Serveur d'exploration sur le lymphœdème

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices

Identifieur interne : 003413 ( Istex/Corpus ); précédent : 003412; suivant : 003414

Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices

Auteurs : P. Humbert ; J. Viennet ; J. Bride ; Ac Gabiot

Source :

RBID : ISTEX:6F6CE84C905C965D7B17E37A0C94471277445685

Abstract

Introduction:  The cellular phases (granulation, reepithelialization, and dermal remodelling) of the healing process involve many cell types. Fibroblasts and myofibroblasts are the key cells in granulation tissue formation and wound contraction.

Url:
DOI: 10.1111/j.1067-1927.2005.130117o.x

Links to Exploration step

ISTEX:6F6CE84C905C965D7B17E37A0C94471277445685

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
<author>
<name sortKey="Humbert, P" sort="Humbert, P" uniqKey="Humbert P" first="P" last="Humbert">P. Humbert</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Viennet, J" sort="Viennet, J" uniqKey="Viennet J" first="J" last="Viennet">J. Viennet</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bride, J" sort="Bride, J" uniqKey="Bride J" first="J" last="Bride">J. Bride</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gabiot, Ac" sort="Gabiot, Ac" uniqKey="Gabiot A" first="Ac" last="Gabiot">Ac Gabiot</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6F6CE84C905C965D7B17E37A0C94471277445685</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1067-1927.2005.130117o.x</idno>
<idno type="url">https://api.istex.fr/document/6F6CE84C905C965D7B17E37A0C94471277445685/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003413</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003413</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
<author>
<name sortKey="Humbert, P" sort="Humbert, P" uniqKey="Humbert P" first="P" last="Humbert">P. Humbert</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Viennet, J" sort="Viennet, J" uniqKey="Viennet J" first="J" last="Viennet">J. Viennet</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bride, J" sort="Bride, J" uniqKey="Bride J" first="J" last="Bride">J. Bride</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gabiot, Ac" sort="Gabiot, Ac" uniqKey="Gabiot A" first="Ac" last="Gabiot">Ac Gabiot</name>
<affiliation>
<mods:affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Wound Repair and Regeneration</title>
<title level="j" type="alt">WOUND REPAIR REGENERATION</title>
<idno type="ISSN">1067-1927</idno>
<idno type="eISSN">1524-475X</idno>
<imprint>
<biblScope unit="vol">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="A21">A21</biblScope>
<biblScope unit="page" to="A21">A21</biblScope>
<biblScope unit="page-count">1</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01">2005-01</date>
</imprint>
<idno type="ISSN">1067-1927</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1067-1927</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Introduction:  The cellular phases (granulation, reepithelialization, and dermal remodelling) of the healing process involve many cell types. Fibroblasts and myofibroblasts are the key cells in granulation tissue formation and wound contraction.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>fibroblast</json:string>
<json:string>myofibroblasts</json:string>
<json:string>actin</json:string>
<json:string>matrix</json:string>
<json:string>myofibroblast</json:string>
<json:string>extracellular</json:string>
<json:string>asma</json:string>
<json:string>apoptosis</json:string>
<json:string>fibrotic</json:string>
<json:string>tgfb1</json:string>
<json:string>stress fibers</json:string>
<json:string>suture</json:string>
<json:string>hepatocytes</json:string>
<json:string>icgn</json:string>
<json:string>thrombin</json:string>
<json:string>dermal</json:string>
<json:string>phenotype</json:string>
<json:string>extracellular matrix</json:string>
<json:string>lname</json:string>
<json:string>tumour</json:string>
<json:string>collagen</json:string>
<json:string>muscle actin</json:string>
<json:string>tgfb</json:string>
<json:string>lname group</json:string>
<json:string>control group</json:string>
<json:string>mrna</json:string>
<json:string>wound contraction</json:string>
<json:string>icgn mice</json:string>
<json:string>transdifferentiation</json:string>
<json:string>pyridinoline</json:string>
<json:string>hypertrophic</json:string>
<json:string>dermis</json:string>
<json:string>nephrotic</json:string>
<json:string>wound healing</json:string>
<json:string>important role</json:string>
<json:string>mfibs</json:string>
<json:string>lh2b</json:string>
<json:string>elastic modulus</json:string>
<json:string>collagen lattices</json:string>
<json:string>collagen organization</json:string>
<json:string>wound repair</json:string>
<json:string>lattice</json:string>
<json:string>cell proliferation</json:string>
<json:string>different types</json:string>
<json:string>hypertrophic scars</json:string>
<json:string>expression levels</json:string>
<json:string>dermal fibroblasts</json:string>
<json:string>interstitial flow</json:string>
<json:string>actin cytoskeleton</json:string>
<json:string>cell contraction</json:string>
<json:string>stable plaques</json:string>
<json:string>hepatocellular apoptosis</json:string>
<json:string>regeneration</json:string>
<json:string>lesion</json:string>
<json:string>lund</json:string>
<json:string>stiffness</json:string>
<json:string>fibrotic lesions</json:string>
<json:string>pyridinoline levels</json:string>
<json:string>collagen type</json:string>
