Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The potential role of podoplanin in tumour invasion

Identifieur interne : 000133 ( Pmc/Corpus ); précédent : 000132; suivant : 000134

The potential role of podoplanin in tumour invasion

Auteurs : A. Wicki ; G. Christofori

Source :

RBID : PMC:2360213

Abstract

Podoplanin is a small mucin-like transmembrane protein, widely expressed in various specialised cell types throughout the body. Here, we revisit the mechanism of podoplanin-mediated tumour invasion. We compare molecular pathways leading to single and collective cell invasion and discuss novel distinct concepts of tumour cell invasion.


Url:
DOI: 10.1038/sj.bjc.6603518
PubMed: 17179989
PubMed Central: 2360213

Links to Exploration step

PMC:2360213

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The potential role of podoplanin in tumour invasion</title>
<author>
<name sortKey="Wicki, A" sort="Wicki, A" uniqKey="Wicki A" first="A" last="Wicki">A. Wicki</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Centre for Biomedicine, University of Basel, Mattenstrasse 28</institution>
CH – 4058 Basel,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christofori, G" sort="Christofori, G" uniqKey="Christofori G" first="G" last="Christofori">G. Christofori</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Centre for Biomedicine, University of Basel, Mattenstrasse 28</institution>
CH – 4058 Basel,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17179989</idno>
<idno type="pmc">2360213</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360213</idno>
<idno type="RBID">PMC:2360213</idno>
<idno type="doi">10.1038/sj.bjc.6603518</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">000133</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The potential role of podoplanin in tumour invasion</title>
<author>
<name sortKey="Wicki, A" sort="Wicki, A" uniqKey="Wicki A" first="A" last="Wicki">A. Wicki</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Centre for Biomedicine, University of Basel, Mattenstrasse 28</institution>
CH – 4058 Basel,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Christofori, G" sort="Christofori, G" uniqKey="Christofori G" first="G" last="Christofori">G. Christofori</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Centre for Biomedicine, University of Basel, Mattenstrasse 28</institution>
CH – 4058 Basel,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">British Journal of Cancer</title>
<idno type="ISSN">0007-0920</idno>
<idno type="eISSN">1532-1827</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Podoplanin is a small mucin-like transmembrane protein, widely expressed in various specialised cell types throughout the body. Here, we revisit the mechanism of podoplanin-mediated tumour invasion. We compare molecular pathways leading to single and collective cell invasion and discuss novel distinct concepts of tumour cell invasion.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-comment> Original-type: rv</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Br J Cancer</journal-id>
<journal-title>British Journal of Cancer</journal-title>
<issn pub-type="ppub">0007-0920</issn>
<issn pub-type="epub">1532-1827</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17179989</article-id>
<article-id pub-id-type="pmc">2360213</article-id>
<article-id pub-id-type="pii">6603518</article-id>
<article-id pub-id-type="doi">10.1038/sj.bjc.6603518</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The potential role of podoplanin in tumour invasion</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wicki</surname>
<given-names>A</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Christofori</surname>
<given-names>G</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="caf1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>Department of Clinical-Biological Sciences, Institute of Biochemistry and Genetics, Centre for Biomedicine, University of Basel, Mattenstrasse 28</institution>
CH – 4058 Basel,
<country>Switzerland</country>
</aff>
<author-notes>
<corresp id="caf1">
<label>*</label>
Author for correspondence:
<email xlink:href="mailto:gerhard.christofori@unibas.ch">gerhard.christofori@unibas.ch</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>19</day>
<month>12</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="collection">
<day>09</day>
<month>01</month>
<year>2007</year>
</pub-date>
<pub-date pub-type="ppub">
<day>15</day>
<month>01</month>
<year>2007</year>
</pub-date>
<volume>96</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>5</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>06</month>
<year>2006</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>11</month>
<year>2006</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>11</month>
<year>2006</year>
</date>
</history>
<copyright-statement>Copyright 2007, Cancer Research UK</copyright-statement>
<copyright-year>2007</copyright-year>
<permissions>
<copyright-holder>Cancer Research UK</copyright-holder>
</permissions>
<abstract>
<p>Podoplanin is a small mucin-like transmembrane protein, widely expressed in various specialised cell types throughout the body. Here, we revisit the mechanism of podoplanin-mediated tumour invasion. We compare molecular pathways leading to single and collective cell invasion and discuss novel distinct concepts of tumour cell invasion.</p>
</abstract>
<kwd-group>
<kwd>cadherin</kwd>
<kwd>cancer</kwd>
<kwd>cytoskeleton</kwd>
<kwd>EMT</kwd>
<kwd>invasion</kwd>
<kwd>podoplanin</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<p>Invasion of cells into the surrounding tissue and destruction of normal tissue architecture are two hallmarks of malignant tumours. Morphologically, two patterns of tumour invasion can be distinguished: single cell and collective cell invasion. Investigations aimed at unravelling the molecular mechanisms underlying tumour cell invasion have identified various pathways that determine the invasive potential and the invasion pattern of tumour cells (
<xref ref-type="other" rid="bib5">Friedl and Wolf, 2003</xref>
