Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging

Identifieur interne : 006234 ( Istex/Corpus ); précédent : 006233; suivant : 006235

Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging

Auteurs : Dipanjan Pan ; Manojit Pramanik ; Samuel A. Wickline ; Lihong V. Wang ; Gregory M. Lanza

Source :

RBID : ISTEX:D198FDAF7D1319E718B41B34592CFF83470A6FB9

Abstract

Photoacoustic imaging (PAI) represents a hybrid, nonionizing modality, which has been of particular interest because of its satisfactory spatial resolution and high soft tissue contrast. PAI has the potential to provide both functional and molecular imaging in vivo since optical absorption is sensitive to physiological parameters. In this review we summarize our effort to advance molecular PAI with colloidal gold nanobeacons (GNB). GNB represents a robust nanoparticle platform that entraps multiple copies of tiny gold nanoparticles (2–4 nm) within a larger colloidal particle encapsulated by biocompatible synthetic or natural amphilines. The utilization of numerous small gold particles greatly amplifies the signal without exceeding the renal elimination threshold size. With fibrin‐targeted GNB, the robust detection of microthrombus formed over a ruptured atherosclerotic plaque has been achieved, which offers an important opportunity to recognize patients with moderate lumen stenosis but high risk of stroke. With the use of second‐generation smaller GNBs, the potential to improve sentinel lymph node assessment and biopsy was advanced with respect to rapidity and sensitivity of detection in mice. Finally, for angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin‐targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/cmmi.449

Links to Exploration step

ISTEX:D198FDAF7D1319E718B41B34592CFF83470A6FB9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging</title>
<author>
<name sortKey="Pan, Dipanjan" sort="Pan, Dipanjan" uniqKey="Pan D" first="Dipanjan" last="Pan">Dipanjan Pan</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, MO, 63108, St Louis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dpan@dom.wustl.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pramanik, Manojit" sort="Pramanik, Manojit" uniqKey="Pramanik M" first="Manojit" last="Pramanik">Manojit Pramanik</name>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wickline, Samuel A" sort="Wickline, Samuel A" uniqKey="Wickline S" first="Samuel A." last="Wickline">Samuel A. Wickline</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lihong V" sort="Wang, Lihong V" uniqKey="Wang L" first="Lihong V." last="Wang">Lihong V. Wang</name>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanza, Gregory M" sort="Lanza, Gregory M" uniqKey="Lanza G" first="Gregory M." last="Lanza">Gregory M. Lanza</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D198FDAF7D1319E718B41B34592CFF83470A6FB9</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/cmmi.449</idno>
<idno type="url">https://api.istex.fr/document/D198FDAF7D1319E718B41B34592CFF83470A6FB9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006234</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006234</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
<ref type="note" target="#cmmi449-note-0001"></ref>
</title>
<author>
<name sortKey="Pan, Dipanjan" sort="Pan, Dipanjan" uniqKey="Pan D" first="Dipanjan" last="Pan">Dipanjan Pan</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, MO, 63108, St Louis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dpan@dom.wustl.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pramanik, Manojit" sort="Pramanik, Manojit" uniqKey="Pramanik M" first="Manojit" last="Pramanik">Manojit Pramanik</name>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wickline, Samuel A" sort="Wickline, Samuel A" uniqKey="Wickline S" first="Samuel A." last="Wickline">Samuel A. Wickline</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lihong V" sort="Wang, Lihong V" uniqKey="Wang L" first="Lihong V." last="Wang">Lihong V. Wang</name>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanza, Gregory M" sort="Lanza, Gregory M" uniqKey="Lanza G" first="Gregory M." last="Lanza">Gregory M. Lanza</name>
<affiliation>
<mods:affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Contrast Media & Molecular Imaging</title>
<title level="j" type="sub">Photoacoustic Imaging</title>
<title level="j" type="alt">CONTRAST MEDIA AND MOLECULAR IMAGING</title>
<idno type="ISSN">1555-4309</idno>
<idno type="eISSN">1555-4317</idno>
<imprint>
<biblScope unit="vol">6</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="378">378</biblScope>
<biblScope unit="page" to="388">388</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-09">2011-09</date>
</imprint>
<idno type="ISSN">1555-4309</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1555-4309</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Photoacoustic imaging (PAI) represents a hybrid, nonionizing modality, which has been of particular interest because of its satisfactory spatial resolution and high soft tissue contrast. PAI has the potential to provide both functional and molecular imaging in vivo since optical absorption is sensitive to physiological parameters. In this review we summarize our effort to advance molecular PAI with colloidal gold nanobeacons (GNB). GNB represents a robust nanoparticle platform that entraps multiple copies of tiny gold nanoparticles (2–4 nm) within a larger colloidal particle encapsulated by biocompatible synthetic or natural amphilines. The utilization of numerous small gold particles greatly amplifies the signal without exceeding the renal elimination threshold size. With fibrin‐targeted GNB, the robust detection of microthrombus formed over a ruptured atherosclerotic plaque has been achieved, which offers an important opportunity to recognize patients with moderate lumen stenosis but high risk of stroke. With the use of second‐generation smaller GNBs, the potential to improve sentinel lymph node assessment and biopsy was advanced with respect to rapidity and sensitivity of detection in mice. Finally, for angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin‐targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis in vivo. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>photoacoustic</json:string>
