Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.

Identifieur interne : 001E19 ( Main/Corpus ); précédent : 001E18; suivant : 001E20

Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.

Auteurs : Tommaso Filippini ; Kenneth J. Rothman ; Alessia Goffi ; Fabrizio Ferrari ; Giuseppe Maffeis ; Nicola Orsini ; Marco Vinceti

Source :

RBID : pubmed:32758963

English descriptors

Abstract

Following the outbreak of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) last December 2019 in China, Italy was the first European country to be severely affected, with the first local case diagnosed on 20 February 2020. The virus spread quickly, particularly in the North of Italy, with three regions (Lombardy, Veneto and Emilia-Romagna) being the most severely affected. These three regions accounted for >80% of SARS-CoV-2 positive cases when the tight lockdown was established (March 8). These regions include one of Europe's areas of heaviest air pollution, the Po valley. Air pollution has been recently proposed as a possible risk factor of SARS-CoV-2 infection, due to its adverse effect on immunity and to the possibility that polluted air may even carry the virus. We investigated the association between air pollution and subsequent spread of the SARS-CoV-2 infection within these regions. We collected NO2 tropospheric levels using satellite data available at the European Space Agency before the lockdown. Using a multivariable restricted cubic spline regression model, we compared NO2 levels with SARS-CoV-2 infection prevalence rate at different time points after the lockdown, namely March 8, 22 and April 5, in the 28 provinces of Lombardy, Veneto and Emilia-Romagna. We found little association of NO2 levels with SARS-CoV-2 prevalence up to about 130 μmol/m2, while a positive association was evident at higher levels at each time point. Notwithstanding the limitations of the use of aggregated data, these findings lend some support to the hypothesis that high levels of air pollution may favor the spread of the SARS-CoV-2 infection.