). The invasion of single cells and small groups of cells is often correlated with dramatic changes in the expression and function of adhesive (e.g. cadherins, immunoglobulin domain-containing cell adhesion molecules) and regulatory proteins (e.g. Snail family members, transforming growth factor
<italic>β</italic>
). These changes are reminiscent of early developmental processes, in particular during neurulation and gastrulation, when cells acquire a migratory, mesenchymal phenotype. During this so-called epithelial–mesenchymal transition (EMT) cells lose epithelial markers, such as E-cadherin, and gain the expression of mesenchymal markers, such as N-cadherin and vimentin. The exact role of EMT in tumour progression is still under debate, yet EMT is thought to be particularly important in cancers with single cell migration and early dissemination of tumour cells (
<xref ref-type="other" rid="bib29">Thiery, 2002</xref>
;
<xref ref-type="other" rid="bib14">Lee
<italic>et al</italic>
, 2006</xref>
). In contrast, the invasion of large cell sheets into neighbouring tissue, often called collective cell migration, is less well understood. These cell sheets maintain the expression of epithelial adhesion structures but can nonetheless invade into the surrounding tissue and thereby destroy the host organ.</p>
<p>Recent experimental results have demonstrated that podoplanin, a small mucin-like protein, mediates a pathway leading to collective cell migration and invasion
<italic>in vivo</italic>
and
<italic>in vitro</italic>
(
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). In this review, we will focus on the molecular basis underlying the phenomenon of cell invasion induced by podoplanin, and discuss potential implications for cancer diagnosis and treatment.</p>
<sec>
<title>PODOPLANIN IS EXPRESSED IN MOST HUMAN TISSUES</title>
<p>Human podoplanin (T1
<italic>α</italic>
-2, aggrus and gp36) is a 38 kDa type-1 transmembrane glycoprotein consisting of 162 amino acids, nine of which form the intracellular domain. The extracellular domain is highly
<italic>O</italic>
-glycosylated, with sialic acid,
<italic>α</italic>
-2,3 linked to galactose, forming the main part of the protein's carbohydrate moieties. In normal human tissue, podoplanin is expressed in kidney podocytes (
<xref ref-type="other" rid="bib2">Breiteneder-Geleff
<italic>et al</italic>
, 1999</xref>
), in skeletal muscle, placenta, lung and heart (
<xref ref-type="other" rid="bib17">Martin-Villar
<italic>et al</italic>
, 2005</xref>
), in myofibroblasts of the breast and salivary glands, in osteoblasts and mesothelial cells (
<xref ref-type="other" rid="bib21">Ordonez, 2006b</xref>
). It is also expressed on the apical surface of rat alveolar type I cells (
<xref ref-type="other" rid="bib24">Rishi
<italic>et al</italic>
, 1995</xref>
). Occasionally, focal expression of podoplanin can be found in circumscribed areas of the basal layer of the human epidermis (
<xref ref-type="other" rid="bib25">Schacht
<italic>et al</italic>
, 2005</xref>
). As podoplanin is expressed on lymphatic but not on blood vessel endothelium, it is widely used as a specific marker for lymphatic endothelial cells and lymphangiogenesis in many species (
<xref ref-type="other" rid="bib2">Breiteneder-Geleff
<italic>et al</italic>
, 1999</xref>
).</p>
<p>The physiological function of podoplanin is still unknown. Podoplanin-deficient mice die at birth owing to respiratory failure exhibiting a phenotype of dilated, malfunctioning lymphatic vessels and lymphoedema (
<xref ref-type="other" rid="bib23">Ramirez
<italic>et al</italic>
, 2003</xref>
;
<xref ref-type="other" rid="bib26">Schacht
<italic>et al</italic>
, 2003</xref>
). In addition, podoplanin can induce platelet aggregation
<italic>in vitro</italic>
(
<xref ref-type="other" rid="bib10">Kaneko
<italic>et al</italic>
, 2006</xref>
). In pathological situations studied thus far, the mouse homologue of podoplanin (PA2.26, OTS-8) is induced in mouse skin during tissue regeneration after wounding and treatment with carcinogenic phorbol 12-myristate 13-acetate (
<xref ref-type="other" rid="bib6">Gandarillas
<italic>et al</italic>
, 1997</xref>
). OTS-8 is also induced by 12-
<italic>O</italic>
-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells and is constitutively expressed in oncogenic Ras-transformed cells (
<xref ref-type="other" rid="bib19">Nose
<italic>et al</italic>
, 1990</xref>
). These findings suggest a role of podoplanin in tissue development and repair as well as in carcinogenesis.</p>
</sec>
<sec>
<title>PODOPLANIN IS UPREGULATED IN THE OUTER EDGE OF THE TUMOUR MASS</title>
<p>The expression of podoplanin is upregulated in a number of different human cancers, including squamous cell carcinoma of the oral cavity, the larynx, the lung, the cervix, the oesophagus, and the skin, in dysgerminomas of the ovary and granulosa cell tumours, in mesothelioma, and in many tumours of the central nervous system (CNS) (
<xref ref-type="other" rid="bib11">Kato
<italic>et al</italic>
, 2005</xref>
;
<xref ref-type="other" rid="bib12">Kimura and Kimura, 2005</xref>
;
<xref ref-type="other" rid="bib17">Martin-Villar
<italic>et al</italic>
, 2005</xref>
;
<xref ref-type="other" rid="bib25">Schacht
<italic>et al</italic>
, 2005</xref>
;
<xref ref-type="other" rid="bib28">Shibahara
<italic>et al</italic>
, 2006</xref>
;
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). The oncofetal M2A antigen expressed in testicular germ cell tumours is identical to podoplanin (
<xref ref-type="other" rid="bib3">Dumoff
<italic>et al</italic>
, 2005</xref>
).</p>
<p>Until recently, tumours have been regarded as purely anaplastic cell masses without a tissue-like organisation. There is growing evidence, however, that the molecular expression pattern of cells in the invading front of solid tumours is different from that of cells in the tumour interior. For example, nuclear localisation of
<italic>β</italic>
-catenin and upregulation of
<italic>β</italic>
<sub>1</sub>
