Serveur d'exploration autour de Joseph Jankovic

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Statistical method on nonrandom clustering with application to somatic mutations in cancer

Identifieur interne : 000258 ( Pmc/Curation ); précédent : 000257; suivant : 000259

Statistical method on nonrandom clustering with application to somatic mutations in cancer

Auteurs : Jingjing Ye [États-Unis] ; Adam Pavlicek [États-Unis] ; Elizabeth. Lunney [États-Unis] ; Paul. Rejto [États-Unis] ; Chi Teng [États-Unis]

Source :

RBID : PMC:2822753

Abstract

Background

Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.

Results

We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.

Conclusions

Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.


Url:
DOI: 10.1186/1471-2105-11-11
PubMed: 20053295
PubMed Central: 2822753

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2822753

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Statistical method on nonrandom clustering with application to somatic mutations in cancer</title>
<author>
<name sortKey="Ye, Jingjing" sort="Ye, Jingjing" uniqKey="Ye J" first="Jingjing" last="Ye">Jingjing Ye</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pavlicek, Adam" sort="Pavlicek, Adam" uniqKey="Pavlicek A" first="Adam" last="Pavlicek">Adam Pavlicek</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lunney, Elizabeth A" sort="Lunney, Elizabeth A" uniqKey="Lunney E" first="Elizabeth" last="Lunney">Elizabeth. Lunney</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rejto, Paul A" sort="Rejto, Paul A" uniqKey="Rejto P" first="Paul" last="Rejto">Paul. Rejto</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Teng, Chi Hse" sort="Teng, Chi Hse" uniqKey="Teng C" first="Chi" last="Teng">Chi Teng</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">Statistics, Corporate Analytics, Amylin Pharmaceuticals Inc, 9360 Towne Centre Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Statistics, Corporate Analytics, Amylin Pharmaceuticals Inc, 9360 Towne Centre Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20053295</idno>
<idno type="pmc">2822753</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822753</idno>
<idno type="RBID">PMC:2822753</idno>
<idno type="doi">10.1186/1471-2105-11-11</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000258</idno>
<idno type="wicri:Area/Pmc/Curation">000258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Statistical method on nonrandom clustering with application to somatic mutations in cancer</title>
<author>
<name sortKey="Ye, Jingjing" sort="Ye, Jingjing" uniqKey="Ye J" first="Jingjing" last="Ye">Jingjing Ye</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pavlicek, Adam" sort="Pavlicek, Adam" uniqKey="Pavlicek A" first="Adam" last="Pavlicek">Adam Pavlicek</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lunney, Elizabeth A" sort="Lunney, Elizabeth A" uniqKey="Lunney E" first="Elizabeth" last="Lunney">Elizabeth. Lunney</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rejto, Paul A" sort="Rejto, Paul A" uniqKey="Rejto P" first="Paul" last="Rejto">Paul. Rejto</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Teng, Chi Hse" sort="Teng, Chi Hse" uniqKey="Teng C" first="Chi" last="Teng">Chi Teng</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">Statistics, Corporate Analytics, Amylin Pharmaceuticals Inc, 9360 Towne Centre Drive, San Diego, CA, 92121, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Statistics, Corporate Analytics, Amylin Pharmaceuticals Inc, 9360 Towne Centre Drive, San Diego, CA, 92121</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Bioinformatics</title>
<idno type="e-ISSN">1471-2105</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.</p>
</sec>
<sec>
<title>Results</title>
<p>We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and
<italic>β</italic>
-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinstein, Ib" uniqKey="Weinstein I">IB Weinstein</name>
</author>
<author>
<name sortKey="Joe, Ak" uniqKey="Joe A">AK Joe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cahill, Dp" uniqKey="Cahill D">DP Cahill</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Lengauer, C" uniqKey="Lengauer C">C Lengauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Tl" uniqKey="Wang T">TL Wang</name>
</author>
<author>
<name sortKey="Rago, C" uniqKey="Rago C">C Rago</name>
</author>
<author>
<name sortKey="Silliman, N" uniqKey="Silliman N">N Silliman</name>
</author>
<author>
<name sortKey="Ptak, J" uniqKey="Ptak J">J Ptak</name>
</author>
<author>
<name sortKey="Markowitz, S" uniqKey="Markowitz S">S Markowitz</name>
</author>
<author>
<name sortKey="Willson, Jkv" uniqKey="Willson J">JKV Willson</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, L" uniqKey="Ding L">L Ding</name>
</author>
<author>
<name sortKey="Getz, G" uniqKey="Getz G">G Getz</name>
</author>
<author>
<name sortKey="Wheeler, Da" uniqKey="Wheeler D">DA Wheeler</name>
</author>
<author>
<name sortKey="Mardis, Er" uniqKey="Mardis E">ER Mardis</name>
</author>
<author>
<name sortKey="Mclellan, Md" uniqKey="Mclellan M">MD McLellan</name>
</author>
<author>
<name sortKey="Cibulskis, K" uniqKey="Cibulskis K">K Cibulskis</name>
</author>
<author>
<name sortKey="Sougnez, C" uniqKey="Sougnez C">C Sougnez</name>
</author>
<author>
<name sortKey="Greulich, H" uniqKey="Greulich H">H Greulich</name>
</author>
<author>
<name sortKey="Muzny, Dm" uniqKey="Muzny D">DM Muzny</name>
</author>
<author>
<name sortKey="Morgan, Mb" uniqKey="Morgan M">MB Morgan</name>
</author>
<author>
<name sortKey="Fulton, L" uniqKey="Fulton L">L Fulton</name>
</author>
<author>
<name sortKey="Fulton, Rs" uniqKey="Fulton R">RS Fulton</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q Zhang</name>
</author>
<author>
<name sortKey="Wendl, Mc" uniqKey="Wendl M">MC Wendl</name>
</author>
<author>
<name sortKey="Lawrence, Ms" uniqKey="Lawrence M">MS Lawrence</name>
</author>
<author>
<name sortKey="Larson, De" uniqKey="Larson D">DE Larson</name>
</author>
<author>
<name sortKey="Chen, K" uniqKey="Chen K">K Chen</name>
</author>
<author>
<name sortKey="Dooling, Dj" uniqKey="Dooling D">DJ Dooling</name>
</author>
<author>
<name sortKey="Sabo, A" uniqKey="Sabo A">A Sabo</name>
</author>
<author>
<name sortKey="Hawes, Ac" uniqKey="Hawes A">AC Hawes</name>
</author>
<author>
<name sortKey="Shen, H" uniqKey="Shen H">H Shen</name>
</author>
<author>
<name sortKey="Jhangiani, Sn" uniqKey="Jhangiani S">SN Jhangiani</name>
</author>
<author>
<name sortKey="Lewis, Lr" uniqKey="Lewis L">LR Lewis</name>
</author>
<author>
<name sortKey="Hall, O" uniqKey="Hall O">O Hall</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
<author>
<name sortKey="Mathew, T" uniqKey="Mathew T">T Mathew</name>
</author>
<author>
<name sortKey="Ren, Y" uniqKey="Ren Y">Y Ren</name>
</author>
<author>
<name sortKey="Yao, J" uniqKey="Yao J">J Yao</name>
</author>
<author>
<name sortKey="Scherer, Se" uniqKey="Scherer S">SE Scherer</name>
</author>
<author>
<name sortKey="Clerc, K" uniqKey="Clerc K">K Clerc</name>
</author>
<author>
<name sortKey="Metcalf, Ga" uniqKey="Metcalf G">GA Metcalf</name>
</author>
<author>
<name sortKey="Ng, B" uniqKey="Ng B">B Ng</name>
</author>
<author>
<name sortKey="Milosavljevic, A" uniqKey="Milosavljevic A">A Milosavljevic</name>
</author>
<author>
<name sortKey="Gonzalez Garay, Ml" uniqKey="Gonzalez Garay M">ML Gonzalez-Garay</name>
</author>
<author>
<name sortKey="Osborne, Jr" uniqKey="Osborne J">JR Osborne</name>
</author>
<author>
<name sortKey="Meyer, R" uniqKey="Meyer R">R Meyer</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
<author>
<name sortKey="Koboldt, Dc" uniqKey="Koboldt D">DC Koboldt</name>
</author>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L Lin</name>
</author>
<author>
<name sortKey="Abbott, R" uniqKey="Abbott R">R Abbott</name>
</author>
<author>
<name sortKey="Miner, Tl" uniqKey="Miner T">TL Miner</name>
</author>
<author>
<name sortKey="Pohl, C" uniqKey="Pohl C">C Pohl</name>
</author>
<author>
<name sortKey="Fewell, G" uniqKey="Fewell G">G Fewell</name>
</author>
<author>
<name sortKey="Haipek, C" uniqKey="Haipek C">C Haipek</name>
</author>
<author>
<name sortKey="Schmidt, H" uniqKey="Schmidt H">H Schmidt</name>
</author>
<author>
<name sortKey="Dunford Shore, Bh" uniqKey="Dunford Shore B">BH Dunford-Shore</name>
</author>
<author>
<name sortKey="Kraja, A" uniqKey="Kraja A">A Kraja</name>
</author>
<author>
<name sortKey="Crosby, Sd" uniqKey="Crosby S">SD Crosby</name>
</author>
<author>
<name sortKey="Sawyer, Cs" uniqKey="Sawyer C">CS Sawyer</name>
</author>
<author>
<name sortKey="Vickery, T" uniqKey="Vickery T">T Vickery</name>
</author>
<author>
<name sortKey="Sander, S" uniqKey="Sander S">S Sander</name>
</author>
<author>
<name sortKey="Robinson, J" uniqKey="Robinson J">J Robinson</name>
</author>
<author>
<name sortKey="Winckler, W" uniqKey="Winckler W">W Winckler</name>
</author>
<author>
<name sortKey="Baldwin, J" uniqKey="Baldwin J">J Baldwin</name>
</author>
<author>
<name sortKey="Chirieac, Lr" uniqKey="Chirieac L">LR Chirieac</name>
</author>
<author>
<name sortKey="Dutt, A" uniqKey="Dutt A">A Dutt</name>
</author>
<author>
<name sortKey="Fennell, T" uniqKey="Fennell T">T Fennell</name>
</author>
<author>
<name sortKey="Hanna, M" uniqKey="Hanna M">M Hanna</name>
</author>
<author>
<name sortKey="Johnson, Be" uniqKey="Johnson B">BE Johnson</name>
</author>
<author>
<name sortKey="Onofrio, Rc" uniqKey="Onofrio R">RC Onofrio</name>
</author>
<author>
<name sortKey="Thomas, Rk" uniqKey="Thomas R">RK Thomas</name>
</author>
<author>
<name sortKey="Tonon, G" uniqKey="Tonon G">G Tonon</name>
</author>
<author>
<name sortKey="Weir, Ba" uniqKey="Weir B">BA Weir</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
<author>
<name sortKey="Ziaugra, L" uniqKey="Ziaugra L">L Ziaugra</name>
</author>
<author>
<name sortKey="Zody, Mc" uniqKey="Zody M">MC Zody</name>
</author>
<author>
<name sortKey="Giordano, T" uniqKey="Giordano T">T Giordano</name>
</author>
<author>
<name sortKey="Orringer, Mb" uniqKey="Orringer M">MB Orringer</name>
</author>
<author>
<name sortKey="Roth, Ja" uniqKey="Roth J">JA Roth</name>
</author>
<author>
<name sortKey="Spitz, Mr" uniqKey="Spitz M">MR Spitz</name>
</author>
<author>
<name sortKey="Wistuba, Ii" uniqKey="Wistuba I">II Wistuba</name>
</author>
<author>
<name sortKey="Ozenberger, B" uniqKey="Ozenberger B">B Ozenberger</name>
</author>
<author>
<name sortKey="Good, Pj" uniqKey="Good P">PJ Good</name>
</author>
<author>
<name sortKey="Chang, Ac" uniqKey="Chang A">AC Chang</name>
</author>
<author>
<name sortKey="Beer, Dg" uniqKey="Beer D">DG Beer</name>
</author>
<author>
<name sortKey="Watson, Ma" uniqKey="Watson M">MA Watson</name>
</author>
<author>
<name sortKey="Ladanyi, M" uniqKey="Ladanyi M">M Ladanyi</name>
</author>
<author>
<name sortKey="Broderick, S" uniqKey="Broderick S">S Broderick</name>
</author>
<author>
<name sortKey="Yoshizawa, A" uniqKey="Yoshizawa A">A Yoshizawa</name>
</author>
<author>
<name sortKey="Travis, Wd" uniqKey="Travis W">WD Travis</name>
</author>
<author>
<name sortKey="Pao, W" uniqKey="Pao W">W Pao</name>
</author>
<author>
<name sortKey="Province, Ma" uniqKey="Province M">MA Province</name>
</author>
<author>
<name sortKey="Weinstock, Gm" uniqKey="Weinstock G">GM Weinstock</name>
</author>
<author>
<name sortKey="Varmus, He" uniqKey="Varmus H">HE Varmus</name>
</author>
<author>
<name sortKey="Gabriel, Sb" uniqKey="Gabriel S">SB Gabriel</name>
</author>
<author>
<name sortKey="Lander, Es" uniqKey="Lander E">ES Lander</name>
</author>
<author>
<name sortKey="Gibbs, Ra" uniqKey="Gibbs R">RA Gibbs</name>
</author>
<author>
<name sortKey="Meyerson, M" uniqKey="Meyerson M">M Meyerson</name>
</author>
<author>
<name sortKey="Wilson, Rk" uniqKey="Wilson R">RK Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bardelli, A" uniqKey="Bardelli A">A Bardelli</name>
</author>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
<author>
<name sortKey="Silliman, N" uniqKey="Silliman N">N Silliman</name>
</author>
<author>
<name sortKey="Ptak, J" uniqKey="Ptak J">J Ptak</name>
</author>
<author>
<name sortKey="Szabo, S" uniqKey="Szabo S">S Szabo</name>
</author>
<author>
<name sortKey="Saha, S" uniqKey="Saha S">S Saha</name>
</author>
<author>
<name sortKey="Markowitz, S" uniqKey="Markowitz S">S Markowitz</name>
</author>
<author>
<name sortKey="Willson, Jkv" uniqKey="Willson J">JKV Willson</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Velculescul, Ve" uniqKey="Velculescul V">VE Velculescul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
<author>
<name sortKey="Ro, S" uniqKey="Ro S">S Ro</name>
</author>
<author>
<name sortKey="Rannala, B" uniqKey="Rannala B">B Rannala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samuels, Y" uniqKey="Samuels Y">Y Samuels</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Bardelli, A" uniqKey="Bardelli A">A Bardelli</name>
</author>
<author>
<name sortKey="Silliman, N" uniqKey="Silliman N">N Silliman</name>
</author>
<author>
<name sortKey="Ptak, J" uniqKey="Ptak J">J Ptak</name>
</author>
<author>
<name sortKey="Szabo, S" uniqKey="Szabo S">S Szabo</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H Yan</name>
</author>
<author>
<name sortKey="Gazdar, A" uniqKey="Gazdar A">A Gazdar</name>
</author>
<author>
<name sortKey="Powell, Sm" uniqKey="Powell S">SM Powell</name>
</author>
<author>
<name sortKey="Riggins, Gj" uniqKey="Riggins G">GJ Riggins</name>
</author>
<author>
<name sortKey="Willson, Jkv" uniqKey="Willson J">JKV Willson</name>
</author>
<author>
<name sortKey="Markowitz, S" uniqKey="Markowitz S">S Markowitz</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Velculescu1, Ve" uniqKey="Velculescu1 V">VE Velculescu1</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, H" uniqKey="Davies H">H Davies</name>
</author>
<author>
<name sortKey="Hunter, C" uniqKey="Hunter C">C Hunter</name>
</author>
<author>
<name sortKey="Smith, R" uniqKey="Smith R">R Smith</name>
</author>
<author>
<name sortKey="Stephens, P" uniqKey="Stephens P">P Stephens</name>
</author>
<author>
<name sortKey="Greenman, C" uniqKey="Greenman C">C Greenman</name>
</author>
<author>
<name sortKey="Bignell, G" uniqKey="Bignell G">G Bignell</name>
</author>
<author>
<name sortKey="Teague, J" uniqKey="Teague J">J Teague</name>
</author>
<author>
<name sortKey="Butler, A" uniqKey="Butler A">A Butler</name>
</author>
<author>
<name sortKey="Edkins, S" uniqKey="Edkins S">S Edkins</name>
</author>
<author>
<name sortKey="Stevens, C" uniqKey="Stevens C">C Stevens</name>
</author>
<author>
<name sortKey="Parker, A" uniqKey="Parker A">A Parker</name>
</author>
<author>
<name sortKey="O Meara, S" uniqKey="O Meara S">S O'Meara</name>
</author>
<author>
<name sortKey="Avis, T" uniqKey="Avis T">T Avis</name>
</author>
<author>
<name sortKey="Barthorpe, S" uniqKey="Barthorpe S">S Barthorpe</name>
</author>
<author>
<name sortKey="Brackenbury, L" uniqKey="Brackenbury L">L Brackenbury</name>
</author>
<author>
<name sortKey="Buck, G" uniqKey="Buck G">G Buck</name>
</author>
<author>
<name sortKey="Clements, J" uniqKey="Clements J">J Clements</name>
</author>
<author>
<name sortKey="Cole, J" uniqKey="Cole J">J Cole</name>