DOI: 10.1016/j.scitotenv.2020.140278
PubMed: 32758963
PubMed Central: PMC7297152

Links to Exploration step

pubmed:32758963

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.</title>
<author>
<name sortKey="Filippini, Tommaso" sort="Filippini, Tommaso" uniqKey="Filippini T" first="Tommaso" last="Filippini">Tommaso Filippini</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Kenneth J" sort="Rothman, Kenneth J" uniqKey="Rothman K" first="Kenneth J" last="Rothman">Kenneth J. Rothman</name>
<affiliation>
<nlm:affiliation>RTI Health Solutions, Research Triangle Park, NC, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goffi, Alessia" sort="Goffi, Alessia" uniqKey="Goffi A" first="Alessia" last="Goffi">Alessia Goffi</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Fabrizio" sort="Ferrari, Fabrizio" uniqKey="Ferrari F" first="Fabrizio" last="Ferrari">Fabrizio Ferrari</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maffeis, Giuseppe" sort="Maffeis, Giuseppe" uniqKey="Maffeis G" first="Giuseppe" last="Maffeis">Giuseppe Maffeis</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orsini, Nicola" sort="Orsini, Nicola" uniqKey="Orsini N" first="Nicola" last="Orsini">Nicola Orsini</name>
<affiliation>
<nlm:affiliation>Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vinceti, Marco" sort="Vinceti, Marco" uniqKey="Vinceti M" first="Marco" last="Vinceti">Marco Vinceti</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA. Electronic address: marco.vinceti@unimore.it.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32758963</idno>
<idno type="pmid">32758963</idno>
<idno type="doi">10.1016/j.scitotenv.2020.140278</idno>
<idno type="pmc">PMC7297152</idno>
<idno type="wicri:Area/Main/Corpus">001E19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.</title>
<author>
<name sortKey="Filippini, Tommaso" sort="Filippini, Tommaso" uniqKey="Filippini T" first="Tommaso" last="Filippini">Tommaso Filippini</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Kenneth J" sort="Rothman, Kenneth J" uniqKey="Rothman K" first="Kenneth J" last="Rothman">Kenneth J. Rothman</name>
<affiliation>
<nlm:affiliation>RTI Health Solutions, Research Triangle Park, NC, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goffi, Alessia" sort="Goffi, Alessia" uniqKey="Goffi A" first="Alessia" last="Goffi">Alessia Goffi</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Fabrizio" sort="Ferrari, Fabrizio" uniqKey="Ferrari F" first="Fabrizio" last="Ferrari">Fabrizio Ferrari</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maffeis, Giuseppe" sort="Maffeis, Giuseppe" uniqKey="Maffeis G" first="Giuseppe" last="Maffeis">Giuseppe Maffeis</name>
<affiliation>
<nlm:affiliation>Terraria, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orsini, Nicola" sort="Orsini, Nicola" uniqKey="Orsini N" first="Nicola" last="Orsini">Nicola Orsini</name>
<affiliation>
<nlm:affiliation>Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vinceti, Marco" sort="Vinceti, Marco" uniqKey="Vinceti M" first="Marco" last="Vinceti">Marco Vinceti</name>
<affiliation>
<nlm:affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA. Electronic address: marco.vinceti@unimore.it.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>China (MeSH)</term>
<term>Coronavirus Infections (MeSH)</term>
<term>Europe (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Italy (MeSH)</term>
<term>Nitrogen Dioxide (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nitrogen Dioxide</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
<term>Europe</term>
<term>Italy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Coronavirus Infections</term>
<term>Humans</term>
<term>Pandemics</term>
<term>Pneumonia, Viral</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Following the outbreak of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) last December 2019 in China, Italy was the first European country to be severely affected, with the first local case diagnosed on 20 February 2020. The virus spread quickly, particularly in the North of Italy, with three regions (Lombardy, Veneto and Emilia-Romagna) being the most severely affected. These three regions accounted for >80% of SARS-CoV-2 positive cases when the tight lockdown was established (March 8). These regions include one of Europe's areas of heaviest air pollution, the Po valley. Air pollution has been recently proposed as a possible risk factor of SARS-CoV-2 infection, due to its adverse effect on immunity and to the possibility that polluted air may even carry the virus. We investigated the association between air pollution and subsequent spread of the SARS-CoV-2 infection within these regions. We collected NO
<sub>2</sub>
tropospheric levels using satellite data available at the European Space Agency before the lockdown. Using a multivariable restricted cubic spline regression model, we compared NO
<sub>2</sub>
levels with SARS-CoV-2 infection prevalence rate at different time points after the lockdown, namely March 8, 22 and April 5, in the 28 provinces of Lombardy, Veneto and Emilia-Romagna. We found little association of NO
<sub>2</sub>
levels with SARS-CoV-2 prevalence up to about 130 μmol/m
<sup>2</sup>
, while a positive association was evident at higher levels at each time point. Notwithstanding the limitations of the use of aggregated data, these findings lend some support to the hypothesis that high levels of air pollution may favor the spread of the SARS-CoV-2 infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32758963</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>739</Volume>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.</ArticleTitle>
<Pagination>
<MedlinePgn>140278</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(20)33799-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2020.140278</ELocationID>
<Abstract>
<AbstractText>Following the outbreak of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) last December 2019 in China, Italy was the first European country to be severely affected, with the first local case diagnosed on 20 February 2020. The virus spread quickly, particularly in the North of Italy, with three regions (Lombardy, Veneto and Emilia-Romagna) being the most severely affected. These three regions accounted for >80% of SARS-CoV-2 positive cases when the tight lockdown was established (March 8). These regions include one of Europe's areas of heaviest air pollution, the Po valley. Air pollution has been recently proposed as a possible risk factor of SARS-CoV-2 infection, due to its adverse effect on immunity and to the possibility that polluted air may even carry the virus. We investigated the association between air pollution and subsequent spread of the SARS-CoV-2 infection within these regions. We collected NO
<sub>2</sub>
tropospheric levels using satellite data available at the European Space Agency before the lockdown. Using a multivariable restricted cubic spline regression model, we compared NO
<sub>2</sub>
levels with SARS-CoV-2 infection prevalence rate at different time points after the lockdown, namely March 8, 22 and April 5, in the 28 provinces of Lombardy, Veneto and Emilia-Romagna. We found little association of NO
<sub>2</sub>
levels with SARS-CoV-2 prevalence up to about 130 μmol/m
<sup>2</sup>