-integrin and the L1 cell adhesion molecule were specifically observed in cells of the invasive tumour front (
<xref ref-type="other" rid="bib1">Brabletz
<italic>et al</italic>
, 2001</xref>
;
<xref ref-type="other" rid="bib9">Hegerfeldt
<italic>et al</italic>
, 2002</xref>
;
<xref ref-type="other" rid="bib7">Gavert
<italic>et al</italic>
, 2005</xref>
). We have recently reported that in about 80% of human squamous cell carcinomas (lung, larynx, cervix, skin and oesophagus) podoplanin is expressed – often in a one-cell layer – at the invasive edge of the tumours (
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). In
<xref ref-type="fig" rid="fig1">Figure 1</xref>
, a cancer with single cell invasion (panel A) is compared to a tumour with a collective-cell invasion pattern (panel B). The restricted expression of podoplanin at the front of human squamous cell carcinomas prompted the question whether factors of the surrounding tissue could influence podoplanin expression. Indeed, podoplanin expression can be induced by epidermal growth factor, basic fibroblast growth factor (FGF2) and tumour necrosis factor
<italic>α</italic>
in MCF7 breast cancer cells, and by bradykinin in 3T3 fibroblasts (
<xref ref-type="other" rid="bib27">Scholl
<italic>et al</italic>
, 1999</xref>
;
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). Thus, podoplanin expression may be modulated by the environment of the tumour. However, the exact mechanisms of podoplanin regulation remain elusive.</p>
</sec>
<sec>
<title>PODOPLANIN BYPASSES EMT IN A MOUSE MODEL OF CARCINOGENESIS</title>
<p>In many mouse models of carcinogenesis, EMT is a critical event during the progression to tumour malignancy. One well-studied model of multistep tumour progression is the Rip1Tag2 mouse model of pancreatic
<italic>β</italic>
-cell carcinogenesis (
<xref ref-type="other" rid="bib8">Hanahan, 1985</xref>
). These mice express the simian virus large T antigen under the control of the rat insulin promotor and reproducibly develop tumours of the insulin-producing
<italic>β</italic>
cells of the islets of Langerhans. To progress from a benign adenoma to malignant carcinoma, these tumours need to lose E-cadherin expression and express N-cadherin instead. This so-called cadherin switch, a molecular event that is part of EMT, is a rate-limiting step in the transition from adenoma to a carcinoma (
<xref ref-type="other" rid="bib22">Perl
<italic>et al</italic>
, 1998</xref>
;
<xref ref-type="other" rid="bib15">Li and Herlyn, 2000</xref>
). Interestingly, transgenic expression of podoplanin in
<italic>β</italic>
-cell tumours of Rip1Tag2 mice led to the formation of carcinomas in the absence of a cadherin switch and EMT. In this model, podoplanin shifted the invasion pattern from single cell invasion involving EMT to the invasion of large cell sheets in the absence of EMT. This notion is supported by the finding that forced expression of podoplanin in MCF7 cells did not induce a cadherin-switch or EMT, although the cells formed filopodia and became more migratory and invasive (
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). However, although most
<italic>β</italic>
-cell tumours did not undergo a cadherin switch in podoplanin-expressing Rip1Tag2 tumour cells, a subset of the tumours lost E-cadherin expression. These findings indicate that (i) podoplanin does not suppress the cadherin switch or EMT, but is able to mediate an independent pathway of tumour cell invasion, and (ii) two different types of tumour invasion, involving or not EMT, can coexist in one tumorigenesis pathway (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
).</p>
</sec>
<sec>
<title>PODOPLANIN PROMOTES TUMOUR CELL SPREADING, MIGRATION AND INVASION</title>
<p>Transfection studies with cultured normal and cancer cells were employed to investigate the function of podoplanin
<italic>in vitro</italic>
. In both human keratinocytes and in MCF7 breast cancer cells, the forced expression of podoplanin led to a dramatic change of cellular morphology with a significant decrease of cellular stress fibres and a concomitant formation of filopodia-like membrane protrusions, even in the presence of E-cadherin expression (
<xref ref-type="other" rid="bib27">Scholl
<italic>et al</italic>
, 1999</xref>
;
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). Accordingly, adhesion and spreading of cells on the extracellular matrix protein fibronectin was enhanced by podoplanin expression. Such enhanced cell spreading could be blocked by neutralising antibodies against
<italic>β</italic>
<sub>1</sub>
-integrin. The interaction between tumour cells and the ECM is a pre-requisite for cell migration and invasion and, indeed, podoplanin increased cell migration of MCF7 cells and HaCaT keratinocytes in the presence of E-cadherin expression. In addition, invasion of podoplanin-expressing cells through a layer of matrigel was considerably enhanced in comparison to cells lacking podoplanin. Invasion of podoplanin-expressing cells appeared to rely on the activity of matrix metalloproteases (MMPs), as it could be repressed by TIMP2, an inhibitor of MMP. These
<italic>in vitro</italic>
data support the concept that podoplanin expression in human cancers promotes migration and invasion of cancer cells in the absence of a cadherin switch and EMT. However, a recent report with MDCK cells demonstrates that the expression of podoplanin leads to increased single cell migration after loss of E-cadherin expression (
<xref ref-type="other" rid="bib16">Martin-Villar
<italic>et al</italic>
, 2006</xref>
). We therefore must postulate that podoplanin is capable of inducing invasion in both settings, collective and single cell migration. The molecular players and mechanisms that govern the decision which of the two invasion patterns is activated upon podoplanin expression are not known. They may depend on cellular context and certainly warrant further investigation.</p>
</sec>
<sec>
<title>PODOPLANIN MODULATES THE ACTIN CYTOSKELETON</title>
