Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm

Identifieur interne : 001C89 ( Pmc/Checkpoint ); précédent : 001C88; suivant : 001C90

Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm

Auteurs : Diana Golden ; Lloyd G. Cantley

Source :

RBID : PMC:4459945

Abstract

Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental EMT and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site in vitro. Knock-down or inhibition of the CK2α/α′ kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-SMA expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α′-mediated phosphorylation at serine 124 that is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.


Url:
DOI: 10.1038/onc.2014.395
PubMed: 25486430
PubMed Central: 4459945


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4459945

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm</title>
<author>
<name sortKey="Golden, Diana" sort="Golden, Diana" uniqKey="Golden D" first="Diana" last="Golden">Diana Golden</name>
<affiliation>
<nlm:aff id="A1">Center for Vascular Biology, University of Connecticut Health Center</nlm:aff>
<wicri:noCountry code="subfield">University of Connecticut Health Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Cantley, Lloyd G" sort="Cantley, Lloyd G" uniqKey="Cantley L" first="Lloyd G." last="Cantley">Lloyd G. Cantley</name>
<affiliation>
<nlm:aff id="A2">Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine</nlm:aff>
<wicri:noCountry code="subfield">Yale University School of Medicine</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25486430</idno>
<idno type="pmc">4459945</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459945</idno>
<idno type="RBID">PMC:4459945</idno>
<idno type="doi">10.1038/onc.2014.395</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">004705</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">004705</idno>
<idno type="wicri:Area/Pmc/Curation">004704</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">004704</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001C89</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">001C89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm</title>
<author>
<name sortKey="Golden, Diana" sort="Golden, Diana" uniqKey="Golden D" first="Diana" last="Golden">Diana Golden</name>
<affiliation>
<nlm:aff id="A1">Center for Vascular Biology, University of Connecticut Health Center</nlm:aff>
<wicri:noCountry code="subfield">University of Connecticut Health Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Cantley, Lloyd G" sort="Cantley, Lloyd G" uniqKey="Cantley L" first="Lloyd G." last="Cantley">Lloyd G. Cantley</name>
<affiliation>
<nlm:aff id="A2">Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine</nlm:aff>
<wicri:noCountry code="subfield">Yale University School of Medicine</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oncogene</title>
<idno type="ISSN">0950-9232</idno>
<idno type="eISSN">1476-5594</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental EMT and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site
<italic>in vitro</italic>
. Knock-down or inhibition of the CK2α/α′ kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-SMA expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α′-mediated phosphorylation at serine 124 that is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallin, A" uniqKey="Wallin A">A Wallin</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G Zhang</name>
</author>
<author>
<name sortKey="Jones, Tw" uniqKey="Jones T">TW Jones</name>
</author>
<author>
<name sortKey="Jaken, S" uniqKey="Jaken S">S Jaken</name>
</author>
<author>
<name sortKey="Stevens, Jl" uniqKey="Stevens J">JL Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witzgall, R" uniqKey="Witzgall R">R Witzgall</name>
</author>
<author>
<name sortKey="Brown, D" uniqKey="Brown D">D Brown</name>
</author>
<author>
<name sortKey="Schwarz, C" uniqKey="Schwarz C">C Schwarz</name>
</author>
<author>
<name sortKey="Bonventre, Jv" uniqKey="Bonventre J">JV Bonventre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strutz, F" uniqKey="Strutz F">F Strutz</name>
</author>
<author>
