Serveur d'exploration autour de Joseph Jankovic

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection

Identifieur interne : 000183 ( Pmc/Checkpoint ); précédent : 000182; suivant : 000184

Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection

Auteurs : Shiek Ahmed [Inde] ; Winkins Santosh [Inde] ; Suresh Kumar [Inde] ; Hema Christlet [Inde]

Source :

RBID : PMC:2720938

Abstract

Background

Parkinson's disease (PD) is a neurodegenerative disorder. The diagnosis of Parkinsonism is challenging because currently none of the clinical tests have been proven to help in diagnosis. PD may produce characteristic perturbations in the metabolome and such variations can be used as the marker for detection of disease. To test this hypothesis, we used proton NMR and multivariate analysis followed by neural network pattern detection.

Methods & Results

1H nuclear magnetic resonance spectroscopy analysis was carried out on plasma samples of 37 healthy controls and 43 drug-naive patients with PD. Focus on 22 targeted metabolites, 17 were decreased and 5 were elevated in PD patients (p < 0.05). Partial least squares discriminant analysis (PLS-DA) showed that pyruvate is the key metabolite, which contributes to the separation of PD from control samples. Furthermore, gene expression analysis shows significant (p < 0.05) change in expression of PDHB and NPFF genes leading to increased pyruvate concentration in blood plasma. Moreover, the implementation of 1H- NMR spectral pattern in neural network algorithm shows 97.14% accuracy in the detection of disease progression.

Conclusion

The results increase the prospect of a robust molecular definition in detection of PD through the early symptomatic phase of the disease. This is an ultimate opening for therapeutic intervention. If validated in a genuinely prospective fashion in larger samples, the biomarker trajectories described here will go a long way to facilitate the development of useful therapies. Moreover, implementation of neural network will be a breakthrough in clinical screening and rapid detection of PD.