<json:string>wang</json:string>
<json:string>nanoparticles</json:string>
<json:string>nanobeacons</json:string>
<json:string>angiogenesis</json:string>
<json:string>imaging</json:string>
<json:string>matrigel</json:string>
<json:string>gold nanobeacons</json:string>
<json:string>nanorods</json:string>
<json:string>photoacoustic imaging</json:string>
<json:string>john wiley sons</json:string>
<json:string>copyright</json:string>
<json:string>node</json:string>
<json:string>washington university</json:string>
<json:string>angiogenic</json:string>
<json:string>stoica</json:string>
<json:string>pecam</json:string>
<json:string>wickline</json:string>
<json:string>noninvasive</json:string>
<json:string>contrast media</json:string>
<json:string>enhancement</json:string>
<json:string>gold nanorods</json:string>
<json:string>nanoparticle</json:string>
<json:string>microvessels</json:string>
<json:string>proc</json:string>
<json:string>biol</json:string>
<json:string>lymphnode</json:string>
<json:string>pramanik</json:string>
<json:string>vasculature</json:string>
<json:string>ultrasound</json:string>
<json:string>molecular imaging</json:string>
<json:string>contrast agents</json:string>
<json:string>cardiovascular</json:string>
<json:string>sentinel</json:string>
<json:string>surfactant</json:string>
<json:string>surfactant mixture</json:string>
<json:string>gold particles</json:string>
<json:string>control image</json:string>
<json:string>lanza</json:string>
<json:string>gold content</json:string>
<json:string>rhodamine nanoparticles</json:string>
<json:string>indian institute</json:string>
<json:string>photoacoustic tomography</json:string>
<json:string>cardiovascular division</json:string>
<json:string>imaging agent</json:string>
<json:string>colloidal gold nanobeacons</json:string>
<json:string>washington university school</json:string>
<json:string>gold nanoparticles</json:string>
<json:string>gold metal atoms</json:string>
<json:string>breast cancer</json:string>
<json:string>sentinel lymphnode</json:string>
<json:string>polydispersity index</json:string>
<json:string>lymph node</json:string>
<json:string>proc spie</json:string>
<json:string>blood vessels</json:string>
<json:string>mature microvessels</json:string>
<json:string>contrast enhancement</json:string>
<json:string>optical absorption</json:string>
<json:string>lymph</json:string>
<json:string>atomic force microscopy</json:string>
<json:string>moderate lumen stenosis</json:string>
<json:string>cardiovascular disease progression</json:string>
<json:string>essential microanatomical biomarker</json:string>
<json:string>brookhaven instrument</json:string>
<json:string>acoustic waves</json:string>
<json:string>particle size</json:string>
<json:string>average height</json:string>
<json:string>high contrast</json:string>
<json:string>polyethylene tube</json:string>
<json:string>curved array</json:string>
<json:string>plasma clot</json:string>
<json:string>important opportunity</json:string>
<json:string>atherosclerotic plaque</json:string>
<json:string>aqueous media</json:string>
<json:string>transmission electron microscopy</json:string>
<json:string>nanopure water</json:string>
<json:string>original publications</json:string>
<json:string>dynamic light</json:string>
<json:string>homing ligand</json:string>
<json:string>sentinel lymphnode imaging</json:string>
<json:string>renal elimination threshold size</json:string>
<json:string>molecular imaging application</json:string>
<json:string>sentinel lymph nodes</json:string>
<json:string>amplitude projection</json:string>
<json:string>biomedical engineering</json:string>
<json:string>blood cells</json:string>
<json:string>ultrasound images</json:string>
<json:string>sorbitan monolaureate</json:string>
<json:string>optical properties</json:string>
<json:string>signal amplitude</json:string>
<json:string>internal medicine</json:string>
<json:string>lanza department</json:string>
<json:string>lymphatic ductile</json:string>
<json:string>blood vessel</json:string>
<json:string>lihong wang</json:string>
<json:string>numerous cell types</json:string>
<json:string>smooth muscle cells</json:string>
<json:string>tumor cells</json:string>
<json:string>steric constraint</json:string>
<json:string>natural amphilines</json:string>
<json:string>biomedical optics</json:string>
<json:string>physiological parameters</json:string>
<json:string>plug model</json:string>
<json:string>angiogenesis index</json:string>
<json:string>principal investigator</json:string>
<json:string>digital photograph</json:string>
<json:string>vascular anatomy</json:string>
<json:string>numerous angiogenic sprouts</json:string>
<json:string>contrast agent</json:string>
<json:string>lacz signal</json:string>
<json:string>tissue contrast</json:string>
<json:string>particular interest</json:string>
<json:string>molecular photoacoustic imaging</json:string>
<json:string>clin oncol</json:string>
<json:string>fumagillin nanoparticles</json:string>
<json:string>tumor angiogenesis</json:string>
<json:string>proc natl acad</json:string>
<json:string>biol chem</json:string>
<json:string>vivo imaging</json:string>
<json:string>high risk</json:string>
<json:string>uorescence imaging</json:string>
<json:string>carbon nanotubes</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Dipanjan Pan</name>
<affiliations>
<json:string>Department of Medicine, Washington University School of Medicine, MO, 63108, St Louis, USA</json:string>
<json:string>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA.E‐mail:</json:string>
<json:string>E-mail: dpan@dom.wustl.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Manojit Pramanik</name>