<p>Cancer cell migration and invasion depend on an active remodelling of the actin cytoskeleton. Yet, as podoplanin itself has not been found to directly associate with actin in immunoprecipitation assays, how then does it modulate the cytoskeleton? Membrane proteins are linked via ERM proteins (ezrin, radixin and moesin) to the actin cytoskeleton. One of the ERM proteins, ezrin, has been shown to mediate filopodia formation and to induce metastasis (
<xref ref-type="other" rid="bib31">Yu
<italic>et al</italic>
, 2004</xref>
). Indeed, podoplanin physically associates with ezrin (
<xref ref-type="other" rid="bib27">Scholl
<italic>et al</italic>
, 1999</xref>
). In addition, overexpression of podoplanin in MCF7 cells, MDCK cells and HaCaT keratinocytes leads to a marked increase in phosphorylation of ezrin and other ERM proteins without affecting ezrin or moesin protein levels (
<xref ref-type="other" rid="bib16">Martin-Villar
<italic>et al</italic>
, 2006</xref>
;
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). Thus, ERM-protein phosphorylation may link podoplanin expression to the observed rearrangement of the actin cytoskeleton. Apart from ERM protein function, the activities of Rho-family GTPases, in particular RhoA, are modulated by podoplanin. In MCF7 cells, which express a high level of RhoA, podoplanin was found to downregulate RhoA activity, whereas in MDCK cells, which exhibit a low intrinsic activity of RhoA, its acitivity was enhanced by podoplanin. The basis for this unexpected finding is not clear, although it might reflect a different organisation of the cytoskeleton in different cell types (
<xref ref-type="other" rid="bib16">Martin-Villar
<italic>et al</italic>
, 2006</xref>
). In both cases, inhibition of RhoA modulation led to reduced cell motility, strengthening the notion that the regulation of RhoA activity is causally involved in the pro-migratory phenotype observed in podoplanin-expressing cancer cells (
<xref ref-type="other" rid="bib16">Martin-Villar
<italic>et al</italic>
, 2006</xref>
;
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
).</p>
</sec>
<sec>
<title>PODOPLANIN AS A TOOL FOR CANCER DIAGNOSIS AND THERAPY</title>
<p>The expression of podoplanin in human cancers raises the possibility to employ podoplanin expression as an immunohistochemical marker for diagnosis and prognosis. Podoplanin expression is mainly detected in squamous cell cancers, CNS tumours and germinal neoplasia. These cancers often express E-cadherin even in advanced stages, and the cancer cells tend to migrate in a collective, cone-like manner. In contrast, expression of podoplanin has not been found in the majority of adenocarcinomas, including lung, colon and prostate cancers.</p>
<sec>
<title>CNS tumours</title>
<p>Podoplanin is widely expressed in tumours of the CNS, including ependymal tumours, choroid plexus papillomas, meningeomas, pilocytic astrocytomas and glioblastomas. In malignant astrocytic tumours, increased expression of podoplanin correlated with higher histological tumour malignancy (
<xref ref-type="other" rid="bib18">Mishima
<italic>et al</italic>
, 2006</xref>
). However, because of its widespread expression in normal tissue, podoplanin has been found of limited use for the diagnosis of CNS tumours (
<xref ref-type="other" rid="bib28">Shibahara
<italic>et al</italic>
, 2006</xref>
).</p>
</sec>
<sec>
<title>Cervix tumours</title>
<p>In a series of cervical cone biopsies and radical hysterectomies, podoplanin was expressed in 71% of the samples. Focal expression of podoplanin in the invading front but not in the tumour bulk was present in 59% of the samples, whereas diffuse expression was found in 12% of the cases investigated. Interestingly, focal expression of podoplanin correlated with lymphatic invasion, metastasis and a shorter recurrence-free survival, whereas diffuse expression did not. Hence, podoplanin was proposed as a prognostic marker for cervical cancer (
<xref ref-type="other" rid="bib3">Dumoff
<italic>et al</italic>
, 2005</xref>
,
<xref ref-type="other" rid="bib4">2006</xref>
).</p>
</sec>
<sec>
<title>Germinal tumours</title>
<p>Podoplanin was found expressed in dysgerminomas of the ovary and in granulosa cell tumours. It is uniformly expressed at high levels in seminomas (98%), but also in embryonal carcinomas (69%), teratomas (29%) and yolk sac tumours (25%). Thus, no study has addressed the diagnostic or prognostic importance of these findings (
<xref ref-type="other" rid="bib25">Schacht
<italic>et al</italic>
, 2005</xref>
).</p>
</sec>
<sec>
<title>Squamous cell carcinoma of the skin and the lung</title>
<p>Of 28 skin cancer samples analysed, 79% expressed podoplanin. Well-differentiated carcinomas did not express podoplanin, whereas moderately differentiated carcinomas expressed podoplanin exclusively in the invading front. Undifferentiated SCCs finally expressed podoplanin beyond the basal cell layer with frequent cytoplasmic staining (
<xref ref-type="other" rid="bib25">Schacht
<italic>et al</italic>
, 2005</xref>
). Podoplanin is also upregulated in squamous cell cancers of the lung (
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
).</p>
</sec>
<sec>
<title>Mesothelioma</title>
<p>In a series of 30 mesotheliomas with epitheloid growth pattern, 93% expressed podoplanin. Podoplanin expression was also observed on squamous cell carcinomas but not adenocarcinomas of the lung (
<xref ref-type="other" rid="bib20">Ordonez, 2006a</xref>
).</p>
</sec>
</sec>
<sec>
<title>CONCLUSIONS</title>
<p>Different lines of evidence, sustained by genetic experiments and life cell imaging, support the notion that tumour cells can invade solitarily after loss of cell–cell adhesion, or as a group without losing cell–cell contacts. Recently, we have shown that in human squamous cell cancer, but also in an animal model of insulinoma, podoplanin is involved in a pathway of collective cell migration and invasion, which is independent from EMT (
<xref ref-type="other" rid="bib30">Wicki
<italic>et al</italic>
, 2006</xref>
). Interestingly, however, there is evidence that podoplanin can also promote single cell invasion of MDCK cells and human oral squamous cell carcinomas, thus contributing to EMT-mediated cell motility (