Url:
DOI: 10.1186/1423-0127-16-63
PubMed: 19594911
PubMed Central: 2720938


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2720938

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection</title>
<author>
<name sortKey="Ahmed, Shiek Ssj" sort="Ahmed, Shiek Ssj" uniqKey="Ahmed S" first="Shiek" last="Ahmed">Shiek Ahmed</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Santosh, Winkins" sort="Santosh, Winkins" uniqKey="Santosh W" first="Winkins" last="Santosh">Winkins Santosh</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Suresh" sort="Kumar, Suresh" uniqKey="Kumar S" first="Suresh" last="Kumar">Suresh Kumar</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Department of Neurology, SRM Medical College Hospital & Research Centre, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Neurology, SRM Medical College Hospital & Research Centre, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Christlet, Hema T Thanka" sort="Christlet, Hema T Thanka" uniqKey="Christlet H" first="Hema" last="Christlet">Hema Christlet</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19594911</idno>
<idno type="pmc">2720938</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720938</idno>
<idno type="RBID">PMC:2720938</idno>
<idno type="doi">10.1186/1423-0127-16-63</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000111</idno>
<idno type="wicri:Area/Pmc/Curation">000111</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection</title>
<author>
<name sortKey="Ahmed, Shiek Ssj" sort="Ahmed, Shiek Ssj" uniqKey="Ahmed S" first="Shiek" last="Ahmed">Shiek Ahmed</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Santosh, Winkins" sort="Santosh, Winkins" uniqKey="Santosh W" first="Winkins" last="Santosh">Winkins Santosh</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Suresh" sort="Kumar, Suresh" uniqKey="Kumar S" first="Suresh" last="Kumar">Suresh Kumar</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Department of Neurology, SRM Medical College Hospital & Research Centre, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Neurology, SRM Medical College Hospital & Research Centre, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Christlet, Hema T Thanka" sort="Christlet, Hema T Thanka" uniqKey="Christlet H" first="Hema" last="Christlet">Hema Christlet</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</nlm:aff>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203</wicri:regionArea>
<wicri:noRegion>603 203</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Biomedical Science</title>
<idno type="ISSN">1021-7770</idno>
<idno type="e-ISSN">1423-0127</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Parkinson's disease (PD) is a neurodegenerative disorder. The diagnosis of Parkinsonism is challenging because currently none of the clinical tests have been proven to help in diagnosis. PD may produce characteristic perturbations in the metabolome and such variations can be used as the marker for detection of disease. To test this hypothesis, we used proton NMR and multivariate analysis followed by neural network pattern detection.</p>
</sec>
<sec sec-type="methods">
<title>Methods & Results</title>
<p>
<sup>1</sup>
H nuclear magnetic resonance spectroscopy analysis was carried out on plasma samples of 37 healthy controls and 43 drug-naive patients with PD. Focus on 22 targeted metabolites, 17 were decreased and 5 were elevated in PD patients (p < 0.05). Partial least squares discriminant analysis (PLS-DA) showed that pyruvate is the key metabolite, which contributes to the separation of PD from control samples. Furthermore, gene expression analysis shows significant (p < 0.05) change in expression of
<italic>PDHB </italic>
and
<italic>NPFF </italic>
genes leading to increased pyruvate concentration in blood plasma. Moreover, the implementation of
<sup>1</sup>
H- NMR spectral pattern in neural network algorithm shows 97.14% accuracy in the detection of disease progression.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The results increase the prospect of a robust molecular definition in detection of PD through the early symptomatic phase of the disease. This is an ultimate opening for therapeutic intervention. If validated in a genuinely prospective fashion in larger samples, the biomarker trajectories described here will go a long way to facilitate the development of useful therapies. Moreover, implementation of neural network will be a breakthrough in clinical screening and rapid detection of PD.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Biomed Sci</journal-id>
<journal-title>Journal of Biomedical Science</journal-title>
<issn pub-type="ppub">1021-7770</issn>
<issn pub-type="epub">1423-0127</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19594911</article-id>
<article-id pub-id-type="pmc">2720938</article-id>
<article-id pub-id-type="publisher-id">1423-0127-16-63</article-id>
<article-id pub-id-type="doi">10.1186/1423-0127-16-63</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Ahmed</surname>
<given-names>Shiek SSJ</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>bioinfoshiek@gmail.com</email>
</contrib>
<contrib id="A2" equal-contrib="yes" corresp="yes" contrib-type="author">
<name>
<surname>Santosh</surname>
<given-names>Winkins</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>santoshmcc@yahoo.com</email>
</contrib>
<contrib id="A3" equal-contrib="yes" corresp="yes" contrib-type="author">
<name>
<surname>Kumar</surname>
<given-names>Suresh</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>parkinresearch@gmail.com</email>
</contrib>
<contrib id="A4" equal-contrib="yes" corresp="yes" contrib-type="author">
<name>
<surname>Christlet</surname>
<given-names>Hema T Thanka</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>parkinresearch@gmail.com</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603 203, India</aff>
<aff id="I2">
<label>2</label>
Department of Neurology, SRM Medical College Hospital & Research Centre, Kattankulathur, Tamil Nadu, 603 203, India</aff>
<pub-date pub-type="collection">
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>7</month>
<year>2009</year>
</pub-date>
<volume>16</volume>
<issue>1</issue>
<fpage>63</fpage>
<lpage>63</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.jbiomedsci.com/content/16/1/63"></ext-link>
<history>
<date date-type="received">
<day>23</day>
<month>6</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>7</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2009 Ahmed et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2009</copyright-year>
<copyright-holder>Ahmed et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Ahmed SSJ Shiek bioinfoshiek@gmail.com Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection 2009Journal of Biomedical Science 16(1): 63-. (2009)1423-0127(2009)16:1<63>urn:ISSN:1423-0127</pmc-comment>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Parkinson's disease (PD) is a neurodegenerative disorder. The diagnosis of Parkinsonism is challenging because currently none of the clinical tests have been proven to help in diagnosis. PD may produce characteristic perturbations in the metabolome and such variations can be used as the marker for detection of disease. To test this hypothesis, we used proton NMR and multivariate analysis followed by neural network pattern detection.</p>
</sec>
<sec sec-type="methods">
<title>Methods & Results</title>
<p>
<sup>1</sup>
H nuclear magnetic resonance spectroscopy analysis was carried out on plasma samples of 37 healthy controls and 43 drug-naive patients with PD. Focus on 22 targeted metabolites, 17 were decreased and 5 were elevated in PD patients (p < 0.05). Partial least squares discriminant analysis (PLS-DA) showed that pyruvate is the key metabolite, which contributes to the separation of PD from control samples. Furthermore, gene expression analysis shows significant (p < 0.05) change in expression of
<italic>PDHB </italic>
and
<italic>NPFF </italic>
genes leading to increased pyruvate concentration in blood plasma. Moreover, the implementation of
<sup>1</sup>
H- NMR spectral pattern in neural network algorithm shows 97.14% accuracy in the detection of disease progression.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The results increase the prospect of a robust molecular definition in detection of PD through the early symptomatic phase of the disease. This is an ultimate opening for therapeutic intervention. If validated in a genuinely prospective fashion in larger samples, the biomarker trajectories described here will go a long way to facilitate the development of useful therapies. Moreover, implementation of neural network will be a breakthrough in clinical screening and rapid detection of PD.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Parkinson's disease (PD) is a slow, progressive degenerative disorder of the central nervous system [
<xref ref-type="bibr" rid="B1">1</xref>
]. It is characterized by muscle rigidity, tremor, slowing of physical movement (Bradykinesia) and, in extreme cases, loss of physical movement (Akinesia) [
<xref ref-type="bibr" rid="B2">2</xref>
]. The classification of the stages were done based on Unified Parkinson's Disease Rating Scale (UPDRS) [
<xref ref-type="bibr" rid="B3">3</xref>
] or on an equivalent rating scale value such as Hoehn and Yahr scale and Schwab and England Activities of Daily Living Scale. The UPDRS has been used extensively by researchers and clinicians around the world. The rating scale is categorized as stages based on bradykinesia, dyskinesias, rigidity, posture, swinging arms, walking, tremor, gesture, seborrhea, speech, sensory complaints, depression, postural stability, insomnia, leg agility and independence. The diagnosis is based on medical history and neurological examinations [
