2">
<p>
<bold>Review Process File</bold>
</p>
<media mimetype="pdf" mime-subtype="pdf" xlink:href="emmm0007-1418-sd2.pdf" xlink:type="simple" id="d36e2700" position="anchor"></media>
</supplementary-material>
</sec>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000331 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000331 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4644375
   |texte=   VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26459520" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024