<name sortKey="Okada, H" uniqKey="Okada H">H Okada</name>
</author>
<author>
<name sortKey="Lo, Cw" uniqKey="Lo C">CW Lo</name>
</author>
<author>
<name sortKey="Danoff, T" uniqKey="Danoff T">T Danoff</name>
</author>
<author>
<name sortKey="Carone, Rl" uniqKey="Carone R">RL Carone</name>
</author>
<author>
<name sortKey="Tomaszewski, Je" uniqKey="Tomaszewski J">JE Tomaszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonventre, Jv" uniqKey="Bonventre J">JV Bonventre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalluri, R" uniqKey="Kalluri R">R Kalluri</name>
</author>
<author>
<name sortKey="Neilson, Eg" uniqKey="Neilson E">EG Neilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birkenkamp, Ku" uniqKey="Birkenkamp K">KU Birkenkamp</name>
</author>
<author>
<name sortKey="Coffer, Pj" uniqKey="Coffer P">PJ Coffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calnan, Dr" uniqKey="Calnan D">DR Calnan</name>
</author>
<author>
<name sortKey="Brunet, A" uniqKey="Brunet A">A Brunet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Obsil, T" uniqKey="Obsil T">T Obsil</name>
</author>
<author>
<name sortKey="Obsilova, V" uniqKey="Obsilova V">V Obsilova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arden, Kc" uniqKey="Arden K">KC Arden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myatt, Ss" uniqKey="Myatt S">SS Myatt</name>
</author>
<author>
<name sortKey="Lam, Ew" uniqKey="Lam E">EW Lam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Massague, J" uniqKey="Massague J">J Massague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greer, El" uniqKey="Greer E">EL Greer</name>
</author>
<author>
<name sortKey="Brunet, A" uniqKey="Brunet A">A Brunet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mani, Sa" uniqKey="Mani S">SA Mani</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Brooks, M" uniqKey="Brooks M">M Brooks</name>
</author>
<author>
<name sortKey="Schwaninger, G" uniqKey="Schwaninger G">G Schwaninger</name>
</author>
<author>
<name sortKey="Zhou, A" uniqKey="Zhou A">A Zhou</name>
</author>
<author>
<name sortKey="Miura, N" uniqKey="Miura N">N Miura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bard, Jb" uniqKey="Bard J">JB Bard</name>
</author>
<author>
<name sortKey="Lam, Ms" uniqKey="Lam M">MS Lam</name>
</author>
<author>
<name sortKey="Aitken, S" uniqKey="Aitken S">S Aitken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hader, C" uniqKey="Hader C">C Hader</name>
</author>
<author>
<name sortKey="Marlier, A" uniqKey="Marlier A">A Marlier</name>
</author>
<author>
<name sortKey="Cantley, Lg" uniqKey="Cantley L">LG Cantley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J Fang</name>
</author>
<author>
<name sortKey="Dagenais, Sl" uniqKey="Dagenais S">SL Dagenais</name>
</author>
<author>
<name sortKey="Erickson, Rp" uniqKey="Erickson R">RP Erickson</name>
</author>
<author>
<name sortKey="Arlt, Mf" uniqKey="Arlt M">MF Arlt</name>
</author>
<author>
<name sortKey="Glynn, Mw" uniqKey="Glynn M">MW Glynn</name>
</author>
<author>
<name sortKey="Gorski, Jl" uniqKey="Gorski J">JL Gorski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, Fb" uniqKey="Berry F">FB Berry</name>
</author>
<author>
<name sortKey="Tamimi, Y" uniqKey="Tamimi Y">Y Tamimi</name>
</author>
<author>
<name sortKey="Carle, Mv" uniqKey="Carle M">MV Carle</name>
</author>
<author>
<name sortKey="Lehmann, Oj" uniqKey="Lehmann O">OJ Lehmann</name>
</author>
<author>
<name sortKey="Walter, Ma" uniqKey="Walter M">MA Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, Fb" uniqKey="Berry F">FB Berry</name>
</author>
<author>
<name sortKey="Saleem, Ra" uniqKey="Saleem R">RA Saleem</name>
</author>
<author>
<name sortKey="Walter, Ma" uniqKey="Walter M">MA Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pagano, Ma" uniqKey="Pagano M">MA Pagano</name>
</author>
<author>
<name sortKey="Poletto, G" uniqKey="Poletto G">G Poletto</name>
</author>
<author>
<name sortKey="Di Maira, G" uniqKey="Di Maira G">G Di Maira</name>
</author>
<author>
<name sortKey="Cozza, G" uniqKey="Cozza G">G Cozza</name>
</author>
<author>
<name sortKey="Ruzzene, M" uniqKey="Ruzzene M">M Ruzzene</name>