<affiliations>
<json:string>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Samuel A. Wickline</name>
<affiliations>
<json:string>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</json:string>
<json:string>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lihong V. Wang</name>
<affiliations>
<json:string>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gregory M. Lanza</name>
<affiliations>
<json:string>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</json:string>
<json:string>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photoacoustic imaging</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>gold nanoparticle</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fibrin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>angiogenesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sentinel lymphnode</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thrombus</value>
</json:item>
</subject>
<articleId>
<json:string>CMMI449</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>reviewArticle</json:string>
</originalGenre>
<qualityIndicators>
<score>7.652</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1614</abstractCharCount>
<pdfWordCount>7313</pdfWordCount>
<pdfCharCount>45944</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>221</abstractWordCount>
</qualityIndicators>
<title>Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Contrast Media & Molecular Imaging</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1555-4317</json:string>
</doi>
<issn>
<json:string>1555-4309</json:string>
</issn>
<eissn>
<json:string>1555-4317</json:string>
</eissn>
<publisherId>
<json:string>CMMI</json:string>
</publisherId>
<volume>6</volume>
<issue>5</issue>
<pages>
<first>378</first>
<last>388</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<editor>
<json:item>
<name>Gregory Lanza</name>
</json:item>
</editor>
<subject>
<json:item>
<value>Review</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/cmmi.449</json:string>
</doi>
<id>D198FDAF7D1319E718B41B34592CFF83470A6FB9</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D198FDAF7D1319E718B41B34592CFF83470A6FB9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D198FDAF7D1319E718B41B34592CFF83470A6FB9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D198FDAF7D1319E718B41B34592CFF83470A6FB9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
<ref type="note" target="#cmmi449-note-0001"></ref>
</title>
</titleStmt>
<publicationStmt>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2011 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2011-09"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="review-article" source="reviewArticle" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="review-article">
<analytic>
<title level="a" type="main">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
<ref type="note" target="#cmmi449-note-0001"></ref>
</title>
<title level="a" type="short">PHOTOACOUSTIC IMAGING WITH GOLD NANOBEACONS</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Dipanjan</forename>
<surname>Pan</surname>
</persName>
<state type="biography">
<desc> Dr Dipanjan Pan is an Assistant Professor of Medicine at the Division of Cardiology, Washington University in St Louis, and has published over 50 original publications, numerous abstracts and patents in the area of materials science, chemistry and nanotechnology. He received his Ph.D. in Synthetic Chemistry from the Indian Institute of Technology, Kharagpur, India in 2002 and pursued a postdoctoral career in polymer science and technology at the Department of Chemistry, Washington University in St Louis. In 2005, he joined General Electric and worked as a part of the global research team supporting the development of their biosciences initiatives. Dr Pan joined the WU faculty in 2007. Subsequently, he co‐invented several nanoparticle platforms for molecular imaging application with CT, MRI, optical and photoacoustic imaging. His research is broadly aimed at understanding and developing novel lipid‐based and polymeric nanoparticle platforms for molecular imaging, drug delivery and nonviral gene delivery applications with a focus on structure, function and engineering processes. His multidisciplinary approaches encompass a variety of chemical, polymeric, molecular biological and analytical methods to address issues related to cardiovascular and cancer diseases. More specifically, the current inquiries also address the design, synthesis and characterization of nanoscopic materials and contribute to the overall research orientation of the Consortium for Translational Research in Advanced Imaging and Nanomedicine (C‐TRAIN). He presently serves as an editorial board member of the
<hi rend="italic">Journal of Biotechnology and Biomaterials</hi>
(OMICS) and
<hi rend="italic">World Journal of Radiology</hi>
(Baishideng Publishing).
<media mimeType="biography image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0001"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</desc>
</state>
<email>dpan@dom.wustl.edu</email>
<affiliation>
<orgName>Department of Medicine</orgName>
<orgName>Washington University School of Medicine</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63108</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA. E‐mail: dpan@dom.wustl.edu</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Manojit</forename>
<surname>Pramanik</surname>
</persName>
<state type="biography">
<desc> Manojit Pramanik received his B.Tech. degree from the Department of Electrical Engineering of the Indian Institute of Technology, Kharagpur, India,in 2002 and M.Tech. degree in Instrumentation Engineering from Indian Institute of Science, Bangalore, India, in 2004. He was awarded his doctoral degree (Ph.D.) from the Department of Biomedical Engineering at Washington University in St Louis in 2010. His research interest is in the area of early breast cancer detection using the principle of thermoacoustic and photoacoustic tomography.