<xref ref-type="bibr" rid="B4">4</xref>
]. The current diagnosis of PD remains unclear, because of the complex spectrum of symptoms and their similarities with other neurodegenerative diseases, such as multiple system atrophy and progressive supranuclear palsy. Moreover, clinical diagnosis fails to identify PD before they cause a significant loss of dopamine neurons [
<xref ref-type="bibr" rid="B5">5</xref>
]. There is immense need for early detection [
<xref ref-type="bibr" rid="B6">6</xref>
] and more effective drugs for the cure of PD. An understanding of the molecular characteristics underlying the disease processes of PD is a prerequisite for the development of biomarker in the early detection for providing high value therapeutics.</p>
<p>Biomarkers serve as tools for diagnosis of any disease usually performed on readily accessible body fluids, such as cerebrospinal fluid (CSF), serum, urine or saliva. Metabolic profiling is one of the most important techniques, greatly focused for the detection of biomarkers for diagnosis of diseases [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B8">8</xref>
]. Several encouraging results were obtained using metabolite profiling in an attempt to diagnose coronary heart disease [
<xref ref-type="bibr" rid="B9">9</xref>
], diabetes mellitus [
<xref ref-type="bibr" rid="B10">10</xref>
], eclampsia [
<xref ref-type="bibr" rid="B11">11</xref>
], lipid disorder [
<xref ref-type="bibr" rid="B12">12</xref>
], colon carcinoma [
<xref ref-type="bibr" rid="B13">13</xref>
], epithelial ovarian cancer [
<xref ref-type="bibr" rid="B14">14</xref>
], hypertension [
<xref ref-type="bibr" rid="B15">15</xref>
], kidney deficiency syndrome [
<xref ref-type="bibr" rid="B16">16</xref>
], motor neuron disease [
<xref ref-type="bibr" rid="B17">17</xref>
] and liver cancer [
<xref ref-type="bibr" rid="B18">18</xref>
]. Several techniques are presently available for metabolite profiling, such as nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), high-performance liquid chromatography (HPLC), gas chromatography (GC) and optical spectroscopic (OS) analysis. NMR spectroscopy technique is more ease for rapid metabolite detection because it requires an uncomplicated, preprocessing procedure, and it is a feasible method to obtain essential information from complex and intact biological samples. Recent studies show that NMR metabolic profiling plays a vital role in clinical diagnosis [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
].</p>
<p>In the present study,
<sup>1</sup>
H (proton) NMR spectroscopy was executed to examine the plasma samples of 37 normal and 43 drug-naive patients of PD to identify the metabolite variations of 22 targeted metabolites between the blood plasma of healthy individuals and patients.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Clinical sample</title>
<p>Clinical samples were collected from the out-patient setting of the Department of Neurology at SRM Hospital, Tamil Nadu, India. Drug-naive samples of 43 PD patients were collected and 37 samples of age and gender-matched healthy controls were included for comparative study (Table
<xref ref-type="table" rid="T1">1</xref>
), written consent was obtained from each participant during in-person interview and blood donation. Data on gender, age and weight were collected. For participants with PD, date of the symptom onset, date of diagnosis, and family history of PD were recorded. The ethical committee of SRM Medical College Hospital & Research, India reviewed and approved the protocol of this study (Ref. No.3496/Dean/07). The pathological status was well studied by neurological specialists of hospital and the disease stages were classified by UPDRS.</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Statistics</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="center">Sample Information</td>
<td align="center">Number of samples</td>
<td align="center" colspan="2">Statistics</td>
<td align="center" colspan="2">Gender</td>
</tr>
<tr>
<td></td>
<td></td>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td></td>
<td></td>
<td align="center">Mean Age</td>
<td align="center">SD</td>
<td align="center">Male</td>
<td align="center">Female</td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">Normal</td>
<td align="center">37</td>
<td align="center">58.486</td>
<td align="center">11.843</td>
<td align="center">21</td>
<td align="center">16</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">PD-Stage 1</td>
<td align="center">15</td>
<td align="center">58.2</td>
<td align="center">11.651</td>
<td align="center">9</td>
<td align="center">6</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">PD-Stage 2</td>
<td align="center">13</td>
<td align="center">60.153</td>
<td align="center">11.238</td>
<td align="center">8</td>
<td align="center">5</td>
</tr>
<tr>
<td colspan="6">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">PD-Stage 3</td>
<td align="center">15</td>
<td align="center">55.66</td>
<td align="center">12.056</td>
<td align="center">8</td>
<td align="center">7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Statistics of research participant's involved in the study.</p>
</table-wrap-foot>
</table-wrap>
</sec>
<sec>
<title>Preparation of samples</title>
<p>Blood samples (4 ml) were collected in EDTA vacutainer tube (Becton Dickinson, Franklin Lakes, NJ) from individuals and immediately centrifuged for 5 min at 14,000 rpm using eppendorf centrifuge to separate plasma from other cellular material. Subsequently, the plasma was transferred to fresh eppendorf tube and kept at -20°C before processing. 500 μl of plasma was processed by Nanosep 3KD (Pall Co., New York, USA) micro centrifuge tube to extract the metabolites from the sample and to avoid protein interference in the extract. The obtained metabolite extracts were dissolved in D
<sub>2</sub>
O (Merck KGaA, Darmstadt, Germany) and 500 μM of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (Sigma Chemical Co., St. Louis, MO, U.S.A) were added as an internal standard in preparation for
<sup>1</sup>
H-NMR analysis.</p>
</sec>
<sec>
<title>Proton NMR spectrum</title>
<p>All experimental samples were subjected to
<sup>1</sup>
H-NMR spectrum. The spectrum was acquired using the Bruker AV-III-500 MHz (Bruker Biospin, Inc., Milton, Canada) operating at 500.1323506 MHz and equipped with a five mm PABBO BB probe at 295K. A total of 231 scans was collected over a sweep width of 6066 Hz, with a 5s repetition time. Fourier transformation, phasing, line broadening and baseline correction was made prior to the analysis of metabolites. Chemical shift assignments were conformed by performing correlation spectroscopy (COSY) and total correlation spectroscopy (TOCSY) 2D NMR using standard Bruker pulse programs.</p>
</sec>
<sec>
<title>Metabolite determination</title>
<p>To evaluate the metabolites variability between biofluid derived from patients and healthy controls, proton NMR spectra was analyzed using the novel Chenomx NMR 5.1 software (Chenomx. Inc., Edmonton, Canada). The Profiler module was used for the determination and quantification of 22 metabolites in the plasma by comparing with a library of 292 metabolites of
<sup>1</sup>
H-NMR spectra of each standard compound recorded at 500 MHz. The calibration of chemical shift was made by DSS internal standard (0.0 ppm) resonance.</p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>The profiled data were imported into GeneSpring GX7.3 microarray software (Agilent Technologies Inc., Santa Clara, California), in which analysis of variance (ANOVA) was performed. In order to confirm the biomarkers differentiating the patients with PD from matched controls, partial least square discriminant analysis (PLS-DA) was employed using Umatrices software (Umetrics, Inc., Kinnelon, NJ).</p>
</sec>
<sec>
<title>Systems biological approach</title>
<p>Pubgene index [
<xref ref-type="bibr" rid="B21">21</xref>
] was used to identify the interacting genes with pyruvate dehydrogenase complex. Moreover, pyruvate dehydrogenase is multi enzyme complex, which includes
<italic>PDHB, PDHA1, PDHA2, DLAT, DLD </italic>
and
<italic>PDHX </italic>
[
<xref ref-type="bibr" rid="B22">22</xref>
].</p>
</sec>
<sec>
<title>Gene expression analysis</title>
<p>Secondary microarray data analysis was performed in the cellular blood of PD patients on previously published data retrieved from gene expression omnibus [GEO: GDS2519], NCBI database. The analysis was performed on 72 samples, which include 22 normal and 50 early PD samples [
<xref ref-type="bibr" rid="B23">23</xref>
]. Prior to analysis, the basic processing of raw data was carried out on 40 gene spots identified from the gene interactions, such as
<italic>PDHB, PDHA1, PDHA2, DLAT, DLD, PDHX, CAT, CD4, CD8A, CS, DUOX1, DUOX2, EDC4, FAM48A, FGF13, FGF, GCG, G6PD, GSR, HSPD1, IFNG, INS, INSR, JUN, NEUROG3, NOS1, NOS2A, NOS3, NPFF, OGDH, PDX1, PTPRC, SST, SYT1, THEG, TMEM16A, TNF, TTF2, UNC5C </italic>
and
<italic>WNK1</italic>
. The analysis was made only on these selected genes using GeneSpring GX7.3 microarray software.</p>
</sec>
<sec>
<title>Artificial neural network (ANN) for diagnosis</title>