</author>
<author>
<name sortKey="Dicks, E" uniqKey="Dicks E">E Dicks</name>
</author>
<author>
<name sortKey="Edwards, K" uniqKey="Edwards K">K Edwards</name>
</author>
<author>
<name sortKey="Forbes, S" uniqKey="Forbes S">S Forbes</name>
</author>
<author>
<name sortKey="Gorton, M" uniqKey="Gorton M">M Gorton</name>
</author>
<author>
<name sortKey="Gray, K" uniqKey="Gray K">K Gray</name>
</author>
<author>
<name sortKey="Halliday, K" uniqKey="Halliday K">K Halliday</name>
</author>
<author>
<name sortKey="Harrison, R" uniqKey="Harrison R">R Harrison</name>
</author>
<author>
<name sortKey="Hills, K" uniqKey="Hills K">K Hills</name>
</author>
<author>
<name sortKey="Hinton, J" uniqKey="Hinton J">J Hinton</name>
</author>
<author>
<name sortKey="Jones, D" uniqKey="Jones D">D Jones</name>
</author>
<author>
<name sortKey="Kosmidou, V" uniqKey="Kosmidou V">V Kosmidou</name>
</author>
<author>
<name sortKey="Laman, R" uniqKey="Laman R">R Laman</name>
</author>
<author>
<name sortKey="Lugg, R" uniqKey="Lugg R">R Lugg</name>
</author>
<author>
<name sortKey="Menzies, A" uniqKey="Menzies A">A Menzies</name>
</author>
<author>
<name sortKey="Perry, J" uniqKey="Perry J">J Perry</name>
</author>
<author>
<name sortKey="Petty, R" uniqKey="Petty R">R Petty</name>
</author>
<author>
<name sortKey="Raine, K" uniqKey="Raine K">K Raine</name>
</author>
<author>
<name sortKey="Shepherd, R" uniqKey="Shepherd R">R Shepherd</name>
</author>
<author>
<name sortKey="Small, A" uniqKey="Small A">A Small</name>
</author>
<author>
<name sortKey="Solomon, H" uniqKey="Solomon H">H Solomon</name>
</author>
<author>
<name sortKey="Stephens, Y" uniqKey="Stephens Y">Y Stephens</name>
</author>
<author>
<name sortKey="Tofts, C" uniqKey="Tofts C">C Tofts</name>
</author>
<author>
<name sortKey="Varian, J" uniqKey="Varian J">J Varian</name>
</author>
<author>
<name sortKey="Webb, A" uniqKey="Webb A">A Webb</name>
</author>
<author>
<name sortKey="West, S" uniqKey="West S">S West</name>
</author>
<author>
<name sortKey="Widaa, S" uniqKey="Widaa S">S Widaa</name>
</author>
<author>
<name sortKey="Yates, A" uniqKey="Yates A">A Yates</name>
</author>
<author>
<name sortKey="Brasseur, F" uniqKey="Brasseur F">F Brasseur</name>
</author>
<author>
<name sortKey="Cooper, Cs" uniqKey="Cooper C">CS Cooper</name>
</author>
<author>
<name sortKey="Flanagan, Am" uniqKey="Flanagan A">AM Flanagan</name>
</author>
<author>
<name sortKey="Green, A" uniqKey="Green A">A Green</name>
</author>
<author>
<name sortKey="Knowles, M" uniqKey="Knowles M">M Knowles</name>
</author>
<author>
<name sortKey="Leung, Sy" uniqKey="Leung S">SY Leung</name>
</author>
<author>
<name sortKey="Looijenga, Lhj" uniqKey="Looijenga L">LHJ Looijenga</name>
</author>
<author>
<name sortKey="Malkowicz, B" uniqKey="Malkowicz B">B Malkowicz</name>
</author>
<author>
<name sortKey="Pierotti, Ma" uniqKey="Pierotti M">MA Pierotti</name>
</author>
<author>
<name sortKey="Teh, Bt" uniqKey="Teh B">BT Teh</name>
</author>
<author>
<name sortKey="Yuen, St" uniqKey="Yuen S">ST Yuen</name>
</author>
<author>
<name sortKey="Lakhani, Sr" uniqKey="Lakhani S">SR Lakhani</name>
</author>
<author>
<name sortKey="Easton, Df" uniqKey="Easton D">DF Easton</name>
</author>
<author>
<name sortKey="Weber, Bl" uniqKey="Weber B">BL Weber</name>
</author>
<author>
<name sortKey="Goldstraw, P" uniqKey="Goldstraw P">P Goldstraw</name>
</author>
<author>
<name sortKey="Nicholson, Ag" uniqKey="Nicholson A">AG Nicholson</name>
</author>
<author>
<name sortKey="Wooster, R" uniqKey="Wooster R">R Wooster</name>
</author>
<author>
<name sortKey="Stratton, Mr" uniqKey="Stratton M">MR Stratton</name>
</author>
<author>
<name sortKey="Futreal, Pa" uniqKey="Futreal P">PA Futreal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenman, C" uniqKey="Greenman C">C Greenman</name>
</author>
<author>
<name sortKey="Wooster, R" uniqKey="Wooster R">R Wooster</name>
</author>
<author>
<name sortKey="Futreal, Pa" uniqKey="Futreal P">PA Futreal</name>
</author>
<author>
<name sortKey="Stratton, Mr" uniqKey="Stratton M">MR Stratton</name>
</author>
<author>
<name sortKey="Easton, Df" uniqKey="Easton D">DF Easton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sjoblom, T" uniqKey="Sjoblom T">T Sjöblom</name>
</author>
<author>
<name sortKey="Jones, S" uniqKey="Jones S">S Jones</name>
</author>
<author>
<name sortKey="Wood, Ld" uniqKey="Wood L">LD Wood</name>
</author>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J Lin</name>
</author>
<author>
<name sortKey="Barber, Td" uniqKey="Barber T">TD Barber</name>
</author>
<author>
<name sortKey="Mandelker, D" uniqKey="Mandelker D">D Mandelker</name>
</author>
<author>
<name sortKey="Leary, Rj" uniqKey="Leary R">RJ Leary</name>
</author>
<author>
<name sortKey="Ptak, J" uniqKey="Ptak J">J Ptak</name>
</author>
<author>
<name sortKey="Silliman, N" uniqKey="Silliman N">N Silliman</name>
</author>
<author>
<name sortKey="Szabo, S" uniqKey="Szabo S">S Szabo</name>
</author>
<author>
<name sortKey="Buckhaults, P" uniqKey="Buckhaults P">P Buckhaults</name>
</author>
<author>
<name sortKey="Farrell, C" uniqKey="Farrell C">C Farrell</name>
</author>
<author>
<name sortKey="Meeh, P" uniqKey="Meeh P">P Meeh</name>
</author>
<author>
<name sortKey="Markowitz, Sd" uniqKey="Markowitz S">SD Markowitz</name>
</author>
<author>
<name sortKey="Willis, J" uniqKey="Willis J">J Willis</name>
</author>
<author>
<name sortKey="Dawson, D" uniqKey="Dawson D">D Dawson</name>
</author>
<author>
<name sortKey="Willson, Jkv" uniqKey="Willson J">JKV Willson</name>
</author>
<author>
<name sortKey="Gazdar, Af" uniqKey="Gazdar A">AF Gazdar</name>
</author>
<author>
<name sortKey="Hartigan, J" uniqKey="Hartigan J">J Hartigan</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L Wu</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C Liu</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Park, Bh" uniqKey="Park B">BH Park</name>
</author>
<author>
<name sortKey="Bachman, Ke" uniqKey="Bachman K">KE Bachman</name>
</author>
<author>
<name sortKey="Papadopoulos, N" uniqKey="Papadopoulos N">N Papadopoulos</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaminker, Js" uniqKey="Kaminker J">JS Kaminker</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Waugh, A" uniqKey="Waugh A">A Waugh</name>
</author>
<author>
<name sortKey="Haverty, Pm" uniqKey="Haverty P">PM Haverty</name>
</author>
<author>
<name sortKey="Peters, B" uniqKey="Peters B">B Peters</name>
</author>
<author>
<name sortKey="Sebisanovic, D" uniqKey="Sebisanovic D">D Sebisanovic</name>
</author>
<author>
<name sortKey="Stinson, J" uniqKey="Stinson J">J Stinson</name>
</author>
<author>
<name sortKey="Forrest, Wf" uniqKey="Forrest W">WF Forrest</name>
</author>
<author>
<name sortKey="Bazan, Jf" uniqKey="Bazan J">JF Bazan</name>
</author>
<author>
<name sortKey="Seshagiri, S" uniqKey="Seshagiri S">S Seshagiri</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yip, Yl" uniqKey="Yip Y">YL Yip</name>
</author>
<author>
<name sortKey="Zoete, V" uniqKey="Zoete V">V Zoete</name>
</author>
<author>
<name sortKey="Scheib, H" uniqKey="Scheib H">H Scheib</name>
</author>
<author>
<name sortKey="Michielin, O" uniqKey="Michielin O">O Michielin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
<author>
<name sortKey="Li, W H" uniqKey="Li W">W-H Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torkamani, A" uniqKey="Torkamani A">A Torkamani</name>
</author>
<author>
<name sortKey="Schork, Nj" uniqKey="Schork N">NJ Schork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naus, Ji" uniqKey="Naus J">JI Naus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Naus, Ji" uniqKey="Naus J">JI Naus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balakrishnan, N" uniqKey="Balakrishnan N">N Balakrishnan</name>
</author>
<author>
<name sortKey="Koutras, Mv" uniqKey="Koutras M">MV Koutras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glaz, J" uniqKey="Glaz J">J Glaz</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forbes, Sa" uniqKey="Forbes S">SA Forbes</name>
</author>
<author>
<name sortKey="Bhamra, G" uniqKey="Bhamra G">G Bhamra</name>
</author>
<author>
<name sortKey="Bamford, S" uniqKey="Bamford S">S Bamford</name>
</author>
<author>
<name sortKey="Dawson, E" uniqKey="Dawson E">E Dawson</name>
</author>
<author>
<name sortKey="Kok, C" uniqKey="Kok C">C Kok</name>
</author>
<author>
<name sortKey="Clements, J" uniqKey="Clements J">J Clements</name>
</author>
<author>
<name sortKey="Menzies, A" uniqKey="Menzies A">A Menzies</name>
</author>
<author>
<name sortKey="Teague, Jw" uniqKey="Teague J">JW Teague</name>
</author>
<author>
<name sortKey="Futreal, Pa" uniqKey="Futreal P">PA Futreal</name>
</author>
<author>
<name sortKey="Stratton, Mr" uniqKey="Stratton M">MR Stratton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, H" uniqKey="Davies H">H Davies</name>
</author>
<author>
<name sortKey="Bignell, Gr" uniqKey="Bignell G">GR Bignell</name>
</author>
<author>
<name sortKey="Cox, C" uniqKey="Cox C">C Cox</name>
</author>
<author>
<name sortKey="Stephens, P" uniqKey="Stephens P">P Stephens</name>
</author>
<author>
<name sortKey="Edkins, S" uniqKey="Edkins S">S Edkins</name>
</author>
<author>
<name sortKey="Clegg, S" uniqKey="Clegg S">S Clegg</name>
</author>
<author>
<name sortKey="Teague, J" uniqKey="Teague J">J Teague</name>
</author>
<author>
<name sortKey="Woffendin, H" uniqKey="Woffendin H">H Woffendin</name>
</author>
<author>
<name sortKey="Garnett, Mj" uniqKey="Garnett M">MJ Garnett</name>
</author>
<author>
<name sortKey="Bottomley, W" uniqKey="Bottomley W">W Bottomley</name>
</author>
<author>
<name sortKey="Davis, N" uniqKey="Davis N">N Davis</name>
</author>
<author>
<name sortKey="Dicks, E" uniqKey="Dicks E">E Dicks</name>
</author>
<author>
<name sortKey="Ewing, R" uniqKey="Ewing R">R Ewing</name>
</author>
<author>
<name sortKey="Floyd, Y" uniqKey="Floyd Y">Y Floyd</name>
</author>
<author>
<name sortKey="Gray, K" uniqKey="Gray K">K Gray</name>
</author>
<author>
<name sortKey="Hall, S" uniqKey="Hall S">S Hall</name>
</author>
<author>
<name sortKey="Hawes, R" uniqKey="Hawes R">R Hawes</name>
</author>
<author>
<name sortKey="Hughes, J" uniqKey="Hughes J">J Hughes</name>
</author>
<author>
<name sortKey="Kosmidou, V" uniqKey="Kosmidou V">V Kosmidou</name>
</author>
<author>
<name sortKey="Menzies, A" uniqKey="Menzies A">A Menzies</name>
</author>
<author>
<name sortKey="Mould, C" uniqKey="Mould C">C Mould</name>
</author>
<author>
<name sortKey="Parker, A" uniqKey="Parker A">A Parker</name>
</author>
<author>
<name sortKey="Stevens, C" uniqKey="Stevens C">C Stevens</name>
</author>
<author>
<name sortKey="Watt, S" uniqKey="Watt S">S Watt</name>
</author>
<author>
<name sortKey="Hooper, S" uniqKey="Hooper S">S Hooper</name>
</author>
<author>
<name sortKey="Wilson, R" uniqKey="Wilson R">R Wilson</name>
</author>
<author>
<name sortKey="Jayatilake, H" uniqKey="Jayatilake H">H Jayatilake</name>
</author>
<author>
<name sortKey="Gusterson, Ba" uniqKey="Gusterson B">BA Gusterson</name>
</author>
<author>
<name sortKey="Cooper, C" uniqKey="Cooper C">C Cooper</name>
</author>
<author>
<name sortKey="Shipley, J" uniqKey="Shipley J">J Shipley</name>
</author>
<author>
<name sortKey="Hargrave, D" uniqKey="Hargrave D">D Hargrave</name>
</author>
<author>
<name sortKey="Pritchard Jones, K" uniqKey="Pritchard Jones K">K Pritchard-Jones</name>
</author>
<author>
<name sortKey="Maitland, N" uniqKey="Maitland N">N Maitland</name>
</author>
<author>
<name sortKey="Chenevix Trench, G" uniqKey="Chenevix Trench G">G Chenevix-Trench</name>
</author>
<author>
<name sortKey="Riggins, Gj" uniqKey="Riggins G">GJ Riggins</name>
</author>
<author>
<name sortKey="Bigner, Dd" uniqKey="Bigner D">DD Bigner</name>
</author>
<author>
<name sortKey="Palmieri, G" uniqKey="Palmieri G">G Palmieri</name>
</author>
<author>
<name sortKey="Cossu, A" uniqKey="Cossu A">A Cossu</name>
</author>
<author>
<name sortKey="Flanagan, A" uniqKey="Flanagan A">A Flanagan</name>
</author>
<author>
<name sortKey="Nicholson, A" uniqKey="Nicholson A">A Nicholson</name>
</author>
<author>
<name sortKey="Ho, Jw" uniqKey="Ho J">JW Ho</name>
</author>
<author>
<name sortKey="Leung, Sy" uniqKey="Leung S">SY Leung</name>
</author>
<author>
<name sortKey="Yuen, St" uniqKey="Yuen S">ST Yuen</name>
</author>
<author>
<name sortKey="Weber, Bl" uniqKey="Weber B">BL Weber</name>
</author>
<author>
<name sortKey="Seigler, Hf" uniqKey="Seigler H">HF Seigler</name>
</author>
<author>
<name sortKey="Darrow, Tl" uniqKey="Darrow T">TL Darrow</name>
</author>
<author>
<name sortKey="Paterson, H" uniqKey="Paterson H">H Paterson</name>
</author>
<author>
<name sortKey="Marais, R" uniqKey="Marais R">R Marais</name>
</author>
<author>
<name sortKey="Marshall, Cj" uniqKey="Marshall C">CJ Marshall</name>
</author>
<author>
<name sortKey="Wooster, R" uniqKey="Wooster R">R Wooster</name>
</author>
<author>
<name sortKey="Stratton, Mr" uniqKey="Stratton M">MR Stratton</name>
</author>
<author>
<name sortKey="Futreal, Pa" uniqKey="Futreal P">PA Futreal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bos, Jl" uniqKey="Bos J">JL Bos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hagen, T" uniqKey="Hagen T">T Hagen</name>
</author>
<author>
<name sortKey="Vidal Puig, A" uniqKey="Vidal Puig A">A Vidal-Puig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morin, Pj" uniqKey="Morin P">PJ Morin</name>
</author>
<author>
<name sortKey="Sparks, Ab" uniqKey="Sparks A">AB Sparks</name>
</author>
<author>
<name sortKey="Korinek, V" uniqKey="Korinek V">V Korinek</name>
</author>
<author>
<name sortKey="Barker, N" uniqKey="Barker N">N Barker</name>
</author>
<author>
<name sortKey="Clevers, H" uniqKey="Clevers H">H Clevers</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Y X" uniqKey="Fan Y">Y-X Fan</name>
</author>
<author>
<name sortKey="Wong, L" uniqKey="Wong L">L Wong</name>
</author>
<author>
<name sortKey="Ding, J" uniqKey="Ding J">J Ding</name>
</author>
<author>
<name sortKey="Spiridonov, Na" uniqKey="Spiridonov N">NA Spiridonov</name>
</author>
<author>
<name sortKey="Johnson, Rc" uniqKey="Johnson R">RC Johnson</name>
</author>
<author>
<name sortKey="Johnson, Gr" uniqKey="Johnson G">GR Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mata, If" uniqKey="Mata I">IF Mata</name>
</author>
<author>
<name sortKey="Wedemeyer, Wj" uniqKey="Wedemeyer W">WJ Wedemeyer</name>
</author>
<author>
<name sortKey="Farrer, Mj" uniqKey="Farrer M">MJ Farrer</name>
</author>
<author>
<name sortKey="Taylor, Jp" uniqKey="Taylor J">JP Taylor</name>
</author>
<author>
<name sortKey="Gallo, Ka" uniqKey="Gallo K">KA Gallo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inzelberg, R" uniqKey="Inzelberg R">R Inzelberg</name>
</author>
<author>
<name sortKey="Jankovic, J" uniqKey="Jankovic J">J Jankovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strongosky, Aj" uniqKey="Strongosky A">AJ Strongosky</name>
</author>
<author>
<name sortKey="Jankovic, J" uniqKey="Jankovic J">J Jankovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nigro, Jm" uniqKey="Nigro J">JM Nigro</name>
</author>
<author>
<name sortKey="Baker, Sj" uniqKey="Baker S">SJ Baker</name>
</author>
<author>
<name sortKey="Preisinger, Ac" uniqKey="Preisinger A">AC Preisinger</name>