</author>
<author>
<name sortKey="Sarno, S" uniqKey="Sarno S">S Sarno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meggio, F" uniqKey="Meggio F">F Meggio</name>
</author>
<author>
<name sortKey="Pinna, La" uniqKey="Pinna L">LA Pinna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mueller, T" uniqKey="Mueller T">T Mueller</name>
</author>
<author>
<name sortKey="Breuer, P" uniqKey="Breuer P">P Breuer</name>
</author>
<author>
<name sortKey="Schmitt, I" uniqKey="Schmitt I">I Schmitt</name>
</author>
<author>
<name sortKey="Walter, J" uniqKey="Walter J">J Walter</name>
</author>
<author>
<name sortKey="Evert, Bo" uniqKey="Evert B">BO Evert</name>
</author>
<author>
<name sortKey="Wullner, U" uniqKey="Wullner U">U Wüllner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwindling, Sl" uniqKey="Schwindling S">SL Schwindling</name>
</author>
<author>
<name sortKey="Noll, A" uniqKey="Noll A">A Noll</name>
</author>
<author>
<name sortKey="Montenarh, M" uniqKey="Montenarh M">M Montenarh</name>
</author>
<author>
<name sortKey="Gotz, C" uniqKey="Gotz C">C Götz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrett, Rm" uniqKey="Barrett R">RM Barrett</name>
</author>
<author>
<name sortKey="Colnaghi, R" uniqKey="Colnaghi R">R Colnaghi</name>
</author>
<author>
<name sortKey="Wheatley, Sp" uniqKey="Wheatley S">SP Wheatley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faust, M" uniqKey="Faust M">M Faust</name>
</author>
<author>
<name sortKey="Montenarh, M" uniqKey="Montenarh M">M Montenarh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Knethen, A" uniqKey="Von Knethen A">A von Knethen</name>
</author>
<author>
<name sortKey="Tzieply, N" uniqKey="Tzieply N">N Tzieply</name>
</author>
<author>
<name sortKey="Jennewein, C" uniqKey="Jennewein C">C Jennewein</name>
</author>
<author>
<name sortKey="Brune, B" uniqKey="Brune B">B Brüne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macpherson, Mr" uniqKey="Macpherson M">MR MacPherson</name>
</author>
<author>
<name sortKey="Molina, P" uniqKey="Molina P">P Molina</name>
</author>
<author>
<name sortKey="Souchelnytskyi, S" uniqKey="Souchelnytskyi S">S Souchelnytskyi</name>
</author>
<author>
<name sortKey="Wernstedt, C" uniqKey="Wernstedt C">C Wernstedt</name>
</author>
<author>
<name sortKey="Martin Perez, J" uniqKey="Martin Perez J">J Martin-Pérez</name>
</author>
<author>
<name sortKey="Portillo, F" uniqKey="Portillo F">F Portillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshiere, A" uniqKey="Deshiere A">A Deshiere</name>
</author>
<author>
<name sortKey="Duchemin Pelletier, E" uniqKey="Duchemin Pelletier E">E Duchemin-Pelletier</name>
</author>
<author>
<name sortKey="Spreux, E" uniqKey="Spreux E">E Spreux</name>
</author>
<author>
<name sortKey="Ciais, D" uniqKey="Ciais D">D Ciais</name>
</author>
<author>
<name sortKey="Combes, F" uniqKey="Combes F">F Combes</name>
</author>
<author>
<name sortKey="Vandenbrouck, Y" uniqKey="Vandenbrouck Y">Y Vandenbrouck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tu, Yf" uniqKey="Tu Y">YF Tu</name>
</author>
<author>
<name sortKey="Kaipparettu, Ba" uniqKey="Kaipparettu B">BA Kaipparettu</name>
</author>
<author>
<name sortKey="Ma, Y" uniqKey="Ma Y">Y Ma</name>
</author>
<author>
<name sortKey="Wong, Lj" uniqKey="Wong L">LJ Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jh" uniqKey="Lee J">JH Lee</name>
</author>
<author>
<name sortKey="Skalnik, Dg" uniqKey="Skalnik D">DG Skalnik</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8711562</journal-id>
<journal-id journal-id-type="pubmed-jr-id">6325</journal-id>
<journal-id journal-id-type="nlm-ta">Oncogene</journal-id>
<journal-id journal-id-type="iso-abbrev">Oncogene</journal-id>
<journal-title-group>
<journal-title>Oncogene</journal-title>
</journal-title-group>
<issn pub-type="ppub">0950-9232</issn>
<issn pub-type="epub">1476-5594</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25486430</article-id>
<article-id pub-id-type="pmc">4459945</article-id>
<article-id pub-id-type="doi">10.1038/onc.2014.395</article-id>
<article-id pub-id-type="manuscript">NIHMS627033</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Golden</surname>