<xref ref-type="other" rid="bib16">Martin-Villar
<italic>et al</italic>
, 2006</xref>
). The molecular dissection of collective and single cell invasion is a relatively new topic in cancer research, whereas numerous efforts in the past and presence attempt to distinguish these two pathways during embryonic development. TGF
<italic>β</italic>
family members (such as Nodal), FGF, Wnt signalling, cadherin cell adhesion molecules and eomesodermin contribute to the collective migration of vertebrate embryonic tissue. Yet, other TGF
<italic>β</italic>
family members (such as BMP), Snail family members, FGFs and Wnt play a role in embryonic single cell migration (reviewed by
<xref ref-type="other" rid="bib13">Locascio and Nieto, 2001</xref>
). Thus, it seems that several factors capable of inducing cell migration and invasion can activate both collective and single cell migration and invasion. Further research is required to unravel the molecular circumstances that modulate the effect of pro-migratory factors on their target cells and determine the resulting invasion pattern.</p>
<p>Expression of podoplanin is also found upregulated in the regenerating epidermis, and we speculate that podoplanin is part of a pathway involving cell migration in the context of tissue repair and that this pathway is also utilised by cancer cells during tumour progression, giving them a selective advantage over less migratory epithelial cells. Induction of podoplanin expression results in multiple adjustments of intracellular signalling pathways, leading to the modulation of Rho family GTPase activities, the phosphorylation of ERM proteins, rearrangement of the actin cytoskeleton and, finally, enhanced cell migration and invasion.</p>
<p>However, some important questions concerning the function of podoplanin in tumours remain open. The function of podoplanin in human sarcomas, including angiosarcomas and Kaposi sarcoma, where the expression of podoplanin is often more diffuse and not restriced to the tumour front, needs to be elucidated (
<xref ref-type="other" rid="bib2">Breiteneder-Geleff
<italic>et al</italic>
, 1999</xref>
). The role of podoplanin expression in carcinoma
<italic>in situ</italic>
also has to be addressed. As no expression of podoplanin was found in many biopsies of adenocarcinomas (in particular those of the colon and prostate), and these cancers often exhibit the morphological characteristics of collective cell migration, we must assume that there are podoplanin-independent pathways that also can elicit collective cell migration. Along these lines, the function of other mucin-like cell surface proteins, such as for example MUC1 (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
), has to be clarified. Ultimately, further elucidation of cellular pathways leading to different forms of tumour cell invasion will help to devise new and more efficient strategies against human cancer.</p>
</sec>
</body>
<back>
<ack>
<p>We are grateful to Nikolaus Wick and Dontscho Kerjaschki (Clinical Institute for Pathology, Medical University, Vienna) for providing the histological images used in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. Furthermore, we want to thank Jörg Hagmann and François Lehembre (Institute of Biochemistry and Genetics, DKBW, Centre for Biomedicine, University of Basel) for critical input. We apologise to all colleagues whose important work we could not cite owing to space restrictions. Research in the laboratory of the authors has been supported by the Roche Research Foundation (AW), the EU-FP6 framework programme LYMPHANGIOGENOMICS LSHG-CT-2004-503573 (GC), the EU-FP6 framework programme BRECOSM LSHC-CT-2004-503224 (GC), and the Swiss Bridge Award (GC).</p>
</ack>
<ref-list>
<ref id="bib1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brabletz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Reu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Porzner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hlubek</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kunz-Schughart</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Knuechel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kirchner</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>10356</fpage>
<lpage>10361</lpage>
<pmc-comment>PubMed citation query: 'Proc Natl Acad Sci USA||98|10356||bib1|'</pmc-comment>
</citation>
</ref>
<ref id="bib2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breiteneder-Geleff</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Soleiman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kowalski</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Horvat</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Amann</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kriehuber</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Diem</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Weninger</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tschachler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Alitalo</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium</article-title>
<source>Am J Pathol</source>
<year>1999</year>
<volume>154</volume>
<fpage>385</fpage>
<lpage>394</lpage>
<pmc-comment>PubMed citation query: 'Am J Pathol||154|385||bib2|'</pmc-comment>
<pub-id pub-id-type="pmid">10027397</pub-id>
</citation>
</ref>
<ref id="bib3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dumoff</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Pasha</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Acs</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Low D2-40 immunoreactivity correlates with lymphatic invasion and nodal metastasis in early-stage squamous cell carcinoma of the uterine cervix</article-title>
<source>Mod Pathol</source>
<year>2005</year>
<volume>18</volume>
<fpage>97</fpage>
<lpage>104</lpage>
<pmc-comment>PubMed citation query: 'Mod Pathol||18|97||bib3|'</pmc-comment>
<pub-id pub-id-type="pmid">15467716</pub-id>
</citation>