</author>
<author>
<name sortKey="Jessup, Jm" uniqKey="Jessup J">JM Jessup</name>
</author>
<author>
<name sortKey="Hosteller, R" uniqKey="Hosteller R">R Hosteller</name>
</author>
<author>
<name sortKey="Cleary, K" uniqKey="Cleary K">K Cleary</name>
</author>
<author>
<name sortKey="Signer, Sh" uniqKey="Signer S">SH Signer</name>
</author>
<author>
<name sortKey="Davidson, N" uniqKey="Davidson N">N Davidson</name>
</author>
<author>
<name sortKey="Baylin, S" uniqKey="Baylin S">S Baylin</name>
</author>
<author>
<name sortKey="Devilee, P" uniqKey="Devilee P">P Devilee</name>
</author>
<author>
<name sortKey="Glover, T" uniqKey="Glover T">T Glover</name>
</author>
<author>
<name sortKey="Collins, Fs" uniqKey="Collins F">FS Collins</name>
</author>
<author>
<name sortKey="Weslon, A" uniqKey="Weslon A">A Weslon</name>
</author>
<author>
<name sortKey="Modali, R" uniqKey="Modali R">R Modali</name>
</author>
<author>
<name sortKey="Harris, Cc" uniqKey="Harris C">CC Harris</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hollstein, M" uniqKey="Hollstein M">M Hollstein</name>
</author>
<author>
<name sortKey="Sidransky, D" uniqKey="Sidransky D">D Sidransky</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Harris, Cc" uniqKey="Harris C">CC Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, H" uniqKey="Song H">H Song</name>
</author>
<author>
<name sortKey="Hollstein, M" uniqKey="Hollstein M">M Hollstein</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tolkacheva, T" uniqKey="Tolkacheva T">T Tolkacheva</name>
</author>
<author>
<name sortKey="Chan, Am" uniqKey="Chan A">AM Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Wp" uniqKey="Yu W">WP Yu</name>
</author>
<author>
<name sortKey="Pallen, Cj" uniqKey="Pallen C">CJ Pallen</name>
</author>
<author>
<name sortKey="Tay, A" uniqKey="Tay A">A Tay</name>
</author>
<author>
<name sortKey="Jirik, Fr" uniqKey="Jirik F">FR Jirik</name>
</author>
<author>
<name sortKey="Brenner, S" uniqKey="Brenner S">S Brenner</name>
</author>
<author>
<name sortKey="Tan, Yh" uniqKey="Tan Y">YH Tan</name>
</author>
<author>
<name sortKey="Venkatesh, B" uniqKey="Venkatesh B">B Venkatesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagner, A" uniqKey="Wagner A">A Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, S" uniqKey="Jones S">S Jones</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
<author>
<name sortKey="Lin, Jc H" uniqKey="Lin J">JC-H Lin</name>
</author>
<author>
<name sortKey="Leary, Rj" uniqKey="Leary R">RJ Leary</name>
</author>
<author>
<name sortKey="Angenendt, P" uniqKey="Angenendt P">P Angenendt</name>
</author>
<author>
<name sortKey="Mankoo, P" uniqKey="Mankoo P">P Mankoo</name>
</author>
<author>
<name sortKey="Carter, H" uniqKey="Carter H">H Carter</name>
</author>
<author>
<name sortKey="Kamiyama, H" uniqKey="Kamiyama H">H Kamiyama</name>
</author>
<author>
<name sortKey="Jimeno, A" uniqKey="Jimeno A">A Jimeno</name>
</author>
<author>
<name sortKey="Hong, S M" uniqKey="Hong S">S-M Hong</name>
</author>
<author>
<name sortKey="Fu, B" uniqKey="Fu B">B Fu</name>
</author>
<author>
<name sortKey="Lin, M T" uniqKey="Lin M">M-T Lin</name>
</author>
<author>
<name sortKey="Calhoun, Es" uniqKey="Calhoun E">ES Calhoun</name>
</author>
<author>
<name sortKey="Kamiyama, M" uniqKey="Kamiyama M">M Kamiyama</name>
</author>
<author>
<name sortKey="Walter, K" uniqKey="Walter K">K Walter</name>
</author>
<author>
<name sortKey="Nikolskaya, T" uniqKey="Nikolskaya T">T Nikolskaya</name>
</author>
<author>
<name sortKey="Nikolsky, Y" uniqKey="Nikolsky Y">Y Nikolsky</name>
</author>
<author>
<name sortKey="Hartigan, J" uniqKey="Hartigan J">J Hartigan</name>
</author>
<author>
<name sortKey="Smith, Dr" uniqKey="Smith D">DR Smith</name>
</author>
<author>
<name sortKey="Hidalgo, M" uniqKey="Hidalgo M">M Hidalgo</name>
</author>
<author>
<name sortKey="Leach, Sd" uniqKey="Leach S">SD Leach</name>
</author>
<author>
<name sortKey="Klein, Ap" uniqKey="Klein A">AP Klein</name>
</author>
<author>
<name sortKey="Jaffee, Em" uniqKey="Jaffee E">EM Jaffee</name>
</author>
<author>
<name sortKey="Goggins, M" uniqKey="Goggins M">M Goggins</name>
</author>
<author>
<name sortKey="Maitra, A" uniqKey="Maitra A">A Maitra</name>
</author>
<author>
<name sortKey="Iacobuzio Donahue, C" uniqKey="Iacobuzio Donahue C">C Iacobuzio-Donahue</name>
</author>
<author>
<name sortKey="Eshleman, Jr" uniqKey="Eshleman J">JR Eshleman</name>
</author>
<author>
<name sortKey="Kern, Se" uniqKey="Kern S">SE Kern</name>
</author>
<author>
<name sortKey="Hruban, Rh" uniqKey="Hruban R">RH Hruban</name>
</author>
<author>
<name sortKey="Karchin, R" uniqKey="Karchin R">R Karchin</name>
</author>
<author>
<name sortKey="Papadopoulos, N" uniqKey="Papadopoulos N">N Papadopoulos</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parsons, Dw" uniqKey="Parsons D">DW Parsons</name>
</author>
<author>
<name sortKey="Jones, S" uniqKey="Jones S">S Jones</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Lin, Jc H" uniqKey="Lin J">JC-H Lin</name>
</author>
<author>
<name sortKey="Leary, Rj" uniqKey="Leary R">RJ Leary</name>
</author>
<author>
<name sortKey="Angenendt, P" uniqKey="Angenendt P">P Angenendt</name>
</author>
<author>
<name sortKey="Mankoo, P" uniqKey="Mankoo P">P Mankoo</name>
</author>
<author>
<name sortKey="Carter, H" uniqKey="Carter H">H Carter</name>
</author>
<author>
<name sortKey="Siu, I M" uniqKey="Siu I">I-M Siu</name>
</author>
<author>
<name sortKey="Gallia, Gl" uniqKey="Gallia G">GL Gallia</name>
</author>
<author>
<name sortKey="Olivi, A" uniqKey="Olivi A">A Olivi</name>
</author>
<author>
<name sortKey="Mclendon, R" uniqKey="Mclendon R">R McLendon</name>
</author>
<author>
<name sortKey="Rasheed, Ba" uniqKey="Rasheed B">BA Rasheed</name>
</author>
<author>
<name sortKey="Keir, S" uniqKey="Keir S">S Keir</name>
</author>
<author>
<name sortKey="Nikolskaya, T" uniqKey="Nikolskaya T">T Nikolskaya</name>
</author>
<author>
<name sortKey="Nikolsky, Y" uniqKey="Nikolsky Y">Y Nikolsky</name>
</author>
<author>
<name sortKey="Busam, Da" uniqKey="Busam D">DA Busam</name>
</author>
<author>
<name sortKey="Tekleab, H" uniqKey="Tekleab H">H Tekleab</name>
</author>
<author>
<name sortKey="Diaz, La" uniqKey="Diaz L">LA Diaz</name>
</author>
<author>
<name sortKey="Hartigan, J" uniqKey="Hartigan J">J Hartigan</name>
</author>
<author>
<name sortKey="Smith, Dr" uniqKey="Smith D">DR Smith</name>
</author>
<author>
<name sortKey="Strausberg, Rl" uniqKey="Strausberg R">RL Strausberg</name>
</author>
<author>
<name sortKey="Marie, Skn" uniqKey="Marie S">SKN Marie</name>
</author>
<author>
<name sortKey="Shinjo, Smo" uniqKey="Shinjo S">SMO Shinjo</name>
</author>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H Yan</name>
</author>
<author>
<name sortKey="Riggins, Gj" uniqKey="Riggins G">GJ Riggins</name>
</author>
<author>
<name sortKey="Bigner, Dd" uniqKey="Bigner D">DD Bigner</name>
</author>
<author>
<name sortKey="Karchin, R" uniqKey="Karchin R">R Karchin</name>
</author>
<author>
<name sortKey="Papadopoulos, N" uniqKey="Papadopoulos N">N Papadopoulos</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sved, J" uniqKey="Sved J">J Sved</name>
</author>
<author>
<name sortKey="Bird, A" uniqKey="Bird A">A Bird</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Pa" uniqKey="Jones P">PA Jones</name>
</author>
<author>
<name sortKey="Rideout, Wm" uniqKey="Rideout W">WM Rideout</name>
</author>
<author>
<name sortKey="Shen, Jc" uniqKey="Shen J">JC Shen</name>
</author>
<author>
<name sortKey="Spruck, Ch" uniqKey="Spruck C">CH Spruck</name>
</author>
<author>
<name sortKey="Tsai, Yc" uniqKey="Tsai Y">YC Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burr, Iw" uniqKey="Burr I">IW Burr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evans, Dl" uniqKey="Evans D">DL Evans</name>
</author>
<author>
<name sortKey="Leemis, Lm" uniqKey="Leemis L">LM Leemis</name>
</author>
<author>
<name sortKey="Drew, Jh" uniqKey="Drew J">JH Drew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Nl" uniqKey="Johnson N">NL Johnson</name>
</author>
<author>
<name sortKey="Kotz, S" uniqKey="Kotz S">S Kotz</name>
</author>
<author>
<name sortKey="Balakrishnan, N" uniqKey="Balakrishnan N">N Balakrishnan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
<author>
<name sortKey="Hochberg, Y" uniqKey="Hochberg Y">Y Hochberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benjamini, Y" uniqKey="Benjamini Y">Y Benjamini</name>
</author>
<author>
<name sortKey="Yekutieli, D" uniqKey="Yekutieli D">D Yekutieli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berman, Hm" uniqKey="Berman H">HM Berman</name>
</author>
<author>
<name sortKey="Westbrook, J" uniqKey="Westbrook J">J Westbrook</name>
</author>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z Feng</name>
</author>
<author>
<name sortKey="Gilliland, G" uniqKey="Gilliland G">G Gilliland</name>
</author>
<author>
<name sortKey="Bhat, Tn" uniqKey="Bhat T">TN Bhat</name>
</author>
<author>
<name sortKey="Weissig, H" uniqKey="Weissig H">H Weissig</name>
</author>
<author>
<name sortKey="Shindyalov, In" uniqKey="Shindyalov I">IN Shindyalov</name>
</author>
<author>
<name sortKey="Bourne, Pe" uniqKey="Bourne P">PE Bourne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Ch" uniqKey="Huang C">CH Huang</name>
</author>
<author>
<name sortKey="Mandelker, D" uniqKey="Mandelker D">D Mandelker</name>
</author>
<author>
<name sortKey="Schmidt Kittler, O" uniqKey="Schmidt Kittler O">O Schmidt-Kittler</name>
</author>
<author>
<name sortKey="Samuels, Y" uniqKey="Samuels Y">Y Samuels</name>
</author>
<author>
<name sortKey="Velculescu, Ve" uniqKey="Velculescu V">VE Velculescu</name>
</author>
<author>
<name sortKey="Kinzler, Kw" uniqKey="Kinzler K">KW Kinzler</name>
</author>
<author>
<name sortKey="Vogelstein, B" uniqKey="Vogelstein B">B Vogelstein</name>
</author>
<author>
<name sortKey="Gabelli, Sb" uniqKey="Gabelli S">SB Gabelli</name>
</author>
<author>
<name sortKey="Amzel, Lm" uniqKey="Amzel L">LM Amzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Rosengarth, A" uniqKey="Rosengarth A">A Rosengarth</name>
</author>
<author>
<name sortKey="Luecke, H" uniqKey="Luecke H">H Luecke</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Bioinformatics</journal-id>
<journal-title-group>
<journal-title>BMC Bioinformatics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2105</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20053295</article-id>
<article-id pub-id-type="pmc">2822753</article-id>
<article-id pub-id-type="publisher-id">1471-2105-11-11</article-id>
<article-id pub-id-type="doi">10.1186/1471-2105-11-11</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Methodology article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Statistical method on nonrandom clustering with application to somatic mutations in cancer</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes" id="A1">
<name>
<surname>Ye</surname>
<given-names>Jingjing</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>Jingjing.Ye@pfizer.com</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Pavlicek</surname>
<given-names>Adam</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>Adam.Pavlicek@pfizer.com</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Lunney</surname>
<given-names>Elizabeth A</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>Beth.Lunney@pfizer.com</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Rejto</surname>
<given-names>Paul A</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>Paul.Rejto@pfizer.com</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A5">
<name>
<surname>Teng</surname>
<given-names>Chi-Hse</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>Chi-Hse.Teng@amylin.com</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Global Pre-Clinical Statistics, Pfizer Global Research and Development, 10777 Science Center Drive, San Diego, CA, 92121, USA</aff>
<aff id="I2">
<label>2</label>
Computational Biology Group, Oncology Research Unit, Pfizer Global Research and Development, San Diego, CA, 92121, USA</aff>
<aff id="I3">
<label>3</label>
Statistics, Corporate Analytics, Amylin Pharmaceuticals Inc, 9360 Towne Centre Drive, San Diego, CA, 92121, USA</aff>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>1</month>
<year>2010</year>
</pub-date>
<volume>11</volume>
<fpage>11</fpage>
<lpage>11</lpage>
<history>
<date date-type="received">
<day>12</day>
<month>6</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>1</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2010 Ye et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Ye et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2105/11/11"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.</p>
</sec>
<sec>
<title>Results</title>
<p>We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and
<italic>β</italic>
-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Cancer is a genetic disease caused by the accumulation of tumor-specific (somatic) mutations in two broadly defined types of genes called tumor suppressors and oncogenes (Vogelstein and Kinzler (2004) [
<xref ref-type="bibr" rid="B1">1</xref>
]). In general, mutations in tumor suppressors tend to inactivate these natural repressors of tumorgenesis. Mutations in cellular proto-oncogenes, on the other hand, typically increase or deregulate the activity of their protein products. The existence of different types of genes and mutations in cancer has significant practical implications for developing targeted therapies in cancer care. So far, pharmacological restoration of tumor suppression function has been challenging: better success has been achieved by inhibiting activated oncogenes (Weinstein and Joe (2006) [
<xref ref-type="bibr" rid="B2">2</xref>
]). In addition to representing potential therapeutic targets, activating mutations can also be used as biomarkers to identify populations likely to respond to therapies targeting the mutated genes. There is therefore significant interest in identifying those mutations necessary for the cancer phenotype (also known as driver mutations), separating the driver mutations from the random (passenger) mutations that occur as a consequence of the genetic instability typical for human tumors (Cahill et al. (1999) [
<xref ref-type="bibr" rid="B3">3</xref>
]), and furthermore distinguishing activating mutations from inactivating mutations.</p>
<p>Several methods have been developed for the automated prediction of driver oncogenic mutations in individual genes, yet few are suitable for detecting activating mutations. The most straightforward method predicts that driver mutations have a large number of mutations relative to the estimated background mutational rate, after normalizing for gene size (Wang et al. (2002) [
<xref ref-type="bibr" rid="B4">4</xref>
]; see also the "Standard test" in supplementary information for Ding et al. (2008) [
<xref ref-type="bibr" rid="B5">5</xref>
]). Another popular approach predicts that driver mutations have a higher frequency of non-synonymous mutations relative to the background mutation rate (e.g. Bardelli et al. (2003) [
<xref ref-type="bibr" rid="B6">6</xref>
]; Yang et al. (2003) [
<xref ref-type="bibr" rid="B7">7</xref>
