Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.

Identifieur interne : 001526 ( Main/Curation ); précédent : 001525; suivant : 001527

Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.

Auteurs : Mohan Sarkar ; Anupam Das ; Sutapa Mukhopadhyay

Source :

RBID : pubmed:32982575

Abstract

The worldwide spread of COVID-19 caused a nationwide lockdown in India from 24 March 2020 and was further extended up to 3 May 2020 to break off the transmission of novel Coronavirus. The study is designed to assess the changes in air quality from the pre-lockdown period to the during lockdown period in Kolkata and Howrah municipal corporation, West Bengal, India. GIS-based techniques include the spatial and temporal distribution of pollutants using interpolation method, and on the other hand, statistical methods like analysis of variance (ANOVA) was applied to determine the mean differences two phases and correlation matrix helps to understand the changing association of the pollutants in pre- and during lockdown phases. Significant correlations have been found among the pollutants, ANOVA (Two-Way) has shown the significant mean difference of NAQI between the two phases, F(1,611) = 465.723, p < 0.0001; pairwise comparison for Ballygunge has shown the highest mean difference 108.194 at p < 0.0001 significant level between lockdown and pre-lockdown phase. Significant positive correlation has been found between PM2.5, PM10 (0.99*); PM2.5, NO2 (0.81*); PM10, NO2 (0.81*); CO, NO2 (0.77*) and some negative correlations have also been found between O3, NO (- 0.15); O3 and NH3 (- 0.36) in the pre-lockdown phase. The reduction amount of mean concentration from the pre-lockdown phase to during lockdown of the main pollutants like PM2.5, PM10 and NO2 are ~ 58.71%, ~ 57.92% and ~ 55.23%. Near Rabindra Bharati University constant emission of PM2.5, 10 and NO2 have been recorded due to the nearby Cossipore thermal power station.