<json:string>animal resource science center</json:string>
<json:string>lund university</json:string>
<json:string>cell migration</json:string>
<json:string>restenotic lesions</json:string>
<json:string>hypertrophic scar formation</json:string>
<json:string>cellular contraction</json:string>
<json:string>liver fibrosis</json:string>
<json:string>mrna expression</json:string>
<json:string>tgfb1 activation</json:string>
<json:string>healing process</json:string>
<json:string>lh2b expression</json:string>
<json:string>adipose tissue</json:string>
<json:string>interstitial</json:string>
<json:string>adhesion</json:string>
<json:string>collagen lattice</json:string>
<json:string>asma staining</json:string>
<json:string>asma expression</json:string>
<json:string>control fibroblasts</json:string>
<json:string>cell death</json:string>
<json:string>cytoplasmic actins</json:string>
<json:string>dressing removal</json:string>
<json:string>endothelial cells</json:string>
<json:string>immunohistochemical staining</json:string>
<json:string>circular bundles</json:string>
<json:string>smooth muscle cells</json:string>
<json:string>inhibitory effect</json:string>
<json:string>abstracts wound repair</json:string>
<json:string>myofibroblastic differentiation</json:string>
<json:string>cell biophysics</json:string>
<json:string>tubular epithelial cells</json:string>
<json:string>mechanical stress</json:string>
<json:string>flexible silicone membranes</json:string>
<json:string>universite paris</json:string>
<json:string>cellular proliferation</json:string>
<json:string>renal fibrosis</json:string>
<json:string>wound closure</json:string>
<json:string>cytoskeletal proteins</json:string>
<json:string>cutaneous biology laboratory</json:string>
<json:string>molecular biology</json:string>
<json:string>tubulointerstitial fibrosis</json:string>
<json:string>lesser extent</json:string>
<json:string>wound dressings</json:string>
<json:string>myofibroblast differentiation</json:string>
<json:string>muscle actin staining</json:string>
<json:string>healing response</json:string>
<json:string>glucose conditions</json:string>
<json:string>proliferative response</json:string>
<json:string>fibroblast population</json:string>
<json:string>connective tissue</json:string>
<json:string>achilles tendon</json:string>
<json:string>fusion peptide</json:string>
<json:string>chronic hepatitis</json:string>
<json:string>normal cells</json:string>
<json:string>fibrotic processes</json:string>
<json:string>apoptotic hepatocytes</json:string>
<json:string>skin substitutes</json:string>
<json:string>scar formation</json:string>
<json:string>dermal substitute</json:string>
<json:string>oulu university hospital</json:string>
<json:string>higher adhesion</json:string>
<json:string>myoepithelial cells</json:string>
<json:string>tampere university</json:string>
<json:string>spindle cells</json:string>
<json:string>mammary tumours</json:string>
<json:string>tumor stroma</json:string>
<json:string>same diameter</json:string>
<json:string>normal glands</json:string>
<json:string>arterial lesion</json:string>
<json:string>significant delay</json:string>
<json:string>fetal cells</json:string>
<json:string>capsule thicknesses</json:string>
<json:string>interstitial fluid flow</json:string>
<json:string>fibroblast alignment</json:string>
<json:string>biological engineering</json:string>
<json:string>blood pressure</json:string>
<json:string>interstitial fibrosis</json:string>
<json:string>pldla sutures</json:string>
<json:string>icgn strain mouse</json:string>
<json:string>deep dermis</json:string>
<json:string>contractile forces</json:string>
<json:string>human idiopathic nephrotic syndrome</json:string>
<json:string>significant role</json:string>
<json:string>matrix contraction</json:string>
<json:string>collagen matrices</json:string>
<json:string>research unit</json:string>
<json:string>muscle actin incorporation</json:string>
<json:string>mechanical properties</json:string>
<json:string>animal life sciences</json:string>
<json:string>substrate stiffness</json:string>
<json:string>asthmatic patients</json:string>
<json:string>nephrotic syndrome</json:string>
<json:string>cell growth</json:string>
<json:string>fibrotic fibroblasts</json:string>
<json:string>diabetic</json:string>
<json:string>inhibitor</json:string>
<json:string>contraction</json:string>
<json:string>migration</json:string>
<json:string>morphology</json:string>
<json:string>proliferation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>P Humbert</name>
<affiliations>
<json:string>Engineering and Cutaneous Biology Laboratory, Besançon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J Viennet</name>
<affiliations>
<json:string>Engineering and Cutaneous Biology Laboratory, Besançon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J Bride</name>
<affiliations>
<json:string>Engineering and Cutaneous Biology Laboratory, Besançon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>AC Gabiot</name>
<affiliations>
<json:string>Engineering and Cutaneous Biology Laboratory, Besançon, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>WRR130117O</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>abstract</json:string>
</originalGenre>
<qualityIndicators>
<score>5.872</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>245</abstractCharCount>
<pdfWordCount>8613</pdfWordCount>
<pdfCharCount>55105</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>31</abstractWordCount>
</qualityIndicators>
<title>Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
<genre>
<json:string>abstract</json:string>