<media mimeType="biography image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0002"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</desc>
</state>
<affiliation>
<orgName>Department of Biomedical Imaging</orgName>
<orgName>Washington University</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63130</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Samuel A.</forename>
<surname>Wickline</surname>
</persName>
<state type="biography">
<desc> Samuel A. Wickline is Professor of Medicine, Physics, Biomedical Engineering, and Cell Biology and Physiology at Washington University. He received his B.A. degree from Pomona College, Claremont, CA in 1974 and his M.D. degree from the University of Hawaii School of Medicine, Honolulu, HI, in 1980. He completed post‐doctoral training in Internal Medicine and Cardiology at Barnes Hospital, St Louis, MO in 1987 and joined the faculty of the School of Medicine in the Cardiovascular Division before becoming Director of the Cardiovascular Division at Jewish Hospital and subsequently Co‐Director of the Cardiovascular Division at Barnes‐Jewish Hospital. He is Co‐Director of the Cardiovascular Bioengineering Graduate Program at Washington University and a member of the executive faculty of the Institute for Biological and Medical Engineering. He established the Washington University C‐TRAIN at the St Louis CORTEX Center, devoted to diagnostic and therapeutic development of nanotechnology in concert with corporate and academic partners for broadbased clinical applications. He also directs the ‘Siteman Center For Cancer Nanotechnology Excellence’ at Washington University. Dr Wickline is a founder of two local biotech startup companies in St Louis: Kereos Inc., a nanotechnology startup company devoted to molecular imaging and targeted therapeutics, and PixelEXX Systems Inc., a company that makes semiconductor nanoarrays for molecular diagnostics and microscopy. He also directs the new St Louis Institute of Nanomedicine, a consortium of academic and commercial partners devoted to enhancing regional infrastructure for the translational advancement of nanotechnology in medicine. He is the author of over 200 research papers, and holds more than 50 issued or filed US patent applications.
<media mimeType="biography image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0003"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</desc>
</state>
<affiliation>
<orgName>Department of Medicine</orgName>
<orgName>Washington University School of Medicine</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63108</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Biomedical Imaging</orgName>
<orgName>Washington University</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63130</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Lihong V.</forename>
<surname>Wang</surname>
</persName>
<state type="biography">
<desc> Lihong Wang holds the Gene K. Beare Distinguished Professorship at Washington University. His book, entitled
<hi rend="italic">Biomedical Optics: Principles and Imaging</hi>
, won the Joseph W. Goodman Book Writing Award. Professor Wang has published more than 250 peer‐reviewed journal articles and delivered more than 270 keynote, plenary or invited talks. He has received 27 research grants as the principal investigator with a cumulative budget of more than $30 million. His laboratory developed functional photoacoustic CT/microscopy. His Monte Carlo model of photon transport in tissue is used worldwide. He is a Fellow of the AIMBE, OSA, IEEE and SPIE. He serves as the Editor‐in‐Chief of the
<hi rend="italic">Journal of Biomedical Optics</hi>
.
<media mimeType="biography image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0004"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</desc>
</state>
<affiliation>
<orgName>Department of Biomedical Imaging</orgName>
<orgName>Washington University</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63130</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Gregory M.</forename>
<surname>Lanza</surname>
</persName>
<state type="biography">
<desc> Dr Lanza is Professor of Medicine and Bioengineering at Washington University in St Louis, and has 200 original publications, as well as abstracts, chapters and patents across multiple disciplines. He received his Ph.D. from the University Of Georgia School of Agriculture and joined Monsanto Company in 1981, where he established and directed the preclinical research program supporting the development of a 14‐day parenteral, controlled release product that is marketed today as Posilac®. In 1988, Dr Lanza matriculated at Northwestern University Medical School in Chicago, where he received an M.D. degree in 1992. He developed expertise in ultrasonic imaging and patented the first acoustic molecular imaging agent. He completed his residency in Internal Medicine and fellowship in Cardiology at Barnes‐Jewish Hospital at Washington University School of Medicine. In 1994, as a fellow, he co‐invented a new perfluorocarbon based, ligand‐targeted contrast agent, which has been broadly patented for use as a multimodality molecular imaging agent as well as for a targeted drug delivery platform. Dr Lanza joined the Washington University faculty in 1999. Subsequently, he has co‐invented numerous nanoparticle platforms for molecular imaging with MRI, ultrasound, CT, optical and photoacoutics. In addition, he has developed nanoparticle platforms and compatible prodrugs to address a variety of unmet medical needs in cardiovascular disease, cancer and arthritis. Dr Lanza is the recipient of numerous awards for research excellence. He is an established principal investigator of the NIH and he is co‐Director of C‐TRAIN, where his research continues to focus on developing new nanomedicine tools and converting these tools into translatable solutions for medical problems.