]; Samuels et al. (2004) [
<xref ref-type="bibr" rid="B8">8</xref>
]; Davies et al. (2005) [
<xref ref-type="bibr" rid="B9">9</xref>
]; Greenman et al. (2006) [
<xref ref-type="bibr" rid="B10">10</xref>
]; Sjöblom et al. (2006) [
<xref ref-type="bibr" rid="B11">11</xref>
]). These methods are typically used to estimate the total fraction of driver mutations or to detect driver genes, but like predictions based on the phylogenic conservation of protein sequences (see Kaminker et al (2007) [
<xref ref-type="bibr" rid="B12">12</xref>
] and refs. therein), they cannot distinguish between inactivating and activating mutations. In addition, these methods are less suitable to identify driver genes that have low mutation frequencies. Meanwhile, approaches that model the destabilizing effects of mutations on protein structure (see Yip et al. (2006) [
<xref ref-type="bibr" rid="B13">13</xref>
] and refs. therein) are more suitable for tumor suppressor genes. Perhaps the most reliable approach is to classify mutations based on prior knowledge from functional studies, but functional information is by definition not available for novel or poorly characterized genes.</p>
<p>We propose an alternative approach to detect activating mutations in oncogenes, based on the hypothesis that only a small number of specific mutations can activate a protein. To be precise, we hypothesize that a localized cluster of amion acid mutations within a protein sequence, especially in the absence of obvious mutational hotspots, is a fingerprint of selection for the oncogenic phenotype associated with activating driver mutations. Evolutionary studies demonstrate that most amino acids replacements are either neutral or incompatible with protein function (Graur and Li (2000) [
<xref ref-type="bibr" rid="B14">14</xref>
]). Thus, activating mutations should concentrate in a small subset of protein positions and domains, while passenger mutations can be distributed more evenly along the protein sequence reflecting random chance and differences in the mutability of individual DNA codons. Consistent with this hypothesis, activating somatic amino acid mutations cluster in protein kinases (e.g. Bardelli et al. (2003) [
<xref ref-type="bibr" rid="B6">6</xref>
]; Samuels. (2004) [
<xref ref-type="bibr" rid="B8">8</xref>
]; Torkamani and Schork (2008) [
<xref ref-type="bibr" rid="B15">15</xref>
]).</p>
<p>Several methods in the statistics literature can be applied to detect mutation clusters. For example, Naus (1965) [
<xref ref-type="bibr" rid="B16">16</xref>
] proposed a statistical test for the maximum number of points in a fixed length cluster on a line, and developed the probability and expectation. Shortly thereafter, Naus (1966) [
<xref ref-type="bibr" rid="B17">17</xref>
] compared the power of two nonrandom clustering tests on a line; one test is the maximum number of points in a fixed-length non-overlapping interval (e.g. 1 to p, p+1 to 2p, etc. for window length p) and another is the maximum number of points in a fixed-length running interval (e.g. 1 to p, 2 to p+1, etc.), which is also called scan statistics. Scan statistics were further developed and applied by Balakrishnan and Koutras (2002) [
<xref ref-type="bibr" rid="B18">18</xref>
], and Glaz and Zhang (2006) [
<xref ref-type="bibr" rid="B19">19</xref>
] generalized the fixed-length restriction to allow variable-length intervals by determining the maximum of a series of scan statistics each with a fixed window length. While Naus's approach and scan statistics with fixed or variable window lengths are useful, a further generalization to an arbitrary number of points in the interval is more flexible and useful to identify activating driver mutations.</p>
<p>In this work a new statistics method is introduced that identifies nonrandom mutation clustering without specifying the number of mutations or the cluster length. The exact and approximate distribution of the statistical measure is derived and a nonrandom mutation clustering (NMC) algorithm is developed based on the measure. We confirmed the utility of this approach by detecting well-known activating mutations in KRAS, BRAF, PI3K, and
<italic>β</italic>
-catenin oncogenes, as well as gain-of-function mutations in several tumor suppressors.</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Data Description</title>
<p>Data used in this study are from COSMIC (Catalog of Somatic Mutations in Cancer) database version 40 (Forbes et al (2008) [
<xref ref-type="bibr" rid="B20">20</xref>
]) via
<ext-link ext-link-type="uri" xlink:href="http://www.sanger.ac.uk/cosmic">http://www.sanger.ac.uk/cosmic</ext-link>
. To ensure compatibility with the test assumption that the location of amino acid mutations on a protein follows a uniform distribution, we limit our analysis to studies annotated as whole gene screens in COSMIC; this eliminated a great majority of COSMIC studies annotated as partial or with missing information on the full-gene screen status. Furthermore, the cluster analysis is restricted to missense mutations: nonsense and synonymous changes are excluded. We limited our search to confirmed somatic variants or mutations that were reported in other studies as somatic. Finally, we removed redundancy in mutations in cancer cell lines, since cell line mutations are often reported by several independent studies.</p>
</sec>
<sec>
<title>Nonrandom clusters in cancer genes</title>
<p>Using the NMC algorithm (see Methods), 12 different proteins out of 446 contain nonrandom amino acid mutation clusters with cutoff probability of less than 0.05, with the most significant clusters listed in Table
<xref ref-type="table" rid="T1">1</xref>
(probability < 0.01). The clusters include well-known mutation hotspots in classical oncogenes such as BRAF, RAS genes, PI3K, ERBB2/Her2, and CTNNB1/
<italic>β</italic>
-catenin. Interestingly, nonrandom amino acid mutation clusters were also identified in genes not considered to be classical oncogenes and even a few tumor suppressors. Interpretation of selected positive controls is described below in more detail.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Genes with significant mutation clusters (Probability < 0.01)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Gene</th>
<th align="center">Cluster
<break></break>
size</th>
<th align="center">Cluster
<break></break>
positions</th>
<th align="center">Number of
<break></break>
mutations in
<break></break>
cluster</th>
<th align="center">Cumulative cluster
<break></break>
probability*</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">KRAS (188 aa)</td>
<td align="center">2</td>
<td align="center">12-13</td>
<td align="center">131</td>
<td align="center">1.47E-234</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">BRAF (766 aa)</td>
<td align="center">1</td>
<td align="center">600-600</td>
<td align="center">60</td>
<td align="center">2.02E-157</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">TP53 (393 aa)</td>
<td align="center">155</td>
<td align="center">132-286</td>
<td align="center">326</td>
<td align="center">3.07E-101</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">NRAS (189 aa)</td>
<td align="center">1</td>
<td align="center">61-61</td>
<td align="center">33</td>
<td align="center">7.11E-62</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">PIK3CA (1068 aa)</td>
<td align="center">5</td>
<td align="center">542-546</td>
<td align="center">27</td>
<td align="center">7.09E-46</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">CTNNB1 (781 aa)</td>
<td align="center">13</td>
<td align="center">33-45</td>
<td align="center">12</td>
<td align="center">8.54E-19</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">ERBB2 (1255 aa)</td>
<td align="center">1</td>
<td align="center">776-776</td>
<td align="center">2</td>
<td align="center">7.97e-4</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">HRAS (189 aa)</td>
<td align="center">1</td>
<td align="center">61-61</td>
<td align="center">4</td>
<td align="center">2.06E-06</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">PTEN (403 aa)</td>
<td align="center">63</td>
<td align="center">111-173</td>
<td align="center">8</td>
<td align="center">5.50E-05</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">MAP2K7 (419 aa)</td>
<td align="center">1</td>
<td align="center">162-162</td>
<td align="center">2</td>
<td align="center">0.002386</td>
</tr>
<tr>
<td colspan="5">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">LRRK2 (2534 aa)</td>
<td align="center">4</td>
<td align="center">1723-1726</td>
<td align="center">2</td>
<td align="center">0.003547</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*: only most significant cluster per gene is listed</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Mutation hotspots in classical oncogenes</title>
<p>Table
<xref ref-type="table" rid="T2">2</xref>
lists the significant clusters obtained from our set of strictly selected COSMIC studies for the BRAF, KRAS, CTNNB1/
<italic>β</italic>
-catenin, PI3K, and ERBB2 oncogenes. As expected, the most significant hotspot in BRAF was amino acid residue 600 and represents the well-known, highly oncogenic V600E mutation (Davies et al. (2002) [
<xref ref-type="bibr" rid="B21">21</xref>
]). Similarly, RAS residues 12, 13, and 61 are known to be frequently mutated in tumors (see Bos (1988) [
<xref ref-type="bibr" rid="B22">22</xref>
] for review). Residues 33, 34, 37, 41, and 45 were identified as a significant cluster in CTNNB1/
<italic>β</italic>
-catenin. There is a clear mechanistic rationale: residues 33, 37 and 41 are phosphorylated directly by GSK-3
<italic>β </italic>
while residue 45 has been reported to be a primer site that is phosphorylated by CK1 (Hagen and Vidal-Puig (2002) [
<xref ref-type="bibr" rid="B23">23</xref>
]): mutations at these positions prevent GSK-3
<italic>β</italic>
-mediated degradation of
<italic>β</italic>
-catenin (Morin et al. (1997) [
<xref ref-type="bibr" rid="B24">24</xref>
]). Residues 542-546 surround the 545 hotspot in the helical domain of PI3K/PIK3CA (Samuels et al. (2004) [
<xref ref-type="bibr" rid="B8">8</xref>
]), with a second significant PI3K cluster in the kinase domain (positions 1025-1049; probability 2.60E-20; Figure
<xref ref-type="fig" rid="F1">1</xref>
). Mutation of Glycine 766 in ERBB2 has been reported to dramatically increase protein kinase activity (Fan et al. (2008) [
<xref ref-type="bibr" rid="B25">25</xref>
]).</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Mutation positions for selected oncogenes</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Gene</th>
<th align="left">Position (#of mutations)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">BRAF(766 aa)</td>
<td align="left">464(1), 466(2), 469(4), 581(1),
<break></break>
596(2), 597(2),
<bold>600</bold>
(60), 601(2)</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">KRAS(188 aa)</td>
<td align="left">
<bold>12</bold>
(99),
<bold>13</bold>
(32), 22(1), 23(1), 61(6),
<break></break>
117(1), 146(10)</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">CTNNB1 (781 aa)</td>
<td align="left">6(1),
<bold>33</bold>
(3),
<bold>34</bold>
(2),
<bold>37</bold>
(3),
<bold>41</bold>
(2),
<bold>45</bold>
(2)</td>
</tr>
<tr>
<td colspan="2">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">PIK3CA(1068 aa)</td>
<td align="left">
<underline>88</underline>
(3), 111(3), 118(1), 124(1), 345(1),
<break></break>
449(1), 453(1), 539(1),
<bold>542</bold>
(5),
<break></break>
<bold>545</bold>
(20),
<bold>546</bold>
(2), 549(1),
<underline>1023</underline>
(1),
<break></break>
1025(1), 1047(21), 1049(1), 1066(1)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The number of mutations for each position is shown in parenthesis, positions within clusters from Table 1 are highlighted in bold, and CpG positions are underlined.</p>
</table-wrap-foot>
</table-wrap>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Ribbon representation of the PI3K
<italic>α</italic>
</bold>
. Ribbon representation of the PI3K
<italic>α </italic>
helical domain (blue) and kinase domain (magenta) extracted from the p110
<italic>α</italic>
/p85
<italic>α </italic>
complex (PDB Code: 2RD0; Berman et al. (2000) [
<xref ref-type="bibr" rid="B45">45</xref>
]; Huang et al. (2007) [
<xref ref-type="bibr" rid="B46">46</xref>
]). Displayed in CPK representations are sites of major oncogenic mutations: Pro539, Glu542, Glu545 and Gln546 in the helical domain (blue); Arg1023, Thr1025, His1047 and Gly1049 in the kinase domain (pink). The ATP binding site in the kinase domain is highlighted with a surface.</p>
</caption>
<graphic xlink:href="1471-2105-11-11-1"></graphic>
</fig>
<p>For most genes in Table
<xref ref-type="table" rid="T1">1</xref>
, multiple significant amino acid clusters were found, with the most significant clusters in sites of well-known oncogenic mutations. Interestingly, the great majority of the mutation-hotspots are not in CpG positions (Table
<xref ref-type="table" rid="T2">2</xref>
) suggesting that selection and not the underlying mutation rate drives these changes in tumors.</p>
</sec>
<sec>
<title>General remarks on detected mutation hotspots</title>
<p>In addition to known clusters of activating mutations in major oncogenes, several other genes have significant mutation hot-spots. For example, two mutations between the Roc (Ras of complex proteins) and kinase domains in the LRRK2 locus form a significant cluster. The LRRK2 kinase, also known as PARK8, is not considered to be a classical cancer gene. It most closely resembles the family of tyrosine-like kinases that phosphorylate serine/threonine residues and lies upstream of mitogen-activated protein kinase (MAPK) pathways (Mata et al. (2006) [
<xref ref-type="bibr" rid="B26">26</xref>
]). Interestingly, germline polymorphisms in LRRK2 predispose affected individuals to Parkinson disease and are linked to specific cancer types (Inzelberg and Jankovic (2007) [
<xref ref-type="bibr" rid="B27">27</xref>
]; Strongosky et al. (2008) [
<xref ref-type="bibr" rid="B28">28</xref>
]).</p>
<p>As expected, we found fewer significant mutation hot-spots in tumor suppressors, and these hot-spots were typically much larger than those associated with oncogenes. In general, inactivating amino acid mutations are not expected to form localized nonrandom clusters, but rather to span many residues in highly conserved regions (e.g. Nigro et al. (1989) [
<xref ref-type="bibr" rid="B29">29</xref>
]). The most significant cluster identified in TP53/p53 spans residues 132-286, one of the four major p53 mutation hotspots that are highly conserved in vertebrates (Nigro et al. (1989) [
<xref ref-type="bibr" rid="B29">29</xref>
]). It overlaps the original major hotspot in residues 110-307 identified by Hollstein et al. (1991) [
<xref ref-type="bibr" rid="B30">30</xref>
], and spans two shorter hotspots that include gain-of-function mutations in positions 248 and 273 (Song et al. (2007) [
<xref ref-type="bibr" rid="B31">31</xref>
]). Structural analysis demonstrates that both regions are close together in the folded protein (Figure
<xref ref-type="fig" rid="F2">2</xref>