<p>The neural-network design consisted of a three-layer network: an input layer, with 13 units containing the information on the diagnostic criteria; a hidden layer, with 7 units; and an output layer for the detection of PD based on stages. A NeuNet Pro software (CorMac Technologies Inc., Canada), back prop algorithm were used for the prediction of disease stages. Back prop algorithm of NeuNet Pro software accepts the clinical data as numerical inputs. The training variables include age, gender, amplitude (si) of 10 NMR peaks (1.32 ppm, 1.46 ppm, 2.55 ppm, 2.60 ppm, 2.70 ppm, 3.10 ppm, 3.22 ppm, 3.54 ppm, 3.86 ppm, 4.02 ppm) representing ~292 metabolites and, together with information about disease status, normal (coded 0), stage1 (coded 1), stage2 (coded 2), stage3 (coded 3). The patterns of input facts associated with diagnoses were trained with randomly selected 45 individuals from the set 80 with known pathological status which includes 17 normal and 28 PD patients (9 samples of stage 1, 8 samples of stage 2 and 11 samples of stage 3). The training process continued until the differences between the network classifications and the clinical diagnoses became acceptable. Once the network was trained, the remaining 35 individuals were "tested," by means of the trained network. The neural network classifications were then compared with the known clinical diagnoses, to see whether the network was able to classify disease status reliability.</p>
</sec>
</sec>
<sec>
<title>Results</title>
<p>Investigation of plasma samples for the detection of metabolite variations were performed by comparing the normal with PD patients by proton NMR. The typical analysis of NMR spectra aimed for 22 metabolites hypothetically suggests a critical role in PD.</p>
<sec>
<title>Metabolite variations</title>
<p>The mean concentrations of galactitol, glycerol, methylamine, trimethylamine, ethanolamine, suberate, glutarate, malate, methylmalonate, succinate, acetate, gluconate, threonate, glucolate, ascorbate, isocitrate, and citrate were significantly decreased, while the levels of ethymalonate, pyruvate, myoinositol, sorbitol and propylene glycol was elevated in the patient samples. The average difference in concentrations of metabolites between normal and patients was showed in heat map (Fig.
<xref ref-type="fig" rid="F1">1</xref>
).</p>
<fig position="float" id="F1">
<label>Figure 1</label>
<caption>
<p>
<bold>Heat map differentiation of metabolite</bold>
. Average metabolite variability of blood plasma between PD patients (n = 43) and healthy controls (n = 37) are shown. Cluster analyses of the 22 differentially altered metabolites are selected based on significance
<italic>P </italic>
value (
<italic>P </italic>
< 0.05). The heat map depicts high (red) and low (green) relative levels of metabolite variation.</p>
</caption>
<graphic xlink:href="1423-0127-16-63-1"></graphic>
</fig>
</sec>
<sec>
<title>Statistical analysis</title>
<p>Analysis of variance (ANOVA) was performed to demonstrate a significant difference between PD patients and controls. The results showed the significance at p < 0.05 (Table
<xref ref-type="table" rid="T2">2</xref>
). To explore the metabolite multidimensional data, unsupervised statistical methods were executed on samples. PLS-DA plots' scores based on
<sup>1</sup>
H-NMR spectra of plasma samples showed a clear differentiation between healthy volunteers and drug-naive patients (Fig
<xref ref-type="fig" rid="F2">2</xref>
). The loading coefficient map indicates that myoinositol, glucitol, citrate, acetate, succinate and pyruvate were predominantly responsible for the separation between classes (Fig
<xref ref-type="fig" rid="F3">3</xref>
). Hence, the results from
<sup>1</sup>
H-NMR spectroscopy showed significantly elevated concentrations of myoinositol, glucitol and pyruvate in plasma samples of drug-naive patients, confirming the likely importance of these molecules as biomarker.</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Statistical significance of metabolites</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="center">S. No</td>
<td align="center">Metabolites</td>
<td align="center">Significance (P < 0.05)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">1</td>
<td align="center">Glucitol</td>
<td align="center">0.031</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">2</td>
<td align="center">Galactitol</td>
<td align="center">0.0420</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">3</td>
<td align="center">Glycerol</td>
<td align="center">0.0321</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">4</td>
<td align="center">Methylamine</td>
<td align="center">.0276</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">5</td>
<td align="center">Trimethylamine</td>
<td align="center">0.0318</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">6</td>
<td align="center">Ethanolamine</td>
<td align="center">0.0478</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">7</td>
<td align="center">Suberate</td>
<td align="center">0.0211</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">8</td>
<td align="center">Glutarate</td>
<td align="center">0.0210</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">9</td>
<td align="center">Malate</td>
<td align="center">0.133</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">10</td>
<td align="center">Methylmalonate</td>
<td align="center">0.0398</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">11</td>
<td align="center">Succinate</td>
<td align="center">0.0291</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">12</td>
<td align="center">Acetate</td>
<td align="center">0.0201</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">13</td>
<td align="center">Gluconate</td>
<td align="center">.0365</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">14</td>
<td align="center">Threonate</td>
<td align="center">0.0195</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">15</td>
<td align="center">Glucolate</td>
<td align="center">.0371</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">16</td>
<td align="center">Ascorbate</td>
<td align="center">0.0489</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">17</td>
<td align="center">Isocitrate</td>
<td align="center">0.0263</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">18</td>
<td align="center">Pyruvate</td>
<td align="center">0.0107</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">19</td>
<td align="center">Citrate</td>
<td align="center">0.0209</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">20</td>
<td align="center">Ethylmalonate</td>
<td align="center">0.0481</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">21</td>
<td align="center">Myoinositol</td>
<td align="center">0.0199</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">22</td>
<td align="center">Propylene glycol</td>
<td align="center">0.0429</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Analysis of variance (ANOVA) of 22 metabolites showing the clear significant difference between PD patients and controls with p < 0.05</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F2">
<label>Figure 2</label>
<caption>
<p>
<bold>Partial least square discriminant analysis</bold>
. PLS-DA scores plot showing a significant separation between control subjects (n = 37) and unmedicated PD patients (n = 43) using complete digital maps. The observations coded according to class membership: black square = controls; red square = PD patients.</p>
</caption>
<graphic xlink:href="1423-0127-16-63-2"></graphic>
</fig>
<fig position="float" id="F3">
<label>Figure 3</label>
<caption>
<p>
<bold>Biomarker detection</bold>
. The loading coefficient map showing that myoinositol, glucitol, citrate, acetate, succinate and pyruvate were predominantly responsible for the classification of groups.</p>
</caption>
<graphic xlink:href="1423-0127-16-63-3"></graphic>
</fig>
</sec>
<sec>
<title>Genetic aspects of pyruvate variation</title>
<p>To determine the genetic basis of pyruvate variation, the systems biological approach was performed using PUBGENE index on
<italic>DLAT, DLD, PDHX, PDHB, PDHA1 </italic>
and
<italic>PDHA2 </italic>
genes. The result explores the interaction of 46 genes, such as
<italic>AKR1CL2, CAT, CD4, CD8A, CS, DMRT3, DUOX1, DUOX2, EDC4, FAM48A, FGF13, FGF2, FLJ21936, GCG, GCSL, G6PD, GSR, HSPD1, IFNG, INS, INSR, JUN, NEUROG3, NOS1, NOS2A, NOS3, NPFF, OGDH, PDX1, PTPRC, SST, SYT1, THEG, TMEM16A, TNF, TTF2, UNC5A, UNC5B, UNC5C </italic>
and
<italic>WNK1 </italic>
including pyruvate dehydrogenase components (Fig.
<xref ref-type="fig" rid="F4">4</xref>
). The biological significance of these genes in PD was further validated by secondary gene expression analysis. The expression analysis was executed only on 40 gene spots by excluding 6 genes such as
<italic>GCSL</italic>
,
<italic>FLJ21936, DMRT3, AKR1CL2, UNC5A </italic>
and
<italic>UNC5B</italic>
. The result shows the moderate down regulation of
<italic>CAT, PDHB, NPFF, TMEM16A, UNC5C, FGF13, JUN </italic>
and up regulation of
<italic>INSR, THEG, NOS1, FAM48A, PTPRC, OGDH, SYT1, FGF2 </italic>
and
<italic>SST </italic>
genes in cellular blood of PD. In addition, statistical analysis was carried out on 16 genes showed the significance of pyruvate dehydrogenase lipoamide beta (
<italic>PDHB</italic>
) and neuropeptide FF-amide peptide precursor (
<italic>NPFF</italic>
) genes with p < 0.05.</p>
<fig position="float" id="F4">
<label>Figure 4</label>
<caption>
<p>
<bold>Pyruvate dehydrogenase component interacting genes</bold>
. The systems biological approach showing the complex interaction of pyruvate dehydrogenase components (red) with 40 genes.</p>
</caption>
<graphic xlink:href="1423-0127-16-63-4"></graphic>
</fig>
</sec>
<sec>
<title>Neural network classification</title>
<p>The neural network training was performed as described above, on the basis of diagnostic criteria for the 45 individuals of known variable information. The network, tested with 35 individuals, the success rate in classification of the test set was 97.14% (34/35) accuracy, the sensitivity was 93.33% (14/15, one case of stage 1 was misdiagnosed as stage 2 PD), the specificity was 100% (20/20) (Fig.
<xref ref-type="fig" rid="F5">5</xref>
