Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.

Identifieur interne : 001420 ( Main/Corpus ); précédent : 001419; suivant : 001421

Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.

Auteurs : Zhe Wang ; Itsushi Uno ; Keiya Yumimoto ; Syuichi Itahashi ; Xueshun Chen ; Wenyi Yang ; Zifa Wang

Source :

RBID : pubmed:33013178

Abstract

The lockdown measures due to COVID-19 affected the industry, transportation and other human activities within China in early 2020, and subsequently the emissions of air pollutants. The decrease of atmospheric NO2 due to the COVID-19 lockdown and other factors were quantitively analyzed based on the surface concentrations by in-situ observations, the tropospheric vertical column densities (VCDs) by different satellite retrievals including OMI and TROPOMI, and the model simulations by GEOS-Chem. The results indicated that due to the COVID-19 lockdown, the surface NO2 concentrations decreased by 42% ± 8% and 26% ± 9% over China in February and March 2020, respectively. The tropospheric NO2 VCDs based on both OMI and high quality (quality assurance value (QA) ≥ 0.75) TROPOMI showed similar results as the surface NO2 concentrations. The daily variations of atmospheric NO2 during the first quarter (Q1) of 2020 were not only affected by the COVID-19 lockdown, but also by the Spring Festival (SF) holiday (January 24-30, 2020) as well as the meteorology changes due to seasonal transition. The SF holiday effect resulted in a NO2 reduction from 8 days before SF to 21 days after it (i.e. January 17 - February 15), with a maximum of 37%. From the 6 days after SF (January 31) to the end of March, the COVID-19 lockdown played an important role in the NO2 reduction, with a maximum of 51%. The meteorology changes due to seasonal transition resulted in a nearly linear decreasing trend of 25% and 40% reduction over the 90 days for the NO2 concentrations and VCDs, respectively. Comparisons between different datasets indicated that medium quality (QA ≥ 0.5) TROPOMI retrievals might suffer large biases in some periods, and thus attention must be paid when they are used for analyses, data assimilations and emission inversions.