). The cluster found in the phosphatase and tensin-homology domains of PTEN includes residues known to inhibit PTEN phosphatase activity (Tolkacheva and Chan (2000) [
<xref ref-type="bibr" rid="B32">32</xref>
]), and sequence conservation cannot explain this clustering since most of the PTEN protein is well conserved among vertebrates (Yu et al. (2001) [
<xref ref-type="bibr" rid="B33">33</xref>
]). These examples demonstrate that tumor suppressor activity can be muted by changes in protein function in addition to gene deletions or disruption of the reading frame.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Ribbon representation of the human p53</bold>
. Ribbon representation of the human p53 core domain X-ray structure (PDB Code: 2OCJ; Wang et al. (2007) [
<xref ref-type="bibr" rid="B47">47</xref>
]). Displayed in CPK representation are sites of major oncogenic mutations: Arg175, Gly245, Arg248 and Arg273.</p>
</caption>
<graphic xlink:href="1471-2105-11-11-2"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion and Conclusions</title>
<p>A new method for the identification of nonrandom mutation clusters in biological sequences is presented. The method is fast, robust, and unlike many previous methods, it is does not require a fixed window length, which enables the identification of significant clusters of variable sizes, particularly important for the detection of activating mutations. We have applied this method to investigate somatic amino acid mutations in the COSMIC database. Our method detected very short clusters spanning a few individual amino acid positions in the case of the oncogenes BRAF or KRAS, as well as larger regions in the tumor suppressors p53 and PTEN.</p>
<p>A recent paper by Wagner (2007) [
<xref ref-type="bibr" rid="B34">34</xref>
] proposed two similar approaches using the distance between mutation positions. In the first approach, a Poisson distribution was utilized to model mutation clusters. The test on the distance of mutation positions containing
<italic>k </italic>
mutations was derived and the minimum
<italic>k </italic>
that gives significance was determined. The second approach assumed a uniform hypothesis and used permutation testing for significance. The permutation test is an approximation whose precision depends on the number of permutations undertaken, which can be very computationally intensive for good accuracy and precision. By comparison, our measure on distance is based on a uniform distribution and is calculated directly via order statistics.</p>
<p>Our method has several potential limitations. First of all, the status of all coding positions must be determined. This is primarily a limitation for older studies, where typically only those exons with known mutations were screened. However, with the explosion of large-scale cancer genome sequencing (e.g. Sjöblom et al. (2006) [
<xref ref-type="bibr" rid="B11">11</xref>
]; Greenman et al (2007) [
<xref ref-type="bibr" rid="B10">10</xref>
]; Jones et al. (2008) [
<xref ref-type="bibr" rid="B35">35</xref>
]; Parsons et al. (2008) [
<xref ref-type="bibr" rid="B36">36</xref>
]; Cancer Genome Atlas Research Network. (2008) [
<xref ref-type="bibr" rid="B37">37</xref>
]), the number of studies suitable for analysis by NMC will grow. Another limitation is our assumption that the mutation probability is uniform: hypermutable positions for both germline and somatic mutations have been reported. As a result, we have excluded all insertions and deletions, since these mutations have strong sequence-dependence, and restricted analysis to single-point amino acid substitutions. Examples of single point mutation hotspots are CpG dinucleotides, which in unselected genomic sequences have more than ten-fold higher mutation frequency compared to other dinucleotides (Sved and Bird (1990) [
<xref ref-type="bibr" rid="B38">38</xref>
]). CpG hypermutability has been also reported in certain tumors (Jones et al. (1992) [
<xref ref-type="bibr" rid="B39">39</xref>
]). However, as shown in Table
<xref ref-type="table" rid="T2">2</xref>
, only a few of the activating mutations identified by the NMC algorithm are in CpG sites. Another potential bias can be introduced by an unequal rate of mutagenesis caused by deficient repair of DNA damage in cells and environmental mutagens. For instance, tobacco smoke preferentially induces G to T transversions in DNA in lung cancer while colorectal tumors exhibit more transitions than transversions (Hollstein et al. (1991) [
<xref ref-type="bibr" rid="B30">30</xref>
]). Yet, despite the fact that lung and colorectal tumors have different mutational spectra, essentially all KRAS mutations in these tumors occur in residues 12, 13, and 61. In summary, while our analysis is affected by nonrandom factors such as the presence of mutation hotspots or exposure to different mutagens, positive selection for a cancer phenotype appears to be the major cause of mutation clustering.</p>
<p>The aim of the method is to detect activating mutations that are assumed to be concentrated in specific amino acid positions. Activating mutations are typical for cellular proto-oncogenes and, as expected, significant clusters are detected in oncogenes such as BRAF, RAS genes, CTNNB1/
<italic>β</italic>
-catenin, or PI3K. Less intuitive, however, are positively selected residues in the p53 and PTEN tumor suppressors. Previous reports revealed that these genes encode functional domains that can result in gain-of-(non-suppressor)-function when altered by mutation. Thus, our method may also identify positive selection on mutations that alter the repressive function of tumor suppressors.</p>
<p>In conclusion, we propose a new method for discovering nonrandom clusters of mutations in biological sequences. Unlike previous approaches, the method does not use fixed length windows and therefore can be used to detect clusters of highly variable sizes. We demonstrated the value of this method to detect activating amino acid mutations in human tumors and confirmed nonrandom clustering of well-known oncogenic mutations in several classical oncogenes. The method can be also used to discover new oncogenes from large-scale cancer genome data and to identify gain-of-function mutations in tumor suppressors. Finally, detection of nonrandom sequence changes is a general problem and the method may be useful in other areas such as DNA polymorphism analysis and comparative evolutionary studies (Wagner (2007) [
<xref ref-type="bibr" rid="B34">34</xref>
]).</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<p>Single amino acid mutations may lead to changes in protein function. Because missense mutations are the most likely single-point genetic mutation to have an effect on protein function, the nonrandom mutation clustering (NMC) algorithm is applied to missense mutations in individual genes in this work.</p>
<p>The NMC algorithm is derived under the following assumptions: 1. each amino acid residue in a protein sequence has equal mutation probability; 2. mutations between amino acid positions are independent; 3. mutations between samples are independent; and 4. the number of potentially available samples is larger than the number of mutations.</p>
<p>Denote
<italic>N </italic>
as the protein sequence length and
<italic>n </italic>
as the total number of mutations in the protein. Denote
<italic>X</italic>
<sub>
<italic>i</italic>
</sub>
, a random variable between 1 and
<italic>N</italic>
, to be the position of the ith non-synonymous (missense) mutation. By assumption, the mutations follow a discrete uniform distribution, and the
<italic>n </italic>
mutations are equivalent to
<italic>n </italic>
independent sample draws with replacement from the discrete uniform distribution, where the probability Pr(
<italic>X</italic>
<sub>
<italic>i </italic>
</sub>
= j) = 1/N, where j = 1,...,
<italic>N </italic>
and i = 1,...,
<italic>n</italic>
.</p>
<p>By assumption, mutations are random and can occur at the same position more than once. The data are transferred into order statistics by ordering the
<italic>X</italic>
<sub>
<italic>i </italic>
</sub>
into
<italic>X</italic>
<sub>(1) </sub>
≤...≤
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
≤...≤
<italic>X</italic>
<sub>(
<italic>n</italic>
)</sub>
, where
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
is the ith smallest number in the sample, i = 1,...,
<italic>n</italic>
. To characterize clustering, the distance between order statistics
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
=
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
-
<italic>X</italic>
<sub>(
<italic>i</italic>
)</sub>
, for any pair i, k, i < k, i, k = 1, ..,
<italic>n </italic>
is computed. We develop the distribution of
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
, and declare the clustering to be nonrandom when the probability that the distance between order statistics
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
is less than a pre-defined significant probability level
<italic>α</italic>
: Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
<italic>r</italic>
) ≤
<italic>α</italic>
. The probability Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
<italic>r</italic>
) is the cumulative distribution of
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
, the chance that the distance between order statistics
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
is as close or closer than
<italic>r</italic>
. Therefore, the probability Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
<italic>r</italic>
) is derived as a p-value, where the probability
<italic>α </italic>
is an arbitrary level such as 0.01, 0.05, or 0.1. The distance
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
has the simple interpretation of the size of the mutation cluster.</p>
<sec>
<title>1.1 Derivation of the distribution of statistical measure</title>
<p>While distributions of order statistics are usually derived for continuous distributions, they have also been derived for discrete distributions. Burr (1955) [
<xref ref-type="bibr" rid="B40">40</xref>
] derived the distribution of range statistics using order statistics on a discrete uniform distribution. Range statistics is a special case of our statistical measure
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
, where i = 1 and k =
<italic>n</italic>
. Evans et al. (2006) [
<xref ref-type="bibr" rid="B41">41</xref>
] developed the density function and cumulative distribution of the ith order statistics given an arbitrary discrete distribution, i = 1,...,
<italic>n</italic>
. We extend the approach of Evans et al. (2006) [
<xref ref-type="bibr" rid="B41">41</xref>
] to determine the distribution of the distance between order statistics, and generalize the approach of Burr, I.W. (1955) [
<xref ref-type="bibr" rid="B40">40</xref>
] to derive the distribution of statistics
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
.</p>
<p>The distribution of
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
is developed from the joint distribution of order statistics
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
for any pair i, k, i < k, i, k = 1, ..,
<italic>n</italic>
.
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
, the distance between order statistics
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
)</sub>
, can range from 0, which means both mutations are located at the same position, to
<italic>N</italic>
-1, which means the mutations are on the first and last positions of the protein sequence. Intermediate values between 0 and
<italic>N</italic>
-1 are also possible, for example
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 1 implies that the mutations are adjacent to each other and so on. We develop the distribution of
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
for each possible scenario.</p>
<p>
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 0, for any pair i, k, i < k, i, k = 1, ..,
<italic>n</italic>
, implies that mutations
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
are located at the same position. Taking the
<italic>N </italic>
possible positions into consideration, the probability that
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 0 is written as
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i1.gif"></graphic>
</disp-formula>
</p>
<p>The distribution is derived using the properties of order statistics. For example, when
<italic>y = X</italic>
<sub>(
<italic>i</italic>
) </sub>
=
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
= 1, the first
<italic>k </italic>
order statistics are on the first position and the remaining
<italic>n-k </italic>
order statistics are on or above the first position. Among these
<italic>n-k </italic>
order statistics,
<italic>v </italic>
order statistics are located strictly above the first position, with the remaining
<italic>n-k-v </italic>
order statistics at the first position, where
<italic>v </italic>
can range from 0, meaning all
<italic>n </italic>
order statistics are on the first position, to
<italic>n-k</italic>
, indicating that all the remaining order statistics are strictly larger than the first position. A similar logic applies to
<italic>y </italic>
=
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
=
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
=
<italic>N</italic>
. For1 <
<italic>y </italic>
<
<italic>N</italic>
, the distribution is derived as follows: there must be
<italic>i</italic>
-1 order statistics at position
<italic>x</italic>
, where
<italic>x </italic>
<italic>y </italic>
; among those
<italic>i</italic>
-1 order statistics, there are
<italic>u </italic>
order statistics where
<italic>x </italic>
<
<italic>y </italic>
and
<italic>i-1-u </italic>
with
<italic>x </italic>
=
<italic>y</italic>
, where
<italic>u </italic>
can range from 0 to
<italic>i</italic>
-1. There must be
<italic>k-i</italic>
+1 order statistics at position
<italic>x </italic>
=
<italic>y</italic>
. Finally, there must be
<italic>n-k </italic>
order statistics at
<italic>x</italic>
, where
<italic>x </italic>
<italic>y</italic>
; among those
<italic>n-k </italic>
order statistics, there are
<italic>v </italic>
order statistics where
<italic>x </italic>
>
<italic>y </italic>
and
<italic>n-k-v </italic>
where
<italic>x </italic>
=
<italic>y</italic>
, where
<italic>v </italic>
can range from 0 to
<italic>n-k</italic>
. Putting all the terms together, there are
<italic>u </italic>
order statistics located before position
<italic>y</italic>
, with probability (
<italic>y </italic>
- 1)
<italic>N</italic>
, where
<italic>u </italic>
= 0,...,
<italic>i</italic>
-1; there are
<italic>(k-i</italic>
+1)+(
<italic>i</italic>
-1-
<italic>u</italic>
)+(
<italic>n</italic>
-
<italic>k</italic>
-
<italic>v</italic>
) =
<italic>n</italic>
-
<italic>u</italic>
-
<italic>v </italic>
order statistics at
<italic>y </italic>
with probability1/
<italic>N </italic>
; there are
<italic>v </italic>
order statistics after position
<italic>y</italic>
, with probability1 -
<italic>y/N</italic>
, where
<italic>v </italic>
= 0,...,
<italic>n-k </italic>
and
<italic>x </italic>
= 2,...,
<italic>N</italic>
-1. </p>
<p>For
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 1, for any pair i, k, i < k, i, k = 1, .., n, the order statistics