<given-names>Diana</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cantley</surname>
<given-names>Lloyd G.</given-names>
</name>
<degrees>MD</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Center for Vascular Biology, University of Connecticut Health Center</aff>
<aff id="A2">
<label>2</label>
Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine</aff>
<author-notes>
<corresp id="FN1">Correspondence: Diana Golden, PhD, University of Connecticut Health Center, Center for Vascular Biology, 263 Farmington Ave, Farmington, CT 06030-3501, (860)-604-6144,
<email>dgolden@uchc.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>11</day>
<month>9</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>08</day>
<month>12</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="ppub">
<day>3</day>
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>03</day>
<month>3</month>
<year>2016</year>
</pub-date>
<volume>34</volume>
<issue>36</issue>
<fpage>4702</fpage>
<lpage>4712</lpage>
<pmc-comment>elocation-id from pubmed: 10.1038/onc.2014.395</pmc-comment>
<permissions>
<license xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">
<license-p>Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
<ext-link ext-link-type="uri" xlink:href="http://www.nature.com/authors/editorial_policies/license.html#terms">http://www.nature.com/authors/editorial_policies/license.html#terms</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p id="P1">Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental EMT and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site
<italic>in vitro</italic>
. Knock-down or inhibition of the CK2α/α′ kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-SMA expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α′-mediated phosphorylation at serine 124 that is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.</p>
</abstract>
<kwd-group>
<kwd>Foxc2</kwd>
<kwd>E-cadherin</kwd>
<kwd>Epithelial Cell</kwd>
<kwd>Epithelial to Mesenchymal Transition</kwd>
<kwd>CK2 Signaling</kwd>
</kwd-group>
</article-meta>
</front>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>Foxc2 localization</title>
<p>(A) MPT cells, NIH3T3 cells and MPT cells transiently transfected with FLAG-Foxc2 were subjected to cell fractionation followed by SDS-PAGE and immunoblotting for Foxc2, LaminA/C (nuclear marker) and GAPDH (cytoplasmic compartment marker). Representative images from an
<italic>n</italic>
of 3 replicates per condition. (B) MPT cells transiently transfected with either GFP-Foxc2, GFP-Foxc2-S124D or GFP-Foxc2-S124L were fixed and imaged for GFP (green) and DAPI (blue). Images obtained at 40x magnification. (C) MPT cells transiently transfected as above were subjected to cell fractionation followed by immunoblotting with anti-GFP, anti-LaminA/C and anti-GAPDH. Representative blots from an n of 4–6 replicates per condition.</p>
</caption>
<graphic xlink:href="nihms627033f1"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>CK2 is required to maintain cytoplasmic localization of Foxc2</title>
<p>(A) MPT cells were transfected with GFP-Foxc2 and whole cell lysates immunoprecipitated with anti-GFP or IgG isotype control and blotted for anti-GFP and anti-CK2. WCL is the input material for the IP. (B) MPT cells were transfected with scrambled siRNA or siRNA directed against CK2 followed 24 hours later by lysis and immunoblotting to determine efficiency of CK2 protein reduction. Percentage knock-down determined by normalizing to β-actin. Graph shows quantification for
<italic>n</italic>
=3; **p<0.005 relative to siRNA scrambled control. (C) MPT cells transfected as in (B) followed by cell fractionation and immunoblotting for Foxc2, LaminA/C and GAPDH. Graph shows quantification for
<italic>n</italic>
=3; ***p<0.001, **p<0.005 relative to siRNA scrambled control. (D) MPT cells were treated with vehicle control or 100
<italic>μ</italic>
M TBCA for 1h, followed by cell fractionation and immunoblotting for endogenous Foxc2, LaminA/C and GAPDH. Relative Foxc2 expression in each compartment was determined as described in Methods.