<media mimeType="biography image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0005"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</desc>
</state>
<affiliation>
<orgName>Department of Medicine</orgName>
<orgName>Washington University School of Medicine</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63108</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Biomedical Imaging</orgName>
<orgName>Washington University</orgName>
<address>
<settlement type="city">St Louis</settlement>
<postCode>63130</postCode>
<region>MO</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<idno type="istex">D198FDAF7D1319E718B41B34592CFF83470A6FB9</idno>
<idno type="DOI">10.1002/cmmi.449</idno>
<idno type="unit">CMMI449</idno>
<idno type="toTypesetVersion">file:CMMI.CMMI449.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Contrast Media & Molecular Imaging</title>
<title level="j" type="sub">Photoacoustic Imaging</title>
<title level="j" type="alt">CONTRAST MEDIA AND MOLECULAR IMAGING</title>
<idno type="pISSN">1555-4309</idno>
<idno type="eISSN">1555-4317</idno>
<idno type="book-DOI">10.1002/(ISSN)1555-4317</idno>
<idno type="book-part-DOI">10.1002/cmmi.v6.5</idno>
<idno type="product">CMMI</idno>
<imprint>
<biblScope unit="vol">6</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="378">378</biblScope>
<biblScope unit="page" to="388">388</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-09"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main" xml:id="cmmi449-abs-0001">
<p xml:id="cmmi449-para-0006">Photoacoustic imaging (PAI) represents a hybrid, nonionizing modality, which has been of particular interest because of its satisfactory spatial resolution and high soft tissue contrast. PAI has the potential to provide both functional and molecular imaging
<hi rend="italic">in vivo</hi>
since optical absorption is sensitive to physiological parameters. In this review we summarize our effort to advance molecular PAI with colloidal gold nanobeacons (GNB). GNB represents a robust nanoparticle platform that entraps multiple copies of tiny gold nanoparticles (2–4 nm) within a larger colloidal particle encapsulated by biocompatible synthetic or natural amphilines. The utilization of numerous small gold particles greatly amplifies the signal without exceeding the renal elimination threshold size. With fibrin‐targeted GNB, the robust detection of microthrombus formed over a ruptured atherosclerotic plaque has been achieved, which offers an important opportunity to recognize patients with moderate lumen stenosis but high risk of stroke. With the use of second‐generation smaller GNBs, the potential to improve sentinel lymph node assessment and biopsy was advanced with respect to rapidity and sensitivity of detection in mice. Finally, for angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin‐targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis
<hi rend="italic">in vivo</hi>
. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract style="graphical" xml:id="cmmi449-abs-0002">
<p xml:id="cmmi449-para-0007">In this review we summarize our effort to advance molecular photoacoustic imaging with colloidal gold nano beacons (GNB). GNB represent a robust nanoparticle platform for various molecular imaging applications with photoacoustic imaging. For angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis
<hi rend="italic">in vivo</hi>
.</p>
<p xml:id="cmmi449-para-0008">
<figure type="box">
<media mimeType="image" url="urn:x-wiley:15554309:media:cmmi449:cmmi449-toc-0001"></media>
<media mimeType="image/png" url="" rendition="webOriginal"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="cmmi449-kwd-0001">photoacoustic imaging</term>
<term xml:id="cmmi449-kwd-0002">gold nanoparticle</term>
<term xml:id="cmmi449-kwd-0003">fibrin</term>
<term xml:id="cmmi449-kwd-0004">angiogenesis</term>
<term xml:id="cmmi449-kwd-0005">sentinel lymphnode</term>
<term xml:id="cmmi449-kwd-0006">thrombus</term>
</keywords>
<classCode scheme="articleCategory">Review</classCode>
<classCode scheme="tocHeading1">Reviews</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D198FDAF7D1319E718B41B34592CFF83470A6FB9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="cmmi449">
<header xml:id="cmmi449-hdr-0001">
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi>10.1002/(ISSN)1555-4317</doi>
<issn type="print">1555-4309</issn>
<issn type="electronic">1555-4317</issn>
<idGroup>
<id type="product" value="CMMI"></id>
</idGroup>
<titleGroup>
<title type="main" sort="CONTRAST MEDIA AND MOLECULAR IMAGING">Contrast Media & Molecular Imaging</title>
<title type="short">Contrast Media Mol. Imaging</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi>10.1002/cmmi.v6.5</doi>
<titleGroup>
<title type="specialIssueTitle">Photoacoustic Imaging</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="6">6</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<creators>
<creator creatorRole="guestEditor" xml:id="cmmi449-cr-0001">
<personName>
<givenNames>Gregory</givenNames>
<familyName>Lanza</familyName>
</personName>
</creator>
</creators>
<coverDate startDate="2011-09">September/October 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="6" type="reviewArticle" status="forIssue">
<doi>10.1002/cmmi.449</doi>
<idGroup>
<id type="unit" value="CMMI449"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Review</title>
<title type="tocHeading1">Reviews</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-12-09"></event>
<event type="manuscriptRevised" date="2011-03-03"></event>
<event type="manuscriptAccepted" date="2011-03-16"></event>
<event type="xmlCreated" agent="SPi Global" date="2011-04-16"></event>
<event type="publishedOnlineFinalForm" date="2011-10-25"></event>
<event type="firstOnline" date="2011-10-25"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">378</numbering>
<numbering type="pageLast">388</numbering>
</numberingGroup>
<correspondenceTo>
<lineatedText>
<line>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA.</line>
<line>E‐mail:
<email>dpan@dom.wustl.edu</email>
</line>