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
are adjacent to each other. The probability distribution can be written as:
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i2.gif"></graphic>
</disp-formula>
</p>
<p>For
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
=
<italic>r</italic>
, for any pair i, k, i < k, i, k = 1, ..,
<italic>n</italic>
,
<italic>r </italic>
= 2,...,
<italic>N</italic>
-1, the distribution can be written as:
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i3.gif"></graphic>
</disp-formula>
</p>
<p>The distributions for
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 1 and
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
=
<italic>r </italic>
derived above, for any pair i, k, i < k, i, k = 1, ..,
<italic>n</italic>
,
<italic>r </italic>
= 2,...,
<italic>N</italic>
-1, is based on similar logic as
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
= 0. The
<italic>i</italic>
-1 order statistics must be located at or before position
<italic>X</italic>
<sub>(
<italic>i</italic>
)</sub>
, and the
<italic>n-k </italic>
order statistics must be located at or after position
<italic>X</italic>
<sub>(
<italic>k</italic>
)</sub>
. For the remaining
<italic>k-i</italic>
-1 order statistics,
<italic>q </italic>
order statistics are located at position
<italic>X</italic>
<sub>(
<italic>i</italic>
)</sub>
,
<italic>t </italic>
order statistics are strictly between
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
and the remaining
<italic>k-i</italic>
-1
<italic>-q-t </italic>
statistics are at position
<italic>X</italic>
<sub>(
<italic>k</italic>
)</sub>
, where
<italic>q </italic>
= 0,...,
<italic>k-i</italic>
-1 and
<italic>t </italic>
= 0,...,
<italic>k-i-</italic>
1
<italic>-q</italic>
. Grouping all the terms together yields the distribution equations for
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 1 and
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
=
<italic>r</italic>
, for any pairs of i, k, i < k, i, k = 1, ..,
<italic>n</italic>
,
<italic>r </italic>
= 2,...,
<italic>N</italic>
-1.</p>
<p>Finally, for the special case of i = 1 and k =
<italic>n</italic>
, the distribution of
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
may be simplified as
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i4.gif"></graphic>
</disp-formula>
</p>
<p>Note that Pr(R
<sub>
<italic>n</italic>
1 </sub>
<italic>r</italic>
) = 1 for
<italic>r </italic>
=
<italic>N</italic>
-1. The result is the same as the range statistics reported in Burr, I.W. (1955) [
<xref ref-type="bibr" rid="B40">40</xref>
].</p>
</sec>
<sec>
<title>1.2 Approximation of the distribution</title>
<p>The derivation in section 1.1 is the exact distribution of the statistical measure for nonrandom mutation clustering in the discrete uniform distribution. Proteins typically contain hundreds or thousands of amino acids and it is convenient to approximate the discrete uniform distribution with a continuous uniform distribution (0, 1) because calculating the distribution of
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
=
<italic>r </italic>
can be extremely slow when the length of the protein sequence
<italic>N </italic>
or the number of mutations
<italic>n </italic>
is large, resulting in dramatically increased iterations in those summations. For computational efficiency, we now develop the distribution for the test statistics in the continuous limit.</p>
<p>When the
<italic>n </italic>
order statistics are random samples from a uniform distribution (0, 1), the probability distribution of order statistics
<italic>X</italic>
<sub>(
<italic>i</italic>
) </sub>
and
<italic>X</italic>
<sub>(
<italic>k</italic>
)</sub>
, for any pair i, k, i < k, i, k = 1, .., is:
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i5.gif"></graphic>
</disp-formula>
</p>
<p>where distance is normalized to be in the range (0,1), so the distance
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= (
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
-
<italic>X</italic>
<sub>(
<italic>i</italic>
)</sub>
)/
<italic>N </italic>
differs by the constant
<italic>N </italic>
from section 1.1, where
<italic>R</italic>
<sub>
<italic>ki</italic>
</sub>
=
<italic>X</italic>
<sub>(
<italic>k</italic>
) </sub>
-
<italic>X</italic>
<sub>(
<italic>i</italic>
)</sub>
. The cumulative distribution can be written as Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
<italic>r</italic>
)
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i6.gif"></graphic>
</disp-formula>
</p>
<p>which by iterated integration by parts gives:
<disp-formula>
<graphic xlink:href="1471-2105-11-11-i7.gif"></graphic>
</disp-formula>
</p>
<p>Using the continuous uniform distribution,
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
simply follows a Beta distribution with parameters
<italic>k-i </italic>
and
<italic>i </italic>
+
<italic>n </italic>
-
<italic>k </italic>
+ 1, ensuring that Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
≤ 1) = 1. This result was reported in Johnson et al. (1995) [
<xref ref-type="bibr" rid="B42">42</xref>
] for a joint distribution of pair-wise order statistics following a continuous uniform distribution (0, 1).</p>
</sec>
<sec>
<title>1.3 Correction for multiple testing</title>
<p>For each pair-wise order statistic, the exact and continuous distributions can be calculated using formulas in sections 1.1 and 1.2. Clusters are evaluated for each pair of order statistics, which can elevate the false positive rate due to multiple testing. A Bonferroni correction can be chosen to correct the false positive rate because it doesn't require an independent hypotheses assumption and it is a conservative test. The false discovery rate (FDR) developed by Benjamini and Hochberg (1995) [
<xref ref-type="bibr" rid="B43">43</xref>
] is popular and has been applied to multiple testing problems in many areas. Although it requires an independent test statistics assumption, it is known to be powerful and robust under positively correlated test statistics (Benjamini and Yekutieli (2001) [
<xref ref-type="bibr" rid="B44">44</xref>
]). Because of its conservativeness, Bonferroni is applied as the default to adjust multiple testing for the NMC algorithm and as an alternative, FDR can be applied.</p>
</sec>
<sec>
<title>1.4 NMC algorithm</title>
<p>The exact and approximate distributions of distance between pair-wise order statistics were derived in section 1.1 and 1.2. The calculation is rapid for the special case when
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
is 0 or 1 or for the range statistics, and we use the exact distribution derived in section 1.1 to ensure accuracy for these cases. For further efficiency when calculating the distribution for
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
= 1, the algorithm is stopped when the iterated summation in the distribution reaches the significance level because the full summation is larger than the partial summation and the difference cannot be significant. The continuous distribution is used for computational efficacy when the difference
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
is greater than 1. The nonrandom mutation clustering (NMC) algorithm is summarized in the following procedure:</p>
<p>
<bold>Input</bold>
: Number and location of missense mutations in a protein</p>
<p>
<bold>Output</bold>
: A table with columns of nonrandom mutation cluster size, starting location of the cluster, ending location of the cluster, number of mutations observed in the cluster and probability of the cluster that is significant after Bonferroni or FDR correction.</p>
<p>
<bold>NMC algorithm</bold>
:</p>
<p>◦ Step 1: Reorder the mutation positions into order statistics and set the significance level
<italic>α</italic>
. By default,
<italic>α </italic>
= 0.05.</p>
<p>◦ Step 2: For each pair-wise order statistics, calculate the probability Pr(
<italic>R</italic>
<sub>
<italic>ki </italic>
</sub>
<italic>r</italic>
), for any pair i, k, i < k, i, k = 1, ..,
<italic>n</italic>
. For R = 0 and 1 and/or i = 1 and k =
<italic>n</italic>
, use the distribution in section 1.1. For r>1, use the distribution in section 1.2.</p>
<p>◦ Step 3: Calculate the Bonferroni or FDR corrected probabilities.</p>
<p>◦ Step 4: Report the multiple-testing corrected significant clusters in the output table after sorting from the lowest probability to the highest.</p>
<p>The R source code is available in Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
and an analysis of minimum number of mutations required for NMC algorithm is available in Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
.</p>
</sec>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>JY designed and developed the statistical method, and coded the NMC algorithm in R. AP and PAR proposed the idea of detecting activating mutations with nonrandom clusters. AP acquired the COSMIC database and prepared the data. JY and AP performed the analysis and drafted the manuscript. EAL and PAR contributed the idea of three-dimensional mutation detection. CT contributed the idea of the statistical method. EAL, PAR and CT revised the manuscript. PAR finalized the manuscript. All authors read and approved the final manuscript.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="S1">
<caption>
<title>Additional file 1</title>
<p>
<bold>NMC</bold>
. R source code of NMC algorithm.</p>
</caption>
<media xlink:href="1471-2105-11-11-S1.DOC" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S2">
<caption>
<title>Additional file 2</title>
<p>
<bold>Poweranalysis</bold>
. Analysis of minimum number of mutations required for NMC algorithm</p>
</caption>
<media xlink:href="1471-2105-11-11-S2.DOC" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>JY, AP, EAL and PAR are full-time Pfizer employees. CT was a full-time Pfizer employee at the time of the work. The authors thank Professor David M. Rocke from University of California, Davis for helpful discussions and suggestions on the paper. In addition, the authors thank two anonymous referees for their insightful comments.</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<article-title>Cancer genes and the pathways they control</article-title>
<source>Nat Med</source>
<year>2004</year>
<volume>10</volume>
<fpage>789</fpage>
<lpage>799</lpage>
<pub-id pub-id-type="doi">10.1038/nm1087</pub-id>
<pub-id pub-id-type="pmid">15286780</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Weinstein</surname>
<given-names>IB</given-names>
</name>
<name>
<surname>Joe</surname>
<given-names>AK</given-names>
</name>
<article-title>Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy</article-title>
<source>Nat Clin Pract Oncol</source>
<year>2006</year>
<volume>3</volume>
<fpage>448</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="doi">10.1038/ncponc0558</pub-id>
<pub-id pub-id-type="pmid">16894390</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Cahill</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lengauer</surname>
<given-names>C</given-names>
</name>
<article-title>Genetic instability and darwinian selection in tumours</article-title>
<source>Trends Cell Biol</source>
<year>1999</year>
<volume>9</volume>
<fpage>M57</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/S0962-8924(99)01661-X</pub-id>
<pub-id pub-id-type="pmid">10611684</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Rago</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Silliman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ptak</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Willson</surname>
<given-names>JKV</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<article-title>Prevalence of somatic alterations in the colorectal cancer cell genome</article-title>
<source>PNAS</source>
<year>2002</year>
<volume>99</volume>
<fpage>3076</fpage>
<lpage>3080</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.261714699</pub-id>
<pub-id pub-id-type="pmid">11867767</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Ding</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Getz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wheeler</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Mardis</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>McLellan</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Cibulskis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sougnez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Greulich</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Muzny</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Fulton</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fulton</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wendl</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Lawrence</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dooling</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Sabo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hawes</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jhangiani</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Scherer</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Clerc</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Metcalf</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Milosavljevic</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gonzalez-Garay</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Osborne</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Koboldt</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Miner</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Pohl</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fewell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Haipek</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dunford-Shore</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Kraja</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Crosby</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Sawyer</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Vickery</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sander</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Winckler</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Baldwin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chirieac</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Dutt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fennell</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hanna</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Onofrio</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Tonon</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Weir</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ziaugra</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zody</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Giordano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Orringer</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Spitz</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Wistuba</surname>
<given-names>II</given-names>
</name>
<name>