</ref>
<ref id="bib4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dumoff</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Holtz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Acs</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Low podoplanin expression in pretreatment biopsy material predicts poor prognosis in advanced-stage squamous cell carcinoma of the uterine cervix treated by primary radiation</article-title>
<source>Mod Pathol</source>
<year>2006</year>
<volume>19</volume>
<fpage>708</fpage>
<lpage>716</lpage>
<pmc-comment>PubMed citation query: 'Mod Pathol||19|708||bib4|'</pmc-comment>
<pub-id pub-id-type="pmid">16528371</pub-id>
</citation>
</ref>
<ref id="bib5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedl</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Tumour-cell invasion and migration: diversity and escape mechanisms</article-title>
<source>Nat Rev Cancer</source>
<year>2003</year>
<volume>3</volume>
<fpage>362</fpage>
<lpage>374</lpage>
<pmc-comment>PubMed citation query: 'Nat Rev Cancer||3|362||bib5|'</pmc-comment>
<pub-id pub-id-type="pmid">12724734</pub-id>
</citation>
</ref>
<ref id="bib6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gandarillas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scholl</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Benito</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gamallo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Quintanilla</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis</article-title>
<source>Mol Carcinog</source>
<year>1997</year>
<volume>20</volume>
<fpage>10</fpage>
<lpage>18</lpage>
<pmc-comment>PubMed citation query: 'Mol Carcinog||20|10||bib6|'</pmc-comment>
<pub-id pub-id-type="pmid">9328432</pub-id>
</citation>
</ref>
<ref id="bib7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gavert</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Conacci-Sorrell</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gast</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Altevogt</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Brabletz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ben-ze'ev</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers</article-title>
<source>J Cell Biol</source>
<year>2005</year>
<volume>168</volume>
<fpage>633</fpage>
<lpage>642</lpage>
<pmc-comment>PubMed citation query: 'J Cell Biol||168|633||bib7|'</pmc-comment>
<pub-id pub-id-type="pmid">15716380</pub-id>
</citation>
</ref>
<ref id="bib8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanahan</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes</article-title>
<source>Nature</source>
<year>1985</year>
<volume>315</volume>
<fpage>115</fpage>
<lpage>122</lpage>
<pmc-comment>PubMed citation query: 'Nature||315|115||bib8|'</pmc-comment>
<pub-id pub-id-type="pmid">2986015</pub-id>
</citation>
</ref>
<ref id="bib9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hegerfeldt</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tusch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brocker</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Friedl</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, beta1-integrin function, and migration strategies</article-title>
<source>Cancer Res</source>
<year>2002</year>
<volume>62</volume>
<fpage>2125</fpage>
<lpage>2130</lpage>
<pmc-comment>PubMed citation query: 'Cancer Res||62|2125||bib9|'</pmc-comment>
<pub-id pub-id-type="pmid">11929834</pub-id>
</citation>
</ref>
<ref id="bib10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaneko</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kitano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Osawa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Conservation of a platelet activating domain of Aggrus/Podoplanin as a platelet aggregation-inducing factor</article-title>
<source>Gene</source>
<year>2006</year>
<volume>378</volume>
<fpage>52</fpage>
<lpage>57</lpage>
<pmc-comment>PubMed citation query: 'Gene||378|52||bib10|'</pmc-comment>
<pub-id pub-id-type="pmid">16766141</pub-id>
</citation>
</ref>
<ref id="bib11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsuruo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Osawa</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma</article-title>
<source>Tumour Biol</source>
<year>2005</year>
<volume>26</volume>
<fpage>195</fpage>
<lpage>200</lpage>
<pmc-comment>PubMed citation query: 'Tumour Biol||26|195||bib11|'</pmc-comment>
<pub-id pub-id-type="pmid">16006773</pub-id>
</citation>
</ref>
<ref id="bib12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimura</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Podoplanin as a marker for mesothelioma</article-title>
<source>Pathol Int</source>
<year>2005</year>
<volume>55</volume>
<fpage>83</fpage>
<lpage>86</lpage>
<pmc-comment>PubMed citation query: 'Pathol Int||55|83||bib12|'</pmc-comment>
<pub-id pub-id-type="pmid">15693854</pub-id>
</citation>
</ref>
<ref id="bib13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Locascio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nieto</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration</article-title>
<source>Curr Opin Gen Develop</source>
<year>2001</year>
<volume>11</volume>
<fpage>464</fpage>
<lpage>469</lpage>
<pmc-comment>PubMed citation query: 'Curr Opin Gen Develop||11|464||bib13|'</pmc-comment>
</citation>
</ref>
<ref id="bib14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Dedhar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kalluri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>EW</given-names>
</name>
</person-group>
<article-title>The epithelial–mesenchymal transition: new insights in signaling, development, and disease</article-title>
<source>J Cell Biol</source>
<year>2006</year>
<volume>172</volume>
<fpage>973</fpage>
<lpage>981</lpage>
<pmc-comment>PubMed citation query: 'J Cell Biol||172|973||bib14|'</pmc-comment>
<pub-id pub-id-type="pmid">16567498</pub-id>
</citation>
</ref>