</lineatedText>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CMMI.CMMI449.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
<link href="#cmmi449-note-0001"></link>
</title>
<title type="tocForm">Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging</title>
<title type="short">PHOTOACOUSTIC IMAGING WITH GOLD NANOBEACONS</title>
<title type="shortAuthors">D. PAN
<i>ET AL.</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cmmi449-cr-0002" affiliationRef="#cmmi449-aff-0001" corresponding="yes">
<personName>
<givenNames>Dipanjan</givenNames>
<familyName>Pan</familyName>
</personName>
<biographyInfo xml:id="cmmi449-biog-0001">
<p xml:id="cmmi449-para-0001">Dr Dipanjan Pan is an Assistant Professor of Medicine at the Division of Cardiology, Washington University in St Louis, and has published over 50 original publications, numerous abstracts and patents in the area of materials science, chemistry and nanotechnology. He received his Ph.D. in Synthetic Chemistry from the Indian Institute of Technology, Kharagpur, India in 2002 and pursued a postdoctoral career in polymer science and technology at the Department of Chemistry, Washington University in St Louis. In 2005, he joined General Electric and worked as a part of the global research team supporting the development of their biosciences initiatives. Dr Pan joined the WU faculty in 2007. Subsequently, he co‐invented several nanoparticle platforms for molecular imaging application with CT, MRI, optical and photoacoustic imaging. His research is broadly aimed at understanding and developing novel lipid‐based and polymeric nanoparticle platforms for molecular imaging, drug delivery and nonviral gene delivery applications with a focus on structure, function and engineering processes. His multidisciplinary approaches encompass a variety of chemical, polymeric, molecular biological and analytical methods to address issues related to cardiovascular and cancer diseases. More specifically, the current inquiries also address the design, synthesis and characterization of nanoscopic materials and contribute to the overall research orientation of the Consortium for Translational Research in Advanced Imaging and Nanomedicine (C‐TRAIN). He presently serves as an editorial board member of the
<i>Journal of Biotechnology and Biomaterials</i>
(OMICS) and
<i>World Journal of Radiology</i>
(Baishideng Publishing).</p>
<mediaResourceGroup>
<mediaResource alt="biography image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0001"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="biography image" href=""></mediaResource>
</mediaResourceGroup>
</biographyInfo>
<contactDetails>
<email>dpan@dom.wustl.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="cmmi449-cr-0003" affiliationRef="#cmmi449-aff-0002">
<personName>
<givenNames>Manojit</givenNames>
<familyName>Pramanik</familyName>
</personName>
<biographyInfo xml:id="cmmi449-biog-0002">
<p xml:id="cmmi449-para-0002">Manojit Pramanik received his B.Tech. degree from the Department of Electrical Engineering of the Indian Institute of Technology, Kharagpur, India,in 2002 and M.Tech. degree in Instrumentation Engineering from Indian Institute of Science, Bangalore, India, in 2004. He was awarded his doctoral degree (Ph.D.) from the Department of Biomedical Engineering at Washington University in St Louis in 2010. His research interest is in the area of early breast cancer detection using the principle of thermoacoustic and photoacoustic tomography.</p>
<mediaResourceGroup>
<mediaResource alt="biography image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0002"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="biography image" href=""></mediaResource>
</mediaResourceGroup>
</biographyInfo>
</creator>
<creator creatorRole="author" xml:id="cmmi449-cr-0004" affiliationRef="#cmmi449-aff-0001 #cmmi449-aff-0002">
<personName>
<givenNames>Samuel A.</givenNames>
<familyName>Wickline</familyName>
</personName>
<biographyInfo xml:id="cmmi449-biog-0003">
<p xml:id="cmmi449-para-0003">Samuel A. Wickline is Professor of Medicine, Physics, Biomedical Engineering, and Cell Biology and Physiology at Washington University. He received his B.A. degree from Pomona College, Claremont, CA in 1974 and his M.D. degree from the University of Hawaii School of Medicine, Honolulu, HI, in 1980. He completed post‐doctoral training in Internal Medicine and Cardiology at Barnes Hospital, St Louis, MO in 1987 and joined the faculty of the School of Medicine in the Cardiovascular Division before becoming Director of the Cardiovascular Division at Jewish Hospital and subsequently Co‐Director of the Cardiovascular Division at Barnes‐Jewish Hospital. He is Co‐Director of the Cardiovascular Bioengineering Graduate Program at Washington University and a member of the executive faculty of the Institute for Biological and Medical Engineering. He established the Washington University C‐TRAIN at the St Louis CORTEX Center, devoted to diagnostic and therapeutic development of nanotechnology in concert with corporate and academic partners for broadbased clinical applications. He also directs the ‘Siteman Center For Cancer Nanotechnology Excellence’ at Washington University. Dr Wickline is a founder of two local biotech startup companies in St Louis: Kereos Inc., a nanotechnology startup company devoted to molecular imaging and targeted therapeutics, and PixelEXX Systems Inc., a company that makes semiconductor nanoarrays for molecular diagnostics and microscopy. He also directs the new St Louis Institute of Nanomedicine, a consortium of academic and commercial partners devoted to enhancing regional infrastructure for the translational advancement of nanotechnology in medicine. He is the author of over 200 research papers, and holds more than 50 issued or filed US patent applications.</p>
<mediaResourceGroup>
<mediaResource alt="biography image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0003"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="biography image" href=""></mediaResource>
</mediaResourceGroup>
</biographyInfo>
</creator>
<creator creatorRole="author" xml:id="cmmi449-cr-0005" affiliationRef="#cmmi449-aff-0002">