, while a positive association was evident at higher levels at each time point. Notwithstanding the limitations of the use of aggregated data, these findings lend some support to the hypothesis that high levels of air pollution may favor the spread of the SARS-CoV-2 infection.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Filippini</LastName>
<ForeName>Tommaso</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rothman</LastName>
<ForeName>Kenneth J</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>RTI Health Solutions, Research Triangle Park, NC, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goffi</LastName>
<ForeName>Alessia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrari</LastName>
<ForeName>Fabrizio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maffeis</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Terraria, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Orsini</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vinceti</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA. Electronic address: marco.vinceti@unimore.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>S7G510RUBH</RegistryNumber>
<NameOfSubstance UI="D009585">Nitrogen Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="Y">Coronavirus Infections</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007558" MajorTopicYN="N" Type="Geographic">Italy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009585" MajorTopicYN="Y">Nitrogen Dioxide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="Y">Pneumonia, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Air pollution</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Covid-19</Keyword>
<Keyword MajorTopicYN="N">Nitrogen dioxide</Keyword>
<Keyword MajorTopicYN="N">Public health</Keyword>
<Keyword MajorTopicYN="N">Sentinel-5P</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32758963</ArticleId>
<ArticleId IdType="pii">S0048-9697(20)33799-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2020.140278</ArticleId>
<ArticleId IdType="pmc">PMC7297152</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur Respir J. 2017 Jan 11;49(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27824608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Jul 15;726:138605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32302812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health. 2003 Nov 20;2(1):15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14629774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Chem Eng. 2020 Aug;8(4):104006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32373461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 10;729:138474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32498152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1999 Feb;159(2):536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Occup Environ Med. 2008 Oct;65(10):683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18203803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Jun;83(6):2507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25847963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2020 Jun;261:114465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32268945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2020 Jul;141:111418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32437891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2012 Feb;14(2):552-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22170095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Occup Health. 2011;66(3):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21864104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Oct 10;738:139825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32512362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Ther. 2020 Apr 8;:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32292686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2020 May 1;151:56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2011 Nov;111(8):1321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2020 Aug;187:109650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32416357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2020 Sep;188:109754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32526492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2016 May;147:415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Allergy. 2002 Oct;32(10):1405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2020 Apr;27(12):13524-13533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32030582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2002 May-Jun;234-235(1-2):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12162462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ Open. 2020 Sep 24;10(9):e039338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32973066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Aug;97:278-282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32502664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2007 Dec 6;357(23):2348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2020 Aug 1;33(4):263-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32403947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1997 Aug;156(2 Pt 1):418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9279218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2019 Mar;124:10-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30639903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2017 Oct 26;50(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29074540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1993 Sep;9(3):271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8398164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inhal Toxicol. 2016 Jul;28(8):374-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27206323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Aug 13;9(1):11755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31409807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Allergy. 2000 Mar;30(3):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10691887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2020 Aug;81(2):255-259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32447007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Jul 20;727:138704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32315904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2001 Feb;107(2):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11174195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 2004 Apr 15;197(2):149-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2010 Sep;118(9):1211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2019 Oct 25;16(21):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31731429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Dec 27;9(1):20033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31882705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Rep Health Eff Inst. 2009 Mar;(139):5-71; discussion 73-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19554969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health. 2013 May 28;12(1):43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23714370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001E19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32758963
   |texte=   Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32758963" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021