</genre>
<host>
<title>Wound Repair and Regeneration</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1524-475X</json:string>
</doi>
<issn>
<json:string>1067-1927</json:string>
</issn>
<eissn>
<json:string>1524-475X</json:string>
</eissn>
<publisherId>
<json:string>WRR</json:string>
</publisherId>
<volume>13</volume>
<issue>1</issue>
<pages>
<first>A21</first>
<last>A21</last>
<total>1</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>surgery</json:string>
<json:string>medicine, research & experimental</json:string>
<json:string>dermatology</json:string>
<json:string>cell biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>dermatology & venereal diseases</json:string>
</scienceMetrix>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1111/j.1067-1927.2005.130117o.x</json:string>
</doi>
<id>6F6CE84C905C965D7B17E37A0C94471277445685</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/6F6CE84C905C965D7B17E37A0C94471277445685/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/6F6CE84C905C965D7B17E37A0C94471277445685/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6F6CE84C905C965D7B17E37A0C94471277445685/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
</titleStmt>
<publicationStmt>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="abstract" source="abstract" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-HPN7T1Q2-R">abstract</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="abstract">
<analytic>
<title level="a" type="main">Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
<author xml:id="author-0000">
<persName>
<forename type="first">P</forename>
<surname>Humbert</surname>
</persName>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">J</forename>
<surname>Viennet</surname>
</persName>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J</forename>
<surname>Bride</surname>
</persName>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">AC</forename>
<surname>Gabiot</surname>
</persName>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">6F6CE84C905C965D7B17E37A0C94471277445685</idno>
<idno type="DOI">10.1111/j.1067-1927.2005.130117o.x</idno>
<idno type="unit">WRR130117O</idno>
<idno type="toTypesetVersion">file:WRR.WRR130117O.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Wound Repair and Regeneration</title>
<title level="j" type="alt">WOUND REPAIR REGENERATION</title>
<idno type="pISSN">1067-1927</idno>
<idno type="eISSN">1524-475X</idno>
<idno type="book-DOI">10.1111/(ISSN)1524-475X</idno>
<idno type="book-part-DOI">10.1111/wrr.2005.13.issue-1</idno>
<idno type="product">WRR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="A21">A21</biblScope>
<biblScope unit="page" to="A21">A21</biblScope>
<biblScope unit="page-count">1</biblScope>
<publisher>Blackwell Science Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-01"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>
<hi rend="bold">Introduction: </hi>
The cellular phases (granulation, reepithelialization, and dermal remodelling) of the healing process involve many cell types. Fibroblasts and myofibroblasts are the key cells in granulation tissue formation and wound contraction.</p>
<p>
<hi rend="bold">Objective: </hi>
To compare the effects on cultured human fibroblasts of a new nonadhesive lipidocolloid wound dressing, Urgotul
<hi rend="superscript">®</hi>
, with five other wound dressings including impregnated gauzes and some other modern wound dressings.</p>
<p>
<hi rend="bold">Method: </hi>
Cultures in monolayer were used to study the morphology and growth of fibroblasts. The Bell model of cultured dermis equivalents was used to investigate myofibroblast differentiation. These cultures were labelled α‐SM actin and F‐actin.</p>
<p>
<hi rend="bold">Results: </hi>
Two of the tested dressings induced cytotoxic effects on the fibroblasts. They were found to inhibit cell growth (greater than 60%) and to disturb cell shape and cytoskeletal differentiation. Urgotul
<hi rend="superscript">®</hi>
and the remaining three dressings showed no effect on proliferation. However some of them modified fibroblast morphology and affected F‐actin distribution.</p>
<p>
<hi rend="bold">Conclusion: </hi>
Depending on their nature and components, wound dressings may respect or affect in vitro fibroblast behaviour (proliferation, morphology, and α‐SM actin and F‐actin distribution). The observed in vitro findings require further investigations.</p>
</abstract>
<textClass>
<classCode scheme="tocHeading1">Abstracts ‐ European Tissue Repair Society Focus Meeting</classCode>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/6F6CE84C905C965D7B17E37A0C94471277445685/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Inc</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1524-475X</doi>
<issn type="print">1067-1927</issn>
<issn type="electronic">1524-475X</issn>
<idGroup>
<id type="product" value="WRR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="WOUND REPAIR REGENERATION">Wound Repair and Regeneration</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="01101">
<doi origin="wiley">10.1111/wrr.2005.13.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="13">13</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2005-01">January 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="abstract" position="0002100" status="forIssue">
<doi origin="wiley">10.1111/j.1067-1927.2005.130117o.x</doi>
<idGroup>
<id type="unit" value="WRR130117O"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Abstracts ‐ European Tissue Repair Society Focus Meeting</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2005-01-17"></event>