<personName>
<givenNames>Lihong V.</givenNames>
<familyName>Wang</familyName>
</personName>
<biographyInfo xml:id="cmmi449-biog-0004">
<p xml:id="cmmi449-para-0004">Lihong Wang holds the Gene K. Beare Distinguished Professorship at Washington University. His book, entitled
<i>Biomedical Optics: Principles and Imaging</i>
, won the Joseph W. Goodman Book Writing Award. Professor Wang has published more than 250 peer‐reviewed journal articles and delivered more than 270 keynote, plenary or invited talks. He has received 27 research grants as the principal investigator with a cumulative budget of more than $30 million. His laboratory developed functional photoacoustic CT/microscopy. His Monte Carlo model of photon transport in tissue is used worldwide. He is a Fellow of the AIMBE, OSA, IEEE and SPIE. He serves as the Editor‐in‐Chief of the
<i>Journal of Biomedical Optics</i>
.</p>
<mediaResourceGroup>
<mediaResource alt="biography image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0004"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="biography image" href=""></mediaResource>
</mediaResourceGroup>
</biographyInfo>
</creator>
<creator creatorRole="author" xml:id="cmmi449-cr-0006" affiliationRef="#cmmi449-aff-0001 #cmmi449-aff-0002">
<personName>
<givenNames>Gregory M.</givenNames>
<familyName>Lanza</familyName>
</personName>
<biographyInfo xml:id="cmmi449-biog-0005">
<p xml:id="cmmi449-para-0005">Dr Lanza is Professor of Medicine and Bioengineering at Washington University in St Louis, and has 200 original publications, as well as abstracts, chapters and patents across multiple disciplines. He received his Ph.D. from the University Of Georgia School of Agriculture and joined Monsanto Company in 1981, where he established and directed the preclinical research program supporting the development of a 14‐day parenteral, controlled release product that is marketed today as Posilac®. In 1988, Dr Lanza matriculated at Northwestern University Medical School in Chicago, where he received an M.D. degree in 1992. He developed expertise in ultrasonic imaging and patented the first acoustic molecular imaging agent. He completed his residency in Internal Medicine and fellowship in Cardiology at Barnes‐Jewish Hospital at Washington University School of Medicine. In 1994, as a fellow, he co‐invented a new perfluorocarbon based, ligand‐targeted contrast agent, which has been broadly patented for use as a multimodality molecular imaging agent as well as for a targeted drug delivery platform. Dr Lanza joined the Washington University faculty in 1999. Subsequently, he has co‐invented numerous nanoparticle platforms for molecular imaging with MRI, ultrasound, CT, optical and photoacoutics. In addition, he has developed nanoparticle platforms and compatible prodrugs to address a variety of unmet medical needs in cardiovascular disease, cancer and arthritis. Dr Lanza is the recipient of numerous awards for research excellence. He is an established principal investigator of the NIH and he is co‐Director of C‐TRAIN, where his research continues to focus on developing new nanomedicine tools and converting these tools into translatable solutions for medical problems.</p>
<mediaResourceGroup>
<mediaResource alt="biography image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-gra-0005"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="biography image" href=""></mediaResource>
</mediaResourceGroup>
</biographyInfo>
</creator>
</creators>
<affiliationGroup xml:id="cmmi449-affgp-0001">
<affiliation xml:id="cmmi449-aff-0001" countryCode="US" type="organization">
<orgDiv>Department of Medicine</orgDiv>
<orgName>Washington University School of Medicine</orgName>
<address>
<city>St Louis</city>
<countryPart>MO</countryPart>
<postCode>63108</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation xml:id="cmmi449-aff-0002" countryCode="US" type="organization">
<orgDiv>Department of Biomedical Imaging</orgDiv>
<orgName>Washington University</orgName>
<address>
<city>St Louis</city>
<countryPart>MO</countryPart>
<postCode>63130</postCode>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="cmmi449-kwd-0001">photoacoustic imaging</keyword>
<keyword xml:id="cmmi449-kwd-0002">gold nanoparticle</keyword>
<keyword xml:id="cmmi449-kwd-0003">fibrin</keyword>
<keyword xml:id="cmmi449-kwd-0004">angiogenesis</keyword>
<keyword xml:id="cmmi449-kwd-0005">sentinel lymphnode</keyword>
<keyword xml:id="cmmi449-kwd-0006">thrombus</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:id="cmmi449-abs-0001">
<p xml:id="cmmi449-para-0006">Photoacoustic imaging (PAI) represents a hybrid, nonionizing modality, which has been of particular interest because of its satisfactory spatial resolution and high soft tissue contrast. PAI has the potential to provide both functional and molecular imaging
<i>in vivo</i>
since optical absorption is sensitive to physiological parameters. In this review we summarize our effort to advance molecular PAI with colloidal gold nanobeacons (GNB). GNB represents a robust nanoparticle platform that entraps multiple copies of tiny gold nanoparticles (2–4 nm) within a larger colloidal particle encapsulated by biocompatible synthetic or natural amphilines. The utilization of numerous small gold particles greatly amplifies the signal without exceeding the renal elimination threshold size. With fibrin‐targeted GNB, the robust detection of microthrombus formed over a ruptured atherosclerotic plaque has been achieved, which offers an important opportunity to recognize patients with moderate lumen stenosis but high risk of stroke. With the use of second‐generation smaller GNBs, the potential to improve sentinel lymph node assessment and biopsy was advanced with respect to rapidity and sensitivity of detection in mice. Finally, for angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin‐targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis
<i>in vivo</i>
. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract type="graphical" xml:id="cmmi449-abs-0002">