<ref id="bib15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Herlyn</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Dynamics of intercellular communication during melanoma development</article-title>
<source>Mol Med Today</source>
<year>2000</year>
<volume>6</volume>
<fpage>163</fpage>
<lpage>169</lpage>
<pmc-comment>PubMed citation query: 'Mol Med Today||6|163||bib15|'</pmc-comment>
<pub-id pub-id-type="pmid">10740255</pub-id>
</citation>
</ref>
<ref id="bib16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin-Villar</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Megias</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Castel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yurrita</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Vilaro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Quintanilla</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Podoplanin binds ERM proteins to activate RhoA and promote epithelial–mesenchymal transition</article-title>
<source>J Cell Sci</source>
<year>2006</year>
<volume>119</volume>
<fpage>4541</fpage>
<lpage>4553</lpage>
<pmc-comment>PubMed citation query: 'J Cell Sci||119|4541||bib16|'</pmc-comment>
<pub-id pub-id-type="pmid">17046996</pub-id>
</citation>
</ref>
<ref id="bib17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin-Villar</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Scholl</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Gamallo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yurrita</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Munoz-Guerra</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cruces</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Quintanilla</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas</article-title>
<source>Int J Cancer</source>
<year>2005</year>
<volume>113</volume>
<fpage>899</fpage>
<lpage>910</lpage>
<pmc-comment>PubMed citation query: 'Int J Cancer||113|899||bib17|'</pmc-comment>
<pub-id pub-id-type="pmid">15515019</pub-id>
</citation>
</ref>
<ref id="bib18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Nishikawa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hirose</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsutani</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression</article-title>
<source>Acta Neuropathol (Berlin)</source>
<year>2006</year>
<volume>111</volume>
<fpage>483</fpage>
<lpage>488</lpage>
<pmc-comment>PubMed citation query: 'Acta Neuropathol (Berlin)||111|483||bib18|'</pmc-comment>
</citation>
</ref>
<ref id="bib19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nose</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kuroki</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Isolation of a gene sequence induced later by tumor-promoting 12-0-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells</article-title>
<source>Cell Growth Differ</source>
<year>1990</year>
<volume>1</volume>
<fpage>511</fpage>
<lpage>518</lpage>
<pmc-comment>PubMed citation query: 'Cell Growth Differ||1|511||bib19|'</pmc-comment>
<pub-id pub-id-type="pmid">2088477</pub-id>
</citation>
</ref>
<ref id="bib20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ordonez</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>The diagnostic utility of immunohistochemistry in distinguishing between epithelioid mesotheliomas and squamous carcinomas of the lung: a comparative study</article-title>
<source>Mod Pathol</source>
<year>2006a</year>
<volume>19</volume>
<fpage>417</fpage>
<lpage>428</lpage>
<pmc-comment>PubMed citation query: 'Mod Pathol||19|417||bib20|'</pmc-comment>
<pub-id pub-id-type="pmid">16415794</pub-id>
</citation>
</ref>
<ref id="bib21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ordonez</surname>
<given-names>NG</given-names>
</name>
</person-group>
<article-title>Podoplanin: a novel diagnostic immunohistochemical marker</article-title>
<source>Adv Anat Pathol</source>
<year>2006b</year>
<volume>13</volume>
<fpage>83</fpage>
<lpage>88</lpage>
<pmc-comment>PubMed citation query: 'Adv Anat Pathol||13|83||bib21|'</pmc-comment>
<pub-id pub-id-type="pmid">16670463</pub-id>
</citation>
</ref>
<ref id="bib22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perl</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Wilgenbus</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dahl</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Semb</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Christofori</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>A causal role for E-cadherin in the transition from adenoma to carcinoma</article-title>
<source>Nature</source>
<year>1998</year>
<volume>392</volume>
<fpage>190</fpage>
<lpage>193</lpage>
<pmc-comment>PubMed citation query: 'Nature||392|190||bib22|'</pmc-comment>
<pub-id pub-id-type="pmid">9515965</pub-id>
</citation>
</ref>
<ref id="bib23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramirez</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Millien</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hinds</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>YX</given-names>
</name>
<name>
<surname>Seldin</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>T1
<italic>α</italic>
, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolous formation at birth</article-title>
<source>Dev Biol</source>
<year>2003</year>
<volume>256</volume>
<fpage>61</fpage>
<lpage>72</lpage>
<pmc-comment>PubMed citation query: 'Dev Biol||256|61||bib23|'</pmc-comment>
<pub-id pub-id-type="pmid">12654292</pub-id>
</citation>
</ref>
<ref id="bib24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rishi</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Joyce-Brady</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dobbs</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Floros</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vanderspek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brody</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives</article-title>
<source>Dev Biol</source>
<year>1995</year>
<volume>167</volume>
<fpage>294</fpage>
<lpage>306</lpage>