). Moreover, the values generated by the neural network were ranged from 0 to 3. On the basis of these values, individuals were assigned as affected or normal group. Individuals whose final predicted values were ≤ 0.2 were assigned to the normal group, and those whose output values ≥ 0.2 were assigned to the PD. For instance the predicted range from < 0.2 > 1.03 assigned as stage 1, ≤ 1.03 > 2.06 as stage 2 and the values ≤ 2.06 ≥ 3 as stage 3 (Table
<xref ref-type="table" rid="T3">3</xref>
).</p>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Neural network prediction</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="center">Sample ID</td>
<td align="center">ANN classification values</td>
<td align="center">Neural network designation</td>
<td align="center">Clinical designation</td>
</tr>
</thead>
<tbody>
<tr>
<td align="center">2</td>
<td align="center">-0.085</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">3</td>
<td align="center">-0.065</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">4</td>
<td align="center">-0.045</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">6</td>
<td align="center">-0.04</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">7</td>
<td align="center">-0.02</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">8</td>
<td align="center">-0.01</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">10</td>
<td align="center">-0.01</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">11</td>
<td align="center">0</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">12</td>
<td align="center">0.02</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">13</td>
<td align="center">0.03</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">14</td>
<td align="center">0.052</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">15</td>
<td align="center">0.059</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">20</td>
<td align="center">0.073</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">21</td>
<td align="center">0.078</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">22</td>
<td align="center">0.092</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">29</td>
<td align="center">0.105</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">31</td>
<td align="center">0.112</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">32</td>
<td align="center">0.118</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">34</td>
<td align="center">0.122</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">35</td>
<td align="center">0.1255</td>
<td align="center">Normal</td>
<td align="center">Normal</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">18</td>
<td align="center">0.97</td>
<td align="center">PD-Stage 1</td>
<td align="center">PD-Stage 1</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">23</td>
<td align="center">0.97</td>
<td align="center">PD-Stage 1</td>
<td align="center">PD-Stage 1</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">24</td>
<td align="center">0.98</td>
<td align="center">PD-Stage 1</td>
<td align="center">PD-Stage 1</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">26</td>
<td align="center">0.99</td>
<td align="center">PD-Stage 1</td>
<td align="center">PD-Stage 1</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">1</td>
<td align="center">1.01</td>
<td align="center">PD-Stage 1</td>
<td align="center">PD-Stage 1</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">27</td>
<td align="center">1.531</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 1*</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">5</td>
<td align="center">1.62</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 2</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">17</td>
<td align="center">1.73</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 2</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">25</td>
<td align="center">1.97</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 2</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">28</td>
<td align="center">1.97</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 2</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">30</td>
<td align="center">1.99</td>
<td align="center">PD-Stage 2</td>
<td align="center">PD-Stage 2</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">9</td>
<td align="center">2.46</td>
<td align="center">PD-Stage 3</td>
<td align="center">PD-Stage 3</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">16</td>
<td align="center">2.56</td>
<td align="center">PD-Stage 3</td>
<td align="center">PD-Stage 3</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">19</td>
<td align="center">2.82</td>
<td align="center">PD-Stage 3</td>
<td align="center">PD-Stage 3</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="center">33</td>
<td align="center">2.96</td>
<td align="center">PD-Stage 3</td>
<td align="center">PD-Stage 3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*Sample ID: Misclassified stage 1 as stage 2 by ANN</p>
<p>Neural network classification values, neural network designation and disease designation, for 35 Individuals who have known clinical information. Individuals denoted by a (*) indicates the misclassification of PD stage1 as stage2 by ANN.</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F5">
<label>Figure 5</label>
<caption>
<p>
<bold>Distribution of patients and healthy individuals</bold>
. Neural network classification of disease for 35 individuals (x-axis) with known clinical information. Values (y-axis) are predicted value over the trained network and are 0 to3; values ≥ 0.2 reflect a neural-network classification of "normal," and values ≤ 0.2 reflect a neural-network classification of "PD". Individuals denoted by a Violet rhombus are normal, red arrow are clinically stage 1 PD, blackened circle are stage 2, blackened square are stage 3 PD respectively.</p>
</caption>
<graphic xlink:href="1423-0127-16-63-5"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>The present study is focused to identify the metabolic marker for the detection of PD from plasma and to validate the variations by spotting out through gene responsibility.</p>
<p>Several studies have been indicated the gene variation in PD [
<xref ref-type="bibr" rid="B24">24</xref>
-
<xref ref-type="bibr" rid="B28">28</xref>
] which may lead to metabolic abnormalities that are detectable in peripheral tissues. Few successful break through have shown metabolite variations in CSF and serum samples of PD. For instance, glutamate was found to be decreased in parkinsonian CSF compared to control subjects, a result reported in earliest analyses of parkinsonian CSF [
<xref ref-type="bibr" rid="B29">29</xref>
-
<xref ref-type="bibr" rid="B31">31</xref>
]. Subsequent study shows that the increased level of glycine, aspartate and glutamate in the plasma of parkinsonian patients [
<xref ref-type="bibr" rid="B32">32</xref>
]. Increase in CSF glycine also been observed in PD [
<xref ref-type="bibr" rid="B33">33</xref>
]. Previous study of PD patients showed reduction in concentrations of arginine and methionine in serum, while the level of valine was increased [
<xref ref-type="bibr" rid="B34">34</xref>
]. Additionally, a significant decrease in CSF isoleucine, alanine, lysine and moderate increase of a glutamine level was very well observed in PD [
<xref ref-type="bibr" rid="B34">34</xref>
]. Recent study shows the feasibility of potential diagnosis of PD from the detection of increased 8-OHdG in serum and urine of PD [
<xref ref-type="bibr" rid="B35">35</xref>
]. Furthermore, several reports indicate that there is a reduction of complex 1 activity in the electron transport chain of PD [
<xref ref-type="bibr" rid="B36">36</xref>
-
<xref ref-type="bibr" rid="B41">41</xref>
]. From the detailed knowledge of these studies, 22 metabolites, which play a role in mitochondrial function and other related pathway, have been targeted.</p>
<p>Analysis of the
<sup>1</sup>
H NMR spectra of plasma samples showed differential distribution of these metabolites in drug-naive patients compared to the healthy volunteers. The targeted metabolite profiling of 22 compounds in blood plasma was characteristically altered in patients with PD, and most of these metabolites have decreased in concentration. The results showed that, this approach has great hope in diagnosis of PD. Moreover, this study was made with unmedicated PD patients to controls, to avoid the confounding effects of any medications. The key metabolites, such as myoinositol, sorbitol, citrate, acetate, succinate and pyruvate are significant in contribution for the separation between metabolite profiles of unmedicated PD patients and controls.</p>
<p>Plasma myoinositol level was significantly increased in the drug-naive patients. Elevation of myoinositol concentrations implies the decrease in activity of sciatic motor-nerve conduction velocity determined in animal models [
<xref ref-type="bibr" rid="B42">42</xref>
,
<xref ref-type="bibr" rid="B43">43</xref>
]. Elevated plasma myoinositol has not previously been reported for PD. However, studies show the abnormal myoinositol levels in the brain of neurologically diseased patients and other disorders [
<xref ref-type="bibr" rid="B44">44</xref>
-
<xref ref-type="bibr" rid="B47">47</xref>
]. Raised myoinositol levels in the basal ganglia were recently observed in PD patients under exercise condition detected using magnetic resonance spectroscopy [
<xref ref-type="bibr" rid="B48">48</xref>
]. Additionally, plasma sorbitol level was significantly increased in drug-naive patients. Sorbitol has been linked to drug treatment in PD [
<xref ref-type="bibr" rid="B49">49</xref>
], yet our observation of an elevation of plasma sorbitol concentrations in drug-naive patients may be due to impairment in oxidative stress [