DOI: 10.1016/j.atmosenv.2020.117972
PubMed: 33013178
PubMed Central: PMC7521432

Links to Exploration step

pubmed:33013178

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO
<sub>2</sub>
variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.</title>
<author>
<name sortKey="Wang, Zhe" sort="Wang, Zhe" uniqKey="Wang Z" first="Zhe" last="Wang">Zhe Wang</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uno, Itsushi" sort="Uno, Itsushi" uniqKey="Uno I" first="Itsushi" last="Uno">Itsushi Uno</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yumimoto, Keiya" sort="Yumimoto, Keiya" uniqKey="Yumimoto K" first="Keiya" last="Yumimoto">Keiya Yumimoto</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Itahashi, Syuichi" sort="Itahashi, Syuichi" uniqKey="Itahashi S" first="Syuichi" last="Itahashi">Syuichi Itahashi</name>
<affiliation>
<nlm:affiliation>Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, 270-1194, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xueshun" sort="Chen, Xueshun" uniqKey="Chen X" first="Xueshun" last="Chen">Xueshun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenyi" sort="Yang, Wenyi" uniqKey="Yang W" first="Wenyi" last="Yang">Wenyi Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zifa" sort="Wang, Zifa" uniqKey="Wang Z" first="Zifa" last="Wang">Zifa Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Earth and Planetary Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33013178</idno>
<idno type="pmid">33013178</idno>
<idno type="doi">10.1016/j.atmosenv.2020.117972</idno>
<idno type="pmc">PMC7521432</idno>
<idno type="wicri:Area/Main/Corpus">001420</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001420</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO
<sub>2</sub>
variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.</title>
<author>
<name sortKey="Wang, Zhe" sort="Wang, Zhe" uniqKey="Wang Z" first="Zhe" last="Wang">Zhe Wang</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Uno, Itsushi" sort="Uno, Itsushi" uniqKey="Uno I" first="Itsushi" last="Uno">Itsushi Uno</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yumimoto, Keiya" sort="Yumimoto, Keiya" uniqKey="Yumimoto K" first="Keiya" last="Yumimoto">Keiya Yumimoto</name>
<affiliation>
<nlm:affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Itahashi, Syuichi" sort="Itahashi, Syuichi" uniqKey="Itahashi S" first="Syuichi" last="Itahashi">Syuichi Itahashi</name>
<affiliation>
<nlm:affiliation>Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, 270-1194, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xueshun" sort="Chen, Xueshun" uniqKey="Chen X" first="Xueshun" last="Chen">Xueshun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenyi" sort="Yang, Wenyi" uniqKey="Yang W" first="Wenyi" last="Yang">Wenyi Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zifa" sort="Wang, Zifa" uniqKey="Wang Z" first="Zifa" last="Wang">Zifa Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>College of Earth and Planetary Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Atmospheric environment (Oxford, England : 1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lockdown measures due to COVID-19 affected the industry, transportation and other human activities within China in early 2020, and subsequently the emissions of air pollutants. The decrease of atmospheric NO
<sub>2</sub>
due to the COVID-19 lockdown and other factors were quantitively analyzed based on the surface concentrations by in-situ observations, the tropospheric vertical column densities (VCDs) by different satellite retrievals including OMI and TROPOMI, and the model simulations by GEOS-Chem. The results indicated that due to the COVID-19 lockdown, the surface NO
<sub>2</sub>
concentrations decreased by 42% ± 8% and 26% ± 9% over China in February and March 2020, respectively. The tropospheric NO
<sub>2</sub>
VCDs based on both OMI and high quality (quality assurance value (QA) ≥ 0.75) TROPOMI showed similar results as the surface NO
<sub>2</sub>
concentrations. The daily variations of atmospheric NO
<sub>2</sub>
during the first quarter (Q1) of 2020 were not only affected by the COVID-19 lockdown, but also by the Spring Festival (SF) holiday (January 24-30, 2020) as well as the meteorology changes due to seasonal transition. The SF holiday effect resulted in a NO
<sub>2</sub>
reduction from 8 days before SF to 21 days after it (i.e. January 17 - February 15), with a maximum of 37%. From the 6 days after SF (January 31) to the end of March, the COVID-19 lockdown played an important role in the NO
<sub>2</sub>
reduction, with a maximum of 51%. The meteorology changes due to seasonal transition resulted in a nearly linear decreasing trend of 25% and 40% reduction over the 90 days for the NO
<sub>2</sub>
concentrations and VCDs, respectively. Comparisons between different datasets indicated that medium quality (QA ≥ 0.5) TROPOMI retrievals might suffer large biases in some periods, and thus attention must be paid when they are used for analyses, data assimilations and emission inversions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33013178</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1352-2310</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>244</Volume>
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Atmospheric environment (Oxford, England : 1994)</Title>
<ISOAbbreviation>Atmos Environ (1994)</ISOAbbreviation>
</Journal>
<ArticleTitle>Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO
<sub>2</sub>
variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.</ArticleTitle>
<Pagination>
<MedlinePgn>117972</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.atmosenv.2020.117972</ELocationID>
<Abstract>
<AbstractText>The lockdown measures due to COVID-19 affected the industry, transportation and other human activities within China in early 2020, and subsequently the emissions of air pollutants. The decrease of atmospheric NO
<sub>2</sub>
due to the COVID-19 lockdown and other factors were quantitively analyzed based on the surface concentrations by in-situ observations, the tropospheric vertical column densities (VCDs) by different satellite retrievals including OMI and TROPOMI, and the model simulations by GEOS-Chem. The results indicated that due to the COVID-19 lockdown, the surface NO
<sub>2</sub>
concentrations decreased by 42% ± 8% and 26% ± 9% over China in February and March 2020, respectively. The tropospheric NO
<sub>2</sub>
VCDs based on both OMI and high quality (quality assurance value (QA) ≥ 0.75) TROPOMI showed similar results as the surface NO
<sub>2</sub>
concentrations. The daily variations of atmospheric NO
<sub>2</sub>
during the first quarter (Q1) of 2020 were not only affected by the COVID-19 lockdown, but also by the Spring Festival (SF) holiday (January 24-30, 2020) as well as the meteorology changes due to seasonal transition. The SF holiday effect resulted in a NO
<sub>2</sub>
reduction from 8 days before SF to 21 days after it (i.e. January 17 - February 15), with a maximum of 37%. From the 6 days after SF (January 31) to the end of March, the COVID-19 lockdown played an important role in the NO
<sub>2</sub>
reduction, with a maximum of 51%. The meteorology changes due to seasonal transition resulted in a nearly linear decreasing trend of 25% and 40% reduction over the 90 days for the NO
<sub>2</sub>
concentrations and VCDs, respectively. Comparisons between different datasets indicated that medium quality (QA ≥ 0.5) TROPOMI retrievals might suffer large biases in some periods, and thus attention must be paid when they are used for analyses, data assimilations and emission inversions.</AbstractText>
<CopyrightInformation>© 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uno</LastName>
<ForeName>Itsushi</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yumimoto</LastName>
<ForeName>Keiya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 8168580, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Itahashi</LastName>
<ForeName>Syuichi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, 270-1194, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xueshun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Wenyi</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zifa</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, 100029, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Earth and Planetary Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Atmos Environ (1994)</MedlineTA>
<NlmUniqueID>9888534</NlmUniqueID>
<ISSNLinking>1352-2310</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">China</Keyword>
<Keyword MajorTopicYN="N">GEOS-Chem</Keyword>
<Keyword MajorTopicYN="N">NO2</Keyword>
<Keyword MajorTopicYN="N">OMI</Keyword>
<Keyword MajorTopicYN="N">TROPOMI</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>13</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33013178</ArticleId>
<ArticleId IdType="doi">10.1016/j.atmosenv.2020.117972</ArticleId>
<ArticleId IdType="pii">S1352-2310(20)30706-8</ArticleId>
<ArticleId IdType="pmc">PMC7521432</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2020 Apr 15;10(1):6450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32296084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Mar;234:368-378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29197266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2020 Jul 10;6(28):eabc2992</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32923601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18984-18990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32723816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geophys Res Lett. 2020 May 08;:e2020GL087978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geophys Res Lett. 2020 May 18;:e2020GL088070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33013178
   |texte=   Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33013178" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021