<event type="publishedOnlineFinalForm" date="2005-01-17"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.17 mode:FullText" date="2010-09-08"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">A21</numbering>
<numbering type="pageLast">A21</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRR.WRR130117O.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="0"></count>
<count type="wordTotal" number="4249"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>P</givenNames>
<familyName>Humbert</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>J</givenNames>
<familyName>Viennet</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>J</givenNames>
<familyName>Bride</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>AC</givenNames>
<familyName>Gabiot</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>Introduction: </b>
The cellular phases (granulation, reepithelialization, and dermal remodelling) of the healing process involve many cell types. Fibroblasts and myofibroblasts are the key cells in granulation tissue formation and wound contraction.</p>
<p>
<b>Objective: </b>
To compare the effects on cultured human fibroblasts of a new nonadhesive lipidocolloid wound dressing, Urgotul
<sup>®</sup>
, with five other wound dressings including impregnated gauzes and some other modern wound dressings.</p>
<p>
<b>Method: </b>
Cultures in monolayer were used to study the morphology and growth of fibroblasts. The Bell model of cultured dermis equivalents was used to investigate myofibroblast differentiation. These cultures were labelled α‐SM actin and F‐actin.</p>
<p>
<b>Results: </b>
Two of the tested dressings induced cytotoxic effects on the fibroblasts. They were found to inhibit cell growth (greater than 60%) and to disturb cell shape and cytoskeletal differentiation. Urgotul
<sup>®</sup>
and the remaining three dressings showed no effect on proliferation. However some of them modified fibroblast morphology and affected F‐actin distribution.</p>
<p>
<b>Conclusion: </b>
Depending on their nature and components, wound dressings may respect or affect in vitro fibroblast behaviour (proliferation, morphology, and α‐SM actin and F‐actin distribution). The observed in vitro findings require further investigations.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Humbert</namePart>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Viennet</namePart>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Bride</namePart>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">AC</namePart>
<namePart type="family">Gabiot</namePart>
<affiliation>Engineering and Cutaneous Biology Laboratory, Besançon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="abstract" displayLabel="abstract"></genre>
<originInfo>
<publisher>Blackwell Science Inc</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-01</dateIssued>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="words">4249</extent>
</physicalDescription>
<abstract>Introduction:  The cellular phases (granulation, reepithelialization, and dermal remodelling) of the healing process involve many cell types. Fibroblasts and myofibroblasts are the key cells in granulation tissue formation and wound contraction.</abstract>
<abstract>Objective:  To compare the effects on cultured human fibroblasts of a new nonadhesive lipidocolloid wound dressing, Urgotul®, with five other wound dressings including impregnated gauzes and some other modern wound dressings.</abstract>
<abstract>Method:  Cultures in monolayer were used to study the morphology and growth of fibroblasts. The Bell model of cultured dermis equivalents was used to investigate myofibroblast differentiation. These cultures were labelled α‐SM actin and F‐actin.</abstract>
<abstract>Results:  Two of the tested dressings induced cytotoxic effects on the fibroblasts. They were found to inhibit cell growth (greater than 60%) and to disturb cell shape and cytoskeletal differentiation. Urgotul® and the remaining three dressings showed no effect on proliferation. However some of them modified fibroblast morphology and affected F‐actin distribution.</abstract>
<abstract>Conclusion:  Depending on their nature and components, wound dressings may respect or affect in vitro fibroblast behaviour (proliferation, morphology, and α‐SM actin and F‐actin distribution). The observed in vitro findings require further investigations.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Wound Repair and Regeneration</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1067-1927</identifier>
<identifier type="eISSN">1524-475X</identifier>
<identifier type="DOI">10.1111/(ISSN)1524-475X</identifier>
<identifier type="PublisherID">WRR</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>A21</start>
<end>A21</end>
<total>1</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">6F6CE84C905C965D7B17E37A0C94471277445685</identifier>
<identifier type="DOI">10.1111/j.1067-1927.2005.130117o.x</identifier>
<identifier type="ArticleID">WRR130117O</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Inc</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/LymphedemaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    LymphedemaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6F6CE84C905C965D7B17E37A0C94471277445685
   |texte=   Comparison of Different Wound Dressings on Cultured Human Fibroblasts and Collagen Lattices
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Nov 4 17:40:35 2017. Site generation: Tue Feb 13 16:42:16 2024