<xref ref-type="bibr" rid="B50">50</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
]. The elevated levels of sorbitol have been reported in the CSF of mood disorder patients, which relates to oxidative stress [
<xref ref-type="bibr" rid="B52">52</xref>
]. Surprisingly, elevation in the plasma sorbitol level has not been reported in PD to our knowledge. Together with the significant findings of myoinositol and sorbitol in plasma imply the dysfunction of polyols metabolic pathway. Polyols pathway is a minor metabolic pathway of glucose running parallel to glycolysis, whose activity is altered in mitochondrial dysfunction [
<xref ref-type="bibr" rid="B53">53</xref>
]. However, malfunctioning of mitochondria is previously reported in PD [
<xref ref-type="bibr" rid="B36">36</xref>
-
<xref ref-type="bibr" rid="B41">41</xref>
], and it is the pedestal of this study. Detection of glucose concentration were not been carried out but abnormality of glucose metabolism was previously reported in PD patients [
<xref ref-type="bibr" rid="B54">54</xref>
].</p>
<p>More interestingly citrate, malate, acetate, succinate and pyruvate are significantly varied in PD plasma samples, contributes to the major distinction of PD from normal samples in PLS-DA analysis. These metabolites, such as citrate, acetate, succinate and malate were decreased, while increase in pyruvate concentration was noticed. Pyruvate is the end metabolite of glycolysis. It enters Kreb's cycle as acetyl-coA by the catalysis of enzyme pyruvate dehydrogenase in the presence of the coenzyme NAD+. The accumulation of pyruvate or its increased concentration in plasma may be due to abnormal activity of pyruvate dehydrogenase complex and its interacting genes in patients. Increased pyruvate CSF has already been reported in Alzheimer's patients [
<xref ref-type="bibr" rid="B55">55</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
]. The other intermediates of Kreb's cycle such as citrate, malate and succinate were considerably decreased in this study, which may correlate to alteration of pyruvate dehydrogenase activity. Moreover, the detection of other metabolites of Kreb's cycle was not executed in our analysis. Systems biological approach was carried out on pyruvate dehydrogenase components to identify its interacting genes which are hypothesized as the cause for the increased plasma pyruvate concentration. The analysis reveals 46 interacting genes together with pyruvate dehydrogenase components.</p>
<p>The significant variation in plasma pyruvate was validated by gene expression analysis of 46 genes derived from systems biological approach. The expression analysis was executed only on 40 genes and the other 6 genes in which the following FLJ21936, DMRT3, AKR1CL2, UNC5A and UNC5B were excluded from this study, because these genes are not expressed in blood cells and GCSL gene was also eliminated since it is considered as an alias of DLD gene. The analysis of 40 genes shows differential regulation of 16 genes in comparison to control. Interestingly, out of 16 genes, 9 genes have been previously reported in PD, such as CAT, FGF13, JUN, INSR, NOS1, OGDH, SYT1, FGF2 and SST [
<xref ref-type="bibr" rid="B57">57</xref>
-
<xref ref-type="bibr" rid="B65">65</xref>
]. Furthermore, statistical analysis of these genes show the significance of NPFF and PDHB with p < 0.05. NPFF gene plays a major role in inflammation modulation, neuroendocrine function and cardiovascular regulations [
<xref ref-type="bibr" rid="B66">66</xref>
], where as, PDHB gene is the beta subunit of pyruvate dehydrogenase, directly associated with pyruvate dehydrogenase activity and mitochondrial dysfunction. Abnormal activity of pyruvate dehydrogenase is the basis of our study in representing the variation in pyruvate concentration. The impairment of cardiovascular regulation [
<xref ref-type="bibr" rid="B67">67</xref>
], inflammation [
<xref ref-type="bibr" rid="B68">68</xref>
] and neuroendocrine function [
<xref ref-type="bibr" rid="B69">69</xref>
] were reported in PD and this may suggest the influence of differential regulation of NPFF gene. The biological significance of these genes related to PD has not been reported previously. Hence, the variation in pyruvate concentration can be considered as a marker for detection of PD and future studies need to be carried out on the factors and the hidden mechanism involved in variations of NPFF and PDHB in PD.</p>
<p>Prior study indicates no correlation between metabolite variation with severity and duration in PD [
<xref ref-type="bibr" rid="B24">24</xref>
]. To bring out the correlation, NMR peak amplitude representing the ~290 metabolite was included as one of the variables in the prediction of disease stages by neural network. The ANN was trained with variable parameters as described above. More fascinating results emerged from neural network and it is capable to predict early stages of PD, with a good accuracy using these variables. The optimized network yield has an accuracy of 97.14% in detecting PD patients. Based on the present study it has been confirmed that the association between disease progression and metabolite variation is strong and it is more accurate than the current diagnosis [
<xref ref-type="bibr" rid="B23">23</xref>
] of PD.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The present study concludes that the application of NMR metabolite profiling of plasma fluid can provide an efficient means for detection of Parkinson's disease. We identified abnormalities in 22 circulating metabolites, which bring out the scope for the diagnosis of PD. Moreover, the result obtained from neural network approach is more feasible for the stage wise detection. However, the accuracy of neural network is questionable unless the study focused with the larger samples.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>SSSJA designed the study and analyzed the data under the guidance of HTTC and WS. The research participants were selected by SK, examined them clinically and neurologically for metabolic investigations.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>We thank Dr. Ramasamy and Dr. Kantha D Arunachalam for their intellectual input and Indian Institute of Technology-Madras for the technical assistance. This work was supported by SRM University, Tamil Nadu, India. We specially thank all the patients and healthy volunteers for their selfless donation of blood. In addition, Shiek Fareeth Ahmed thanks to all the members of School of Bioengineering for their encouragement.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rango</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Canesi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ghione</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Farabola</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Righini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bresolin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Antonini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pezzoli</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Parkinson's disease, chronic hydrocarbon exposure and striatal neuronal damage: A 1-H MRS study</article-title>
<source>Neurotoxicology</source>
<year>2006</year>
<volume>27</volume>
<fpage>164</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="pmid">16246421</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Jankovic</surname>
<given-names>J</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Pahwa R, Lyons K, Koller WC</surname>
</name>
</person-group>
<article-title>Pathophysiology and Clinical assessment of parkinsonian symptoms and signs</article-title>
<source>Handbook of Parkinson's disease</source>
<year>2003</year>
<edition>3</edition>
<publisher-name>Informa Health Care</publisher-name>
<fpage>71</fpage>
<lpage>98</lpage>
</citation>
</ref>
<ref id="B3">
<citation citation-type="other">
<article-title>The Movement Disorder Virtual University</article-title>
<ext-link ext-link-type="uri" xlink:href="http://mdvu.org/library/ratingscales/pd/"></ext-link>
</citation>
</ref>
<ref id="B4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fisch</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Srinivasan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Amico</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Eaton</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Robbin</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Does this patient have Parkinson disease?</article-title>
<source>JAMA</source>
<year>2003</year>
<volume>289</volume>
<fpage>347</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="pmid">12525236</pub-id>
</citation>
</ref>
<ref id="B5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gibb</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Lees</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease</article-title>
<source>J Neurol Neurosurg Psychiatry</source>
<year>1988</year>
<volume>51</volume>
<fpage>745</fpage>
<lpage>752</lpage>
<pub-id pub-id-type="pmid">2841426</pub-id>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gelb</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Oliver</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gilman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Diagnostic criteria for Parkinson disease</article-title>
<source>Arch Neurol</source>
<year>1999</year>
<volume>56</volume>
<fpage>33</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">9923759</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kantor</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>CH</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Seetharaman Vaidyanathan, George G Harrigan</surname>
</name>
</person-group>