<surname>Ozenberger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Good</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Beer</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ladanyi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Broderick</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yoshizawa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Travis</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Pao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Province</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Weinstock</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Varmus</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Gabriel</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Lander</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Gibbs</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Meyerson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>RK</given-names>
</name>
<article-title>Somatic mutations affect key pathways in lung adenocarcinoma</article-title>
<source>Nature</source>
<year>2008</year>
<volume>455</volume>
<fpage>1069</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="doi">10.1038/nature07423</pub-id>
<pub-id pub-id-type="pmid">18948947</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Bardelli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Silliman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ptak</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Willson</surname>
<given-names>JKV</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Velculescul</surname>
<given-names>VE</given-names>
</name>
<article-title>Mutational analysis of the tyrosine kinome in colorectal cancers</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>949</fpage>
<pub-id pub-id-type="doi">10.1126/science.1082596</pub-id>
<pub-id pub-id-type="pmid">12738854</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rannala</surname>
<given-names>B</given-names>
</name>
<article-title>Likelihood models of somatic mutation and codon substitution in cancer genes</article-title>
<source>Genetics</source>
<year>2003</year>
<volume>165</volume>
<fpage>695</fpage>
<lpage>705</lpage>
<pub-id pub-id-type="pmid">14573481</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Samuels</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Bardelli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Silliman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ptak</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gazdar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Riggins</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Willson</surname>
<given-names>JKV</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Velculescu1</surname>
<given-names>VE</given-names>
</name>
<article-title>High frequency of mutations of the PIK3CA gene in human cancers</article-title>
<source>Science</source>
<year>2004</year>
<volume>304</volume>
<fpage>554</fpage>
<pub-id pub-id-type="doi">10.1126/science.1096502</pub-id>
<pub-id pub-id-type="pmid">15016963</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Davies</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Greenman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bignell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Teague</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Edkins</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>O'Meara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Avis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barthorpe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brackenbury</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Buck</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dicks</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Forbes</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gorton</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Halliday</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hills</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hinton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kosmidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Laman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lugg</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Petty</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Raine</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tofts</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Varian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>A</given-names>
</name>
<name>
<surname>West</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Widaa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brasseur</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Flanagan</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Knowles</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Looijenga</surname>
<given-names>LHJ</given-names>
</name>
<name>
<surname>Malkowicz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pierotti</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Teh</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Lakhani</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Goldstraw</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Wooster</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Futreal</surname>
<given-names>PA</given-names>
</name>
<article-title>Somatic mutations of the protein kinase gene family in human lung cancer</article-title>
<source>Cancer Res</source>
<year>2005</year>
<volume>65</volume>
<fpage>7591</fpage>
<lpage>7595</lpage>
<pub-id pub-id-type="pmid">16140923</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Greenman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wooster</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Futreal</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>DF</given-names>
</name>
<article-title>Statistical analysis of pathogenicity of somatic mutations in cancer</article-title>
<source>Genetics</source>
<year>2006</year>
<volume>173</volume>
<fpage>2187</fpage>
<lpage>2198</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.105.044677</pub-id>
<pub-id pub-id-type="pmid">16783027</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Sjöblom</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Barber</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Mandelker</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Ptak</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Silliman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Szabo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buckhaults</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Meeh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Markowitz</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Willis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Willson</surname>
<given-names>JKV</given-names>
</name>
<name>
<surname>Gazdar</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Hartigan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Bachman</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<article-title>The consensus coding sequences of human breast and colorectal cancers</article-title>
<source>Science</source>
<year>2006</year>
<volume>314</volume>
<fpage>268</fpage>
<lpage>274</lpage>
<pub-id pub-id-type="doi">10.1126/science.1133427</pub-id>
<pub-id pub-id-type="pmid">16959974</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Kaminker</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Waugh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Haverty</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sebisanovic</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Stinson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Forrest</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Bazan</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Seshagiri</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<article-title>Distinguishing cancer-associated missense mutations from common polymorphisms</article-title>
<source>Cancer Res</source>
<year>2007</year>
<volume>67</volume>
<fpage>465</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-06-1736</pub-id>
<pub-id pub-id-type="pmid">17234753</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Yip</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Zoete</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Scheib</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Michielin</surname>
<given-names>O</given-names>
</name>
<article-title>Structural assessment of single amino acid mutations: application to TP53 function</article-title>
<source>Hum Mutat</source>
<year>2006</year>
<volume>27</volume>
<fpage>926</fpage>
<lpage>937</lpage>
<pub-id pub-id-type="doi">10.1002/humu.20379</pub-id>
<pub-id pub-id-type="pmid">16917930</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="book">
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W-H</given-names>
</name>
<article-title>Dynamics of Genes in Population</article-title>
<source>Fundamentals of Molecular Evolution</source>
<year>2000</year>
<edition>2</edition>
<publisher-name>Sinauer Associates</publisher-name>
<fpage>39</fpage>
<lpage>65</lpage>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Torkamani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schork</surname>
<given-names>NJ</given-names>
</name>
<article-title>Prediction of cancer driver mutations in protein kinases</article-title>
<source>Cancer Res</source>
<year>2008</year>
<volume>68</volume>
<fpage>1675</fpage>
<lpage>1682</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-07-5283</pub-id>
<pub-id pub-id-type="pmid">18339846</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Naus</surname>
<given-names>JI</given-names>
</name>
<article-title>The distribution of the size of the maximum cluster of points on a line</article-title>
<source>JASA</source>
<year>1965</year>
<volume>60</volume>
<issue>310</issue>
<fpage>532</fpage>
<lpage>538</lpage>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Naus</surname>
<given-names>JI</given-names>
</name>
<article-title>A power comparison of two tests of non-random clustering</article-title>
<source>Technometrics</source>
<year>1966</year>
<volume>8</volume>
<fpage>493</fpage>
<lpage>517</lpage>
<pub-id pub-id-type="doi">10.2307/1266696</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="book">
<name>
<surname>Balakrishnan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Koutras</surname>
<given-names>MV</given-names>
</name>
<source>Runs and scans with applications</source>
<year>2002</year>
<publisher-name>Wiley, New York</publisher-name>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Glaz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<article-title>Maximum scan score-type statistics</article-title>
<source>Statistics and Probability Letters</source>
<year>2006</year>
<volume>76</volume>
<fpage>1316</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="doi">10.1016/j.spl.2006.01.007</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Forbes</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Bhamra</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bamford</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kok</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Teague</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Futreal</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>MR</given-names>
</name>
<article-title>The Catalogue of Somatic Mutations in Cancer (COSMIC)</article-title>
<source>Curr Protoc Hum Genet</source>
<year>2008</year>
<volume>Chapter 10</volume>
<issue>Unit 10</issue>
<fpage>11</fpage>
<pub-id pub-id-type="pmid">18428421</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<name>
<surname>Davies</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bignell</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Edkins</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Clegg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Teague</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Woffendin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Garnett</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bottomley</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dicks</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ewing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Floyd</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hawes</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kosmidou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mould</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hooper</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jayatilake</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gusterson</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Shipley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hargrave</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pritchard-Jones</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Maitland</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chenevix-Trench</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Riggins</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Bigner</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Palmieri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cossu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Flanagan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Seigler</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Darrow</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Paterson</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Marais</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marshall</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Wooster</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stratton</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Futreal</surname>
<given-names>PA</given-names>
</name>
<article-title>Mutations of the BRAF gene in human cancer</article-title>
<source>Nature</source>
<year>2002</year>
<volume>417</volume>
<fpage>949</fpage>
<lpage>954</lpage>
<pub-id pub-id-type="doi">10.1038/nature00766</pub-id>
<pub-id pub-id-type="pmid">12068308</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<name>
<surname>Bos</surname>
<given-names>JL</given-names>
</name>
<article-title>The ras gene family and human carcinogenesis</article-title>
<source>Mutat Res</source>
<year>1988</year>
<volume>195</volume>
<fpage>255</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="pmid">3283542</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Hagen</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vidal-Puig</surname>
<given-names>A</given-names>
</name>
<article-title>Characterisation of the phosphorylation of
<italic>β</italic>
-catenin at the GSK-3 priming site Ser45</article-title>
<source>Biochem Biophys Res Comm</source>
<year>2002</year>
<volume>294</volume>
<issue>2</issue>
<fpage>324</fpage>
<lpage>328</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-291X(02)00485-0</pub-id>
<pub-id pub-id-type="pmid">12051714</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Morin</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Sparks</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Korinek</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Barker</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Clevers</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<article-title>Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC</article-title>