DOI: 10.1007/s10668-020-00985-7
PubMed: 32982575
PubMed Central: PMC7508246

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32982575

Curation

No country items

Mohan Sarkar
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>
Anupam Das
<affiliation>
<nlm:affiliation>Department of Geography, Panihati Mahavidyalaya, Sodepur, Kolkata, West Bengal 700110 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 700110 India</wicri:noCountry>
</affiliation>
Sutapa Mukhopadhyay
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.</title>
<author>
<name sortKey="Sarkar, Mohan" sort="Sarkar, Mohan" uniqKey="Sarkar M" first="Mohan" last="Sarkar">Mohan Sarkar</name>
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Das, Anupam" sort="Das, Anupam" uniqKey="Das A" first="Anupam" last="Das">Anupam Das</name>
<affiliation>
<nlm:affiliation>Department of Geography, Panihati Mahavidyalaya, Sodepur, Kolkata, West Bengal 700110 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 700110 India</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Sutapa" sort="Mukhopadhyay, Sutapa" uniqKey="Mukhopadhyay S" first="Sutapa" last="Mukhopadhyay">Sutapa Mukhopadhyay</name>
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32982575</idno>
<idno type="pmid">32982575</idno>
<idno type="doi">10.1007/s10668-020-00985-7</idno>
<idno type="pmc">PMC7508246</idno>
<idno type="wicri:Area/Main/Corpus">001526</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001526</idno>
<idno type="wicri:Area/Main/Curation">001526</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001526</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.</title>
<author>
<name sortKey="Sarkar, Mohan" sort="Sarkar, Mohan" uniqKey="Sarkar M" first="Mohan" last="Sarkar">Mohan Sarkar</name>
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Das, Anupam" sort="Das, Anupam" uniqKey="Das A" first="Anupam" last="Das">Anupam Das</name>
<affiliation>
<nlm:affiliation>Department of Geography, Panihati Mahavidyalaya, Sodepur, Kolkata, West Bengal 700110 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 700110 India</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Sutapa" sort="Mukhopadhyay, Sutapa" uniqKey="Mukhopadhyay S" first="Sutapa" last="Mukhopadhyay">Sutapa Mukhopadhyay</name>
<affiliation>
<nlm:affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</nlm:affiliation>
<wicri:noCountry code="subField">West Bengal 731235 India</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environment, development and sustainability</title>
<idno type="eISSN">1573-2975</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The worldwide spread of COVID-19 caused a nationwide lockdown in India from 24 March 2020 and was further extended up to 3 May 2020 to break off the transmission of novel Coronavirus. The study is designed to assess the changes in air quality from the pre-lockdown period to the during lockdown period in Kolkata and Howrah municipal corporation, West Bengal, India. GIS-based techniques include the spatial and temporal distribution of pollutants using interpolation method, and on the other hand, statistical methods like analysis of variance (ANOVA) was applied to determine the mean differences two phases and correlation matrix helps to understand the changing association of the pollutants in pre- and during lockdown phases. Significant correlations have been found among the pollutants, ANOVA (Two-Way) has shown the significant mean difference of NAQI between the two phases,
<i>F</i>
(1,611) = 465.723,
<i>p</i>
 < 0.0001; pairwise comparison for Ballygunge has shown the highest mean difference 108.194 at
<i>p</i>
 < 0.0001 significant level between lockdown and pre-lockdown phase. Significant positive correlation has been found between PM
<sub>2.5</sub>
, PM
<sub>10</sub>
(0.99*); PM
<sub>2.5,</sub>
NO
<sub>2</sub>
(0.81*); PM
<sub>10</sub>
, NO
<sub>2</sub>
(0.81*); CO, NO
<sub>2</sub>
(0.77*) and some negative correlations have also been found between O
<sub>3</sub>
, NO (- 0.15); O
<sub>3</sub>
and NH
<sub>3</sub>
(- 0.36) in the pre-lockdown phase. The reduction amount of mean concentration from the pre-lockdown phase to during lockdown of the main pollutants like PM
<sub>2.5</sub>
, PM
<sub>10</sub>
and NO
<sub>2</sub>
are ~ 58.71%, ~ 57.92% and ~ 55.23%. Near Rabindra Bharati University constant emission of PM
<sub>2.5</sub>
, 10 and NO
<sub>2</sub>
have been recorded due to the nearby Cossipore thermal power station.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32982575</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-2975</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Environment, development and sustainability</Title>
<ISOAbbreviation>Environ Dev Sustain</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.</ArticleTitle>
<Pagination>
<MedlinePgn>1-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10668-020-00985-7</ELocationID>
<Abstract>
<AbstractText>The worldwide spread of COVID-19 caused a nationwide lockdown in India from 24 March 2020 and was further extended up to 3 May 2020 to break off the transmission of novel Coronavirus. The study is designed to assess the changes in air quality from the pre-lockdown period to the during lockdown period in Kolkata and Howrah municipal corporation, West Bengal, India. GIS-based techniques include the spatial and temporal distribution of pollutants using interpolation method, and on the other hand, statistical methods like analysis of variance (ANOVA) was applied to determine the mean differences two phases and correlation matrix helps to understand the changing association of the pollutants in pre- and during lockdown phases. Significant correlations have been found among the pollutants, ANOVA (Two-Way) has shown the significant mean difference of NAQI between the two phases,
<i>F</i>
(1,611) = 465.723,
<i>p</i>
 < 0.0001; pairwise comparison for Ballygunge has shown the highest mean difference 108.194 at
<i>p</i>
 < 0.0001 significant level between lockdown and pre-lockdown phase. Significant positive correlation has been found between PM
<sub>2.5</sub>
, PM
<sub>10</sub>
(0.99*); PM
<sub>2.5,</sub>
NO
<sub>2</sub>
(0.81*); PM
<sub>10</sub>
, NO
<sub>2</sub>
(0.81*); CO, NO
<sub>2</sub>
(0.77*) and some negative correlations have also been found between O
<sub>3</sub>
, NO (- 0.15); O
<sub>3</sub>
and NH
<sub>3</sub>
(- 0.36) in the pre-lockdown phase. The reduction amount of mean concentration from the pre-lockdown phase to during lockdown of the main pollutants like PM
<sub>2.5</sub>
, PM
<sub>10</sub>
and NO
<sub>2</sub>
are ~ 58.71%, ~ 57.92% and ~ 55.23%. Near Rabindra Bharati University constant emission of PM
<sub>2.5</sub>
, 10 and NO
<sub>2</sub>
have been recorded due to the nearby Cossipore thermal power station.</AbstractText>
<CopyrightInformation>© Springer Nature B.V. 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sarkar</LastName>
<ForeName>Mohan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</Affiliation>
<Identifier Source="GRID">grid.440987.6</Identifier>
<Identifier Source="ISNI">0000 0001 2259 7889</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Anupam</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Geography, Panihati Mahavidyalaya, Sodepur, Kolkata, West Bengal 700110 India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Sutapa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Geography, Visva-Bharati, Santiniketan, West Bengal 731235 India.</Affiliation>
<Identifier Source="GRID">grid.440987.6</Identifier>
<Identifier Source="ISNI">0000 0001 2259 7889</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Dev Sustain</MedlineTA>
<NlmUniqueID>101769312</NlmUniqueID>
<ISSNLinking>1387-585X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ANOVA</Keyword>
<Keyword MajorTopicYN="N">Air quality</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">India</Keyword>
<Keyword MajorTopicYN="N">Lockdown</Keyword>
<Keyword MajorTopicYN="N">Pollutants</Keyword>
</KeywordList>
<CoiStatement>Conflict of interestAuthors have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>38</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32982575</ArticleId>
<ArticleId IdType="doi">10.1007/s10668-020-00985-7</ArticleId>
<ArticleId IdType="pii">985</ArticleId>
<ArticleId IdType="pmc">PMC7508246</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>J Hazard Mater. 2006 Oct 11;137(3):1554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16757111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 15;730:139087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32380370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 25;732:139280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32402928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heliyon. 2018 Dec 18;4(12):e01054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30603693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2001 Jul;27(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2006 Sep;120(1-3):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16741802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 1;728:138813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32334159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Sep 15;735:139541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32445829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 15;730:139179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Sep 15;735:139542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32447070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Air Pollut Control Assoc. 1966 Nov;16(11):597-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4167006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Apr;92(4):401-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31950516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 Jun 1;625:909-919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29996462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anal Methods Chem. 2019 Feb 10;2019:9753927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30881728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2020 Jun;104(6):724-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32394052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 15;730:139086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32375105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Jul 15;726:138540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32302810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Resour Econ (Dordr). 2020 Aug 10;:1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2020 Jul;105(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32495123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Air Pollut Control Assoc. 1968 Aug;18(8):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5664901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2003;126(3):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12963291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Sep 15;735:139560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32464409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):422-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30598435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Oct 31;10:2518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31736954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 1;728:138915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32348946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Oct 15;739:139864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32512381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 8;319(5864):749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2008 Nov;116(11):1449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001526 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001526 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32982575
   |texte=   Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:32982575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021