<p xml:id="cmmi449-para-0007">In this review we summarize our effort to advance molecular photoacoustic imaging with colloidal gold nano beacons (GNB). GNB represent a robust nanoparticle platform for various molecular imaging applications with photoacoustic imaging. For angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis
<i>in vivo</i>
.</p>
<p xml:id="cmmi449-para-0008">
<blockFixed type="graphic" xml:id="cmmi449-blkfxd-0001">
<mediaResourceGroup>
<mediaResource alt="image" href="urn:x-wiley:15554309:media:cmmi449:cmmi449-toc-0001"></mediaResource>
<mediaResource mimeType="image/png" rendition="webOriginal" alt="image" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup xml:id="cmmi449-ntgp-0001">
<note xml:id="cmmi449-note-0001">
<p>This article is published in Contrast Media and Molecular Imaging as part of the special issue on Photoacoustic Imaging, edited by Dr. Gregory Lanza, Department of Medicine, Washington University Medical Hospital.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>PHOTOACOUSTIC IMAGING WITH GOLD NANOBEACONS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dipanjan</namePart>
<namePart type="family">Pan</namePart>
<affiliation>Department of Medicine, Washington University School of Medicine, MO, 63108, St Louis, USA</affiliation>
<affiliation>D. Pan, Division of Cardiology, Campus Box 8215, 660 Euclid Ave, Washington University School of Medicine, St Louis, MO 63108, USA.E‐mail:</affiliation>
<affiliation>E-mail: dpan@dom.wustl.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manojit</namePart>
<namePart type="family">Pramanik</namePart>
<affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel A.</namePart>
<namePart type="family">Wickline</namePart>
<affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</affiliation>
<affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lihong V.</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gregory M.</namePart>
<namePart type="family">Lanza</namePart>
<affiliation>Department of Medicine, Washington University School of Medicine, 63108, St Louis, MO, USA</affiliation>
<affiliation>Department of Biomedical Imaging, Washington University, MO, 63130, St Louis, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="reviewArticle"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-09</dateIssued>
<dateCreated encoding="w3cdtf">2011-04-16</dateCreated>
<dateCaptured encoding="w3cdtf">2010-12-09</dateCaptured>
<dateValid encoding="w3cdtf">2011-03-16</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Photoacoustic imaging (PAI) represents a hybrid, nonionizing modality, which has been of particular interest because of its satisfactory spatial resolution and high soft tissue contrast. PAI has the potential to provide both functional and molecular imaging in vivo since optical absorption is sensitive to physiological parameters. In this review we summarize our effort to advance molecular PAI with colloidal gold nanobeacons (GNB). GNB represents a robust nanoparticle platform that entraps multiple copies of tiny gold nanoparticles (2–4 nm) within a larger colloidal particle encapsulated by biocompatible synthetic or natural amphilines. The utilization of numerous small gold particles greatly amplifies the signal without exceeding the renal elimination threshold size. With fibrin‐targeted GNB, the robust detection of microthrombus formed over a ruptured atherosclerotic plaque has been achieved, which offers an important opportunity to recognize patients with moderate lumen stenosis but high risk of stroke. With the use of second‐generation smaller GNBs, the potential to improve sentinel lymph node assessment and biopsy was advanced with respect to rapidity and sensitivity of detection in mice. Finally, for angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin‐targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis in vivo. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<abstract type="graphical">In this review we summarize our effort to advance molecular photoacoustic imaging with colloidal gold nano beacons (GNB). GNB represent a robust nanoparticle platform for various molecular imaging applications with photoacoustic imaging. For angiogenesis, an essential microanatomical biomarker of tumor and cardiovascular disease progression, integrin targeted GNBs allowed visualization of numerous angiogenic sprouts and bridges that were otherwise undetectable from inherent blood signal alone, offering sensitive and specific discrimination and quantification of angiogenesis in vivo.</abstract>
<note type="content">*This article is published in Contrast Media and Molecular Imaging as part of the special issue on Photoacoustic Imaging, edited by Dr. Gregory Lanza, Department of Medicine, Washington University Medical Hospital.</note>
<subject>
<genre>keywords</genre>
<topic>photoacoustic imaging</topic>
<topic>gold nanoparticle</topic>
<topic>fibrin</topic>
<topic>angiogenesis</topic>
<topic>sentinel lymphnode</topic>
<topic>thrombus</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Contrast Media & Molecular Imaging</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Contrast Media Mol. Imaging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gregory</namePart>
<namePart type="family">Lanza</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Review</topic>
</subject>
<identifier type="ISSN">1555-4309</identifier>
<identifier type="eISSN">1555-4317</identifier>
<identifier type="DOI">10.1002/(ISSN)1555-4317</identifier>
<identifier type="PublisherID">CMMI</identifier>
<part>
<date>2011</date>
<detail type="title">
<title>Photoacoustic Imaging</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>378</start>
<end>388</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D198FDAF7D1319E718B41B34592CFF83470A6FB9</identifier>
<identifier type="DOI">10.1002/cmmi.449</identifier>
<identifier type="ArticleID">CMMI449</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006234 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 006234 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D198FDAF7D1319E718B41B34592CFF83470A6FB9
   |texte=   Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024