<italic>n</italic>
=4;***p<0.001, **p<0.005 relative to vehicle control. (E–F) MPT cells transiently transfected with the indicated constructs were treated with vehicle control (E) or 100
<italic>μ</italic>
M TBCA (F) for 1h, and subjected to cell fractionation followed by immunoblotting with anti-GFP, anti-LaminA/C and anti-GAPDH. Relative expression was determined as described in Methods.
<italic>n</italic>
=3; **p<0.005.</p>
</caption>
<graphic xlink:href="nihms627033f2"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<title>Serine 124 is phosphorylated
<italic>in vitro</italic>
by CK2</title>
<p>MPT cells were transfected with GFP-Foxc2 or GFP-Foxc2-S124L followed by immunoprecipitation with anti-GFP antibody and
<italic>in vitro</italic>
phosphorylation ± CK2. Paired samples were subjected to SDS-PAGE and immunoblotting with anti-GFP antibody to confirm immunoprecipitation of GFP-Foxc2 and GFP-Foxc2-S124L.</p>
</caption>
<graphic xlink:href="nihms627033f3"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<title>Cytoplasmic localization maintains an epithelial phenotype</title>
<p>(A) MPT cells were transfected with GFP, GFP-Foxc2-S124D or GFP-Foxc2-S124L constructs x3 to achieve ~70% transfection efficiency and grown to 90% confluency. Whole cell lysates were then blotted with the indicated antibodies. (B) Quantification of 3 experiments performed as in (A) with protein expression normalized to β-actin.
<italic>n</italic>
=3; ***p<0.001, **p<0.005 (compared to GFP control cells). (C) Real-time PCR was performed using RNA from cells transfected as in (A) with RNA expression normalized to Hprt1 and MPT control. WCL=whole cell lysate.
<italic>n</italic>
=3; ***p<0.001, **p<0.005 (compared to control cells).</p>
</caption>
<graphic xlink:href="nihms627033f4"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<title>FOXC2 nuclear expression correlates with metastatic phenotype in breast cancer cell lines</title>
<p>(A) MCF10A, MDA-MB-436 and MDA-MB-231 whole cell lysates were subjected to immunoblotting with anti-Foxc2 or anti-β-actin and quantified relative to β-actin.
<italic>n</italic>
=3; *p<0.05 relative to MCF10A cells. (B) MCF10A, MDA-MB-436 and MDA-MB-231 cells were subjected to cell fractionation followed by SDS-PAGE and immunoblotting for FOXC2, Lamin A/C and GAPDH and quantified below. Relative FOXC2 expression was determined as described in Methods. WCL=whole cell lysate, C=Cytosolic, N=Nuclear.
<italic>n</italic>
=3; *p<0.05 relative to MCF10A cells.</p>
</caption>
<graphic xlink:href="nihms627033f5"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<title>Mesenchymal cell lines expressing nuclear FOXC2 have higher expression levels of EMT markers and altered CK2α/α′:CK2β expression</title>
<p>(A) MCF10A, MDA-MB-436 and MDA-MB-231 whole cell lysates were subjected to immunoblotting with the indicated antibodies. (B) Quantification of 3 experiments performed as in (A) with protein expression normalized to β-actin loading control.