<article-title>Differential Metabolic Profiling for Biomarker Discovery</article-title>
<source>Metabolome Analyses: Strategies for Systems Biology</source>
<year>2005</year>
<publisher-name>Royston Goodacre: Springer</publisher-name>
<fpage>137</fpage>
<lpage>157</lpage>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>German</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Hammock</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Watkins</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Metabolomics: Building on a century of biochemistry to guide human health</article-title>
<source>Metabolomics</source>
<year>2005</year>
<volume>1</volume>
<fpage>3</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">16680201</pub-id>
</citation>
</ref>
<ref id="B9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brindle</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Antti</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tranter</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Bethell</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schofield</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>McKilligin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mosedale</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Grainger</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics</article-title>
<source>Nat Med</source>
<year>2002</year>
<volume>8</volume>
<fpage>1439</fpage>
<lpage>1444</lpage>
<pub-id pub-id-type="pmid">12447357</pub-id>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis</article-title>
<source>Anal chem</source>
<year>2005</year>
<volume>77</volume>
<fpage>4108</fpage>
<lpage>4116</lpage>
<pub-id pub-id-type="pmid">15987116</pub-id>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kenny</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>PN</given-names>
</name>
<collab>GOPEC Consortium</collab>
<name>
<surname>Kell</surname>
<given-names>DB</given-names>
</name>
</person-group>
<article-title>Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning</article-title>
<source>Metabolomics</source>
<year>2005</year>
<volume>1</volume>
<fpage>227</fpage>
<lpage>234</lpage>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madhavarao</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Arun</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Moffett</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Szucs</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Surendran</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matalon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Garbern</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hristova</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Namboodiri</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan's disease</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>5221</fpage>
<lpage>5226</lpage>
<pub-id pub-id-type="pmid">15784740</pub-id>
</citation>
</ref>
<ref id="B13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denkert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Budczies</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Weichert</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wohlgemuth</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Scholz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kind</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Niesporek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Noske</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Buckendahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dietel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fiehn</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Metabolite profiling of human colon carcinoma – deregulation of TCA cycle and amino acid turnover</article-title>
<source>Mol Cancer</source>
<year>2008</year>
<volume>7</volume>
<fpage>72</fpage>
<pub-id pub-id-type="pmid">18799019</pub-id>
</citation>
</ref>
<ref id="B14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Odunsi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wollman</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Ambrosone</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Hutson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McCann</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Tammela</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Geisler</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sellers</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cliby</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Keitz</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Intengan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lele</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Alderfer</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics</article-title>
<source>Int J Cancer</source>
<year>2005</year>
<volume>113</volume>
<fpage>782</fpage>
<lpage>788</lpage>
<pub-id pub-id-type="pmid">15499633</pub-id>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brindle</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Schofield</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Grainger</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension</article-title>
<source>Analyst</source>
<year>2003</year>
<volume>128</volume>
<fpage>32</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">12572799</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Metabolic profiling reveals therapeutic effects of Herba Cistanches in an animal model of hydrocortisone-induced kidney-deficiency syndrome</article-title>
<source>Chin Med</source>
<year>2008</year>
<volume>3</volume>
<fpage>3</fpage>
<pub-id pub-id-type="pmid">18328110</pub-id>
</citation>
</ref>
<ref id="B17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rozen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cudkowicz</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Bogdanov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matson</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Kristal</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Beecher</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vouros</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Flarakos</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vigneau-Callahan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Matson</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Newhall</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Beal</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Kaddurah-Daouk</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Metabolomic analysis and signatures in motor neuron disease</article-title>
<source>Metabolomics</source>
<year>2005</year>
<volume>1</volume>
<fpage>101</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="pmid">18820733</pub-id>
</citation>
</ref>
<ref id="B18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases</article-title>
<source>J Chromatogr B Analyt Technol Biomed Life Sci</source>
<year>2004</year>
<volume>813</volume>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">15556516</pub-id>
</citation>
</ref>
<ref id="B19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hewer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vorster</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Steffens</surname>
<given-names>FE</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Applying biofluid
<sup>1</sup>
H NMR-based metabonomic techniques to distinguish between HIV-1 positive/AIDS patients on antiretroviral treatment and HIV-1 negative individuals</article-title>
<source>J Pharma Biomed Anal</source>
<year>2006</year>
<volume>41</volume>
<fpage>1442</fpage>
<lpage>1446</lpage>
</citation>
</ref>
<ref id="B20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barba</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Fernandez-Montesinos</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Garcia-Dorado</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pozo</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Alzheimer's disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics</article-title>
<source>J Cell Mol Med</source>
<year>2008</year>
<volume>12</volume>
<fpage>1477</fpage>
<lpage>1485</lpage>
<pub-id pub-id-type="pmid">18554316</pub-id>
</citation>
</ref>
<ref id="B21">
<citation citation-type="other">
<article-title>PubGene database and tools</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.pubgene.org/"></ext-link>
</citation>
</ref>
<ref id="B22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aral</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Benelli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ait-Ghezala</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Amessou</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fouque</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maunoury</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Créau</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kamoun</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Marsac</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis</article-title>
<source>Am J Hum Genet</source>
<year>1997</year>
<volume>61</volume>
<fpage>1318</fpage>
<lpage>1326</lpage>
<pub-id pub-id-type="pmid">9399911</pub-id>
</citation>
</ref>
<ref id="B23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scherzer</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Eklund</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Morse</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Locascio</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Fefer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schwarzschild</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Schlossmacher</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Sudarsky</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Standaert</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Growdon</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Gullans</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Molecular markers of early Parkinson's disease based on gene expression in blood</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>955</fpage>