<source>Science</source>
<year>1997</year>
<volume>275</volume>
<fpage>1787</fpage>
<lpage>1790</lpage>
<pub-id pub-id-type="doi">10.1126/science.275.5307.1787</pub-id>
<pub-id pub-id-type="pmid">9065402</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Fan</surname>
<given-names>Y-X</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spiridonov</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>GR</given-names>
</name>
<article-title>Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism</article-title>
<source>J Biol Chem</source>
<year>2008</year>
<volume>283</volume>
<issue>3</issue>
<fpage>1588</fpage>
<lpage>1596</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M708116200</pub-id>
<pub-id pub-id-type="pmid">18039657</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Mata</surname>
<given-names>IF</given-names>
</name>
<name>
<surname>Wedemeyer</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Farrer</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>KA</given-names>
</name>
<article-title>LRRK2 in Parkinson's disease: protein domains and functional insights</article-title>
<source>Trends Neurosci</source>
<year>2006</year>
<volume>29</volume>
<fpage>286</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="doi">10.1016/j.tins.2006.03.006</pub-id>
<pub-id pub-id-type="pmid">16616379</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<name>
<surname>Inzelberg</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jankovic</surname>
<given-names>J</given-names>
</name>
<article-title>Are Parkinson disease patients protected from some but not all cancers?</article-title>
<source>Neurology</source>
<year>2007</year>
<volume>69</volume>
<fpage>1542</fpage>
<lpage>1550</lpage>
<comment>and discussion.</comment>
<pub-id pub-id-type="doi">10.1212/01.wnl.0000277638.63767.b8</pub-id>
<pub-id pub-id-type="pmid">17699801</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Strongosky</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Jankovic</surname>
<given-names>J</given-names>
</name>
<article-title>Are Parkinson disease patients protected from some but not all cancers?</article-title>
<source>Neurology</source>
<year>2008</year>
<volume>71</volume>
<fpage>1650</fpage>
<pub-id pub-id-type="doi">10.1212/01.wnl.0000339367.54460.8c</pub-id>
<pub-id pub-id-type="pmid">19001259</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Nigro</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Preisinger</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Jessup</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hosteller</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cleary</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Signer</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Baylin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Devilee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Glover</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Weslon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Modali</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<article-title>Mutations in the p53 gene occur in diverse human tumour types</article-title>
<source>Nature</source>
<year>1989</year>
<volume>342</volume>
<fpage>705</fpage>
<lpage>708</lpage>
<pub-id pub-id-type="doi">10.1038/342705a0</pub-id>
<pub-id pub-id-type="pmid">2531845</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Hollstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>CC</given-names>
</name>
<article-title>p53 mutations in human cancers</article-title>
<source>Science</source>
<year>1991</year>
<volume>253</volume>
<fpage>49</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1126/science.1905840</pub-id>
<pub-id pub-id-type="pmid">1905840</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hollstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
<article-title>p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM</article-title>
<source>Nat Cell Biol</source>
<year>2007</year>
<volume>9</volume>
<fpage>573</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="doi">10.1038/ncb1571</pub-id>
<pub-id pub-id-type="pmid">17417627</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Tolkacheva</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>AM</given-names>
</name>
<article-title>Inhibition of H-Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene</article-title>
<source>Oncogene</source>
<year>2000</year>
<volume>19</volume>
<fpage>680</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1203331</pub-id>
<pub-id pub-id-type="pmid">10698513</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Yu</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Pallen</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Tay</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jirik</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Venkatesh</surname>
<given-names>B</given-names>
</name>
<article-title>Conserved synteny between the fugu and human PTEN locus and the evolutionary conservation of vertebrate PTEN function</article-title>
<source>Oncogene</source>
<year>2001</year>
<volume>20</volume>
<fpage>5554</fpage>
<lpage>5561</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1204679</pub-id>
<pub-id pub-id-type="pmid">11571655</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Wagner</surname>
<given-names>A</given-names>
</name>
<article-title>Rapid detection of positive selection in genes and genomes through variation clusters</article-title>
<source>Genetics</source>
<year>2007</year>
<volume>176</volume>
<fpage>2451</fpage>
<lpage>2463</lpage>
<pub-id pub-id-type="doi">10.1534/genetics.107.074732</pub-id>
<pub-id pub-id-type="pmid">17603100</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<name>
<surname>Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC-H</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Angenendt</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mankoo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kamiyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jimeno</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S-M</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>M-T</given-names>
</name>
<name>
<surname>Calhoun</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Kamiyama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nikolskaya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nikolsky</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hartigan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Hidalgo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Jaffee</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Goggins</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maitra</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Iacobuzio-Donahue</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Eshleman</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Hruban</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Karchin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<article-title>Core signaling pathways in human pancreatic cancers revealed by global genomic analyses</article-title>
<source>Science</source>
<year>2008</year>
<volume>321</volume>
<fpage>1801</fpage>
<lpage>1806</lpage>
<pub-id pub-id-type="doi">10.1126/science.1164368</pub-id>
<pub-id pub-id-type="pmid">18772397</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Parsons</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>JC-H</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Angenendt</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mankoo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Siu</surname>
<given-names>I-M</given-names>
</name>
<name>
<surname>Gallia</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Olivi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McLendon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rasheed</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Keir</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nikolskaya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nikolsky</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Busam</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Tekleab</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>LA</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Hartigan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Strausberg</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Marie</surname>
<given-names>SKN</given-names>
</name>
<name>
<surname>Shinjo</surname>
<given-names>SMO</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Riggins</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Bigner</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Karchin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Papadopoulos</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<article-title>An integrated genomic analysis of human glioblastoma multiforme</article-title>
<source>Science</source>
<year>2008</year>
<volume>321</volume>
<fpage>807</fpage>
<lpage>812</lpage>
<pub-id pub-id-type="doi">10.1126/science.1164382</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<collab>Cancer Genome Atlas Research Network</collab>
<article-title>Comprehensive genomic characterization defines human glioblastoma genes and core pathways</article-title>
<source>Nature</source>
<year>2008</year>
<volume>455</volume>
<fpage>1061</fpage>
<lpage>1068</lpage>
<pub-id pub-id-type="doi">10.1038/nature07385</pub-id>
<pub-id pub-id-type="pmid">18772890</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Sved</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bird</surname>
<given-names>A</given-names>
</name>
<article-title>The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model</article-title>
<source>PNAS</source>
<year>1990</year>
<volume>87</volume>
<fpage>4692</fpage>
<lpage>4696</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.87.12.4692</pub-id>
<pub-id pub-id-type="pmid">2352943</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Jones</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Rideout</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Spruck</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>YC</given-names>
</name>
<article-title>Methylation, mutation and cancer</article-title>
<source>Bioessays</source>
<year>1992</year>
<volume>14</volume>
<fpage>33</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1002/bies.950140107</pub-id>
<pub-id pub-id-type="pmid">1546979</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Burr</surname>
<given-names>IW</given-names>
</name>
<article-title>Calculation of exact sampling distribution of ranges from a discrete population</article-title>
<source>The Annals of Mathematical Statistics</source>
<year>1955</year>
<volume>26</volume>
<fpage>530</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="doi">10.1214/aoms/1177728500</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Evans</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Leemis</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Drew</surname>
<given-names>JH</given-names>
</name>
<article-title>The distribution of order statistics for discrete random variables with applications to bootstrapping</article-title>
<source>INFORMS Journal on Computing</source>
<year>2006</year>
<volume>18</volume>
<issue>1</issue>
<fpage>19</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1287/ijoc.1040.0105</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="book">
<name>
<surname>Johnson</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Kotz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Balakrishnan</surname>
<given-names>N</given-names>
</name>
<source>Continuous Univariate Distributions</source>
<year>1995</year>
<volume>2</volume>
<edition>2</edition>
<publisher-name>Wiley-Interscience</publisher-name>
<fpage>280</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="pmid">11727689</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hochberg</surname>
<given-names>Y</given-names>
</name>
<article-title>Controlling the false discovery rate: a practical and powerful approach to multiple testing</article-title>
<source>JRSS, Series B</source>
<year>1995</year>
<volume>57</volume>
<issue>1</issue>
<fpage>289</fpage>
<lpage>300</lpage>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Benjamini</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yekutieli</surname>
<given-names>D</given-names>
</name>
<article-title>The control of the false discovery rate in multiple testing under dependency</article-title>
<source>Annals of Stat</source>
<year>2001</year>
<volume>29</volume>
<issue>4</issue>
<fpage>1165</fpage>
<lpage>1188</lpage>
<pub-id pub-id-type="doi">10.1214/aos/1013699998</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Berman</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Westbrook</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gilliland</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bhat</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Weissig</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shindyalov</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Bourne</surname>
<given-names>PE</given-names>
</name>
<article-title>The Protein Data Bank</article-title>
<source>Nucleic Acids Research</source>
<year>2000</year>
<volume>28</volume>
<fpage>235</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1093/nar/28.1.235</pub-id>
<pub-id pub-id-type="pmid">10592235</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Mandelker</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmidt-Kittler</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Samuels</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Velculescu</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Kinzler</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Vogelstein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gabelli</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Amzel</surname>
<given-names>LM</given-names>
</name>
<article-title>The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>1744</fpage>
<lpage>1748</lpage>
<pub-id pub-id-type="doi">10.1126/science.1150799</pub-id>
<pub-id pub-id-type="pmid">18079394</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rosengarth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Luecke</surname>
<given-names>H</given-names>
</name>
<article-title>Structure of the human p53 core domain in the absence of DNA</article-title>
<source>Acta Crystallogr, Sect D</source>
<year>2007</year>
<volume>63</volume>
<fpage>276</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="doi">10.1107/S0907444906048499</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/JankovicV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    JankovicV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2822753
   |texte=   Statistical method on nonrandom clustering with application to somatic mutations in cancer
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:20053295" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a JankovicV1 

Wicri

This area was generated with Dilib version V0.6.19.
Data generation: Wed Feb 10 22:03:07 2016. Site generation: Tue Feb 13 16:14:27 2024