<italic>n</italic>
=3; *p<0.05 relative to MCF10A cells. (C) MPT and MDA-MB-231 whole cell lysates (left panel) along with MPT, MCF10A and NIH3T3 cell lysates (right panel) were subjected to immunoblotting with the indicated antibodies. WCL=whole cell lysate.</p>
</caption>
<graphic xlink:href="nihms627033f6"></graphic>
</fig>
<fig id="F7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<title>Restoration of CK2β expression in metastatic breast cancer cells promotes FOXC2 cytoplasmic localization and reduced migration</title>
<p>(A) MDA-MB-231 cells were transfected with either an empty vector or a CK2β expression construct x2 and grown to 90% confluency. Whole cell lysates were then blotted with the indicated antibodies. (B) MDA-MB-231 cells transfected as in (A) were subjected to cell fractionation and fractions immunoblotted for FOXC2, LaminA/C and GAPDH. (C) MDA-MB-231 cells transfected as in (A) were subjected to cellular migration assays ± 10% FBS.
<italic>n</italic>
=3; ***p<0.001, *p<0.05 (compared to control cells). (D) MDA-MB-231 cells transfected as in (A) were subjected to a basement membrane extract cellular invasion assay ± 10% FBS.
<italic>n</italic>
=3; ***p<0.001, *p<0.05 (compared to control cells). WCL=whole cell lysate, C=Cytosolic, N=Nuclear, FBS=Fetal Bovine Serum.</p>
</caption>
<graphic xlink:href="nihms627033f7"></graphic>
</fig>
<fig id="F8" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<title>CK2β knockdown in normal breast epithelial cells promotes FOXC2 nuclear localization and increased migration/invasion</title>
<p>(A) MCF10A cells were transfected with either a scrambled siRNA or siRNA directed against CK2β and grown to 90% confluency. Whole cell lysates were then blotted with the indicated antibodies. (B) MCF10A cells transfected as in (A) were subjected to cell fractionation and fractions immunoblotted for FOXC2, LaminA/C and GAPDH. (C) MCF10A cells transfected as in (A) were subjected to cellular migration assays ± 10% FBS.
<italic>n</italic>
=3; ***p<0.001, *p<0.05 (compared to control scrambled siRNA cells). (D) MCF10A cells transfected as in (A) were subjected to a basement membrane extract cellular invasion assay ± 10% FBS.
<italic>n</italic>
=3; ***p<0.001 (compared to control cells). WCL=whole cell lysate, C=Cytosolic, N=Nuclear, FBS=Fetal Bovine Serum.</p>
</caption>
<graphic xlink:href="nihms627033f8"></graphic>
</fig>
<fig id="F9" orientation="portrait" position="float">
<label>Figure 9</label>
<caption>
<title>Foxc2-S124L can overcome the CK2β-mediated normalization of migration</title>
<p>(A) MCF10A cells were transfected with either empty vector, CK2β, GFP-Foxc2 or GFP-Foxc2-S124L in the indicated combinations, grown to 90% confluency and subjected to cell migration assays without fetal bovine serum (FBS).
<italic>n</italic>
=3; ***p<0.001 (compared to control cells). (B) MDA-MB-231 cells transfected as in (A) were subjected to cell migration assays without FBS.
<italic>n</italic>
=3; ***p<0.001 (compared to control cells). (C) MCF10A cells transfected as in (A) were subjected to a basement membrane extract cellular invasion assay without FBS.
<italic>n</italic>
=3; **p<0.01, *p<0.05 (compared to control cells). (D) MDA-MB-231 cells transfected as in (A) were subjected to a basement membrane extract cellular invasion assay without FBS.
<italic>n</italic>
=3; **p<0.01 (compared to control cells).</p>
</caption>
<graphic xlink:href="nihms627033f9"></graphic>
</fig>
<table-wrap id="T1" position="float" orientation="portrait">
<label>Table 1</label>
<caption>
<p>Potential CK2 site is conserved amongst Fox family members.</p>
</caption>
<table frame="void" rules="none">
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">
<graphic xlink:href="nihms627033f10"></graphic>
</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Cantley, Lloyd G" sort="Cantley, Lloyd G" uniqKey="Cantley L" first="Lloyd G." last="Cantley">Lloyd G. Cantley</name>
<name sortKey="Golden, Diana" sort="Golden, Diana" uniqKey="Golden D" first="Diana" last="Golden">Diana Golden</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001C89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4459945
   |texte=   Casein Kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in
the cytoplasm
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:25486430" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a LymphedemaV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024