<pmc-comment>PubMed citation query: 'Dev Biol||167|294||bib24|'</pmc-comment>
<pub-id pub-id-type="pmid">7851650</pub-id>
</citation>
</ref>
<ref id="bib25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schacht</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dadras</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>YK</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors</article-title>
<source>Am J Pathol</source>
<year>2005</year>
<volume>166</volume>
<fpage>913</fpage>
<lpage>921</lpage>
<pmc-comment>PubMed citation query: 'Am J Pathol||166|913||bib25|'</pmc-comment>
<pub-id pub-id-type="pmid">15743802</pub-id>
</citation>
</ref>
<ref id="bib26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schacht</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Ramirez</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>YK</given-names>
</name>
<name>
<surname>Hirakawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Harvey</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Dvorak</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Detmar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema</article-title>
<source>EMBO J</source>
<year>2003</year>
<volume>22</volume>
<fpage>3546</fpage>
<lpage>3556</lpage>
<pmc-comment>PubMed citation query: 'EMBO J||22|3546||bib26|'</pmc-comment>
<pub-id pub-id-type="pmid">12853470</pub-id>
</citation>
</ref>
<ref id="bib27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scholl</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Gamallo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vilar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Quintanilla</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes</article-title>
<source>J Cell Sci</source>
<year>1999</year>
<volume>112</volume>
<fpage>4601</fpage>
<lpage>4613</lpage>
<pmc-comment>PubMed citation query: 'J Cell Sci||112|4601||bib27|'</pmc-comment>
<pub-id pub-id-type="pmid">10574709</pub-id>
</citation>
</ref>
<ref id="bib28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibahara</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kashima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kunita</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fukayama</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Podoplanin is expressed in subsets of tumors of the central nervous system</article-title>
<source>Virchows Arch</source>
<year>2006</year>
<volume>448</volume>
<fpage>493</fpage>
<lpage>499</lpage>
<pmc-comment>PubMed citation query: 'Virchows Arch||448|493||bib28|'</pmc-comment>
<pub-id pub-id-type="pmid">16411134</pub-id>
</citation>
</ref>
<ref id="bib29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thiery</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Epithelial–mesenchymal transitions in tumour progression</article-title>
<source>Nat Rev Cancer</source>
<year>2002</year>
<volume>2</volume>
<fpage>442</fpage>
<lpage>454</lpage>
<pmc-comment>PubMed citation query: 'Nat Rev Cancer||2|442||bib29|'</pmc-comment>
<pub-id pub-id-type="pmid">12189386</pub-id>
</citation>
</ref>
<ref id="bib30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wicki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lehembre</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wick</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hantusch</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kerjaschki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Christofori</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton</article-title>
<source>Cancer Cell</source>
<year>2006</year>
<volume>9</volume>
<fpage>261</fpage>
<lpage>272</lpage>
<pmc-comment>PubMed citation query: 'Cancer Cell||9|261||bib30|'</pmc-comment>
<pub-id pub-id-type="pmid">16616332</pub-id>
</citation>
</ref>
<ref id="bib31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Khanna</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Helman</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Merlino</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators</article-title>
<source>Nat Med</source>
<year>2004</year>
<volume>10</volume>
<fpage>175</fpage>
<lpage>181</lpage>
<pmc-comment>PubMed citation query: 'Nat Med||10|175||bib31|'</pmc-comment>
<pub-id pub-id-type="pmid">14704789</pub-id>
</citation>
</ref>
</ref-list>
</back>
<floats-wrap>
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Human tumour samples stained for E-cadherin (brown) and podoplanin (red) show single cell (
<bold>A</bold>
) and collective cell invasion (
<bold>B</bold>
). (
<bold>A</bold>
) This adenocarcinoma of the colon invades into the surrounding tissue by single cell invasion. Most of the cells of the tumour bulk (TU) express E-cadherin. Single cells invading the tissue (arrows) have downregulated E-cadherin. Podoplanin is not expressed in this cancer. (
<bold>B</bold>
) An oesophageal carcinoma has formed an invasive cone that migrates into the surrounding tissue. Podoplanin (red) is expressed in the outer edge of the invading tumour. The tumour cells continue to express E-cadherin (brown) and migrate collectively. Size bar=50 
<italic>μ</italic>
m.</p>
</caption>
<graphic mime-subtype="eps" xlink:href="6603518f1"></graphic>
</fig>
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Two mechanisms are involved in the progression of an adenoma to a carcinoma: either the tumours undergo EMT, or they do not (non-EMT). In EMT, the expression profile of adhesion molecules, components of the cytoskeleton and transcriptional regulators is changed. Although non-EMT pathways of tumour invasion are less well studied, they also lead to alterations of the cytoskeleton and the adhesive apparatus. In addition, podoplanin and possibly other mucin-like transmembrane proteins are involved.</p>
</caption>
<graphic mime-subtype="eps" xlink:href="6603518f2"></graphic>
</fig>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2360213
   |texte=   The potential role of podoplanin in tumour invasion
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:17179989" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024