<lpage>960</lpage>
<pub-id pub-id-type="pmid">17215369</pub-id>
</citation>
</ref>
<ref id="B24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paisán-Ruíz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Gilks</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Simón</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brug</surname>
<given-names>M van der</given-names>
</name>
<name>
<surname>López de Munain</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aparicio</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Nicholl</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Carrera</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Pena</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>de Silva</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lees</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Martí-Massó</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Pérez-Tur</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>NW</given-names>
</name>
<name>
<surname>Singleton</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease</article-title>
<source>Neuron</source>
<year>2004</year>
<volume>18</volume>
<fpage>575</fpage>
<lpage>577</lpage>
</citation>
</ref>
<ref id="B25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ziegler</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Eblan</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Gutti</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Hruska</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Stubblefield</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Goker-Alpan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>LaMarca</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Sidransky</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease</article-title>
<source>Mol Genet Metab</source>
<year>2007</year>
<volume>91</volume>
<fpage>195</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">17462935</pub-id>
</citation>
</ref>
<ref id="B26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funayama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tomiyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yoshino</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Imamichi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Leucine-Rich Repeat kinase 2 among the Japanese population. The G2385R (c.7153G>A) variant was reported as a risk factor for sporadic Parkinson</article-title>
<source>Neuroreport</source>
<year>2007</year>
<volume>18</volume>
<fpage>273</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">17314670</pub-id>
</citation>
</ref>
<ref id="B27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hauser</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y-J</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Noureddine</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maready</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Darden</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hulette</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Schmechel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Stenger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Genomic convergence: identifying candidate genes for Parkinson's disease by combining serial analysis of gene expression and genetic linkage</article-title>
<source>Hum Mol Gen</source>
<year>2003</year>
<volume>12</volume>
<fpage>671</fpage>
<lpage>677</lpage>
<pub-id pub-id-type="pmid">12620972</pub-id>
</citation>
</ref>
<ref id="B28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papapetropoulos</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Farrer</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Milkovic</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Calvo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>McQuorquodale</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mash</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Phenotypic associations of tau and ApoE in Parkinson's disease</article-title>
<source>Neurosci Lett</source>
<year>2007</year>
<volume>414</volume>
<fpage>141</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="pmid">17204369</pub-id>
</citation>
</ref>
<ref id="B29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruck</surname>
<given-names></given-names>
</name>
<name>
<surname>Gerstenbrand</surname>
<given-names></given-names>
</name>
<name>
<surname>Grunding</surname>
<given-names></given-names>
</name>
<name>
<surname>Teuflmayer</surname>
<given-names></given-names>
</name>
</person-group>
<article-title>Uber ergebnisse von Liqoranalysen beim Parkinson-syndrom</article-title>
<source>Acta Neuropathologica</source>
<year>1964</year>
<volume>3</volume>
<fpage>638</fpage>
<lpage>644</lpage>
</citation>
</ref>
<ref id="B30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grundig</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gerstenbrand</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Correlation between Parkinsonism symptoms and a disorder in the amino acid metabolism in CNS</article-title>
<source>Wien Klin Wochenschr</source>
<year>1970</year>
<volume>82</volume>
<fpage>811</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="pmid">5479021</pub-id>
</citation>
</ref>
<ref id="B31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwasaki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shiojima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kinoshita</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson's disease</article-title>
<source>Neurosci Lett</source>
<year>1992</year>
<volume>145</volume>
<fpage>175</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="pmid">1361223</pub-id>
</citation>
</ref>
<ref id="B32">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tohgi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hashiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nozaki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>A significant reduction of putative transmitter amino acids in CSF of patients with Parkinson's disease and spinocerebellar degeneration</article-title>
<source>Neurosci Lett</source>
<year>1991</year>
<volume>126</volume>
<fpage>155</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">1681472</pub-id>
</citation>
</ref>
<ref id="B33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jimenez-Jimenez</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Molina</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Navarro</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Benito-Leon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Orti-Pareja</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gasalla</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cisneros</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Arenas</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Neurotransmitter amino acids in CSF of patients with Parkinson's disease</article-title>
<source>J Neurol Sci</source>
<year>1996</year>
<volume>15</volume>
<fpage>39</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">8880690</pub-id>
</citation>
</ref>
<ref id="B34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mally</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Szalai</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>TW</given-names>
</name>
</person-group>
<article-title>Changes in the concentration of amino acids in serum and cerebrospinal fluid of patients with Parkinson's disease</article-title>
<source>J Neurol Sci</source>
<year>1997</year>
<volume>151</volume>
<fpage>159</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="pmid">9349670</pub-id>
</citation>
</ref>
<ref id="B35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kikuchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Onodera</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kimpara</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hisanaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nunomura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Castellani</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Itoyama</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy</article-title>
<source>Neurobiol Dis</source>
<year>2002</year>
<volume>9</volume>
<fpage>244</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="pmid">11895375</pub-id>
</citation>
</ref>
<ref id="B36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parker</surname>
<given-names>WD</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Boyson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Parks</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Abnormalities of the electron transport chain in idiopathic Parkinson's disease</article-title>
<source>Ann Neurol</source>
<year>1989</year>
<volume>26</volume>
<fpage>719</fpage>
<lpage>723</lpage>
<pub-id pub-id-type="pmid">2557792</pub-id>
</citation>
</ref>
<ref id="B37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Penn</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hodder</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>WR</given-names>
</name>
</person-group>
<article-title>Generalized mitochondrial dysfunction in Parkinson's disease detected by magnetic resonance spectroscopy of muscle</article-title>
<source>Neurology</source>
<year>1995</year>
<volume>45</volume>
<fpage>2097</fpage>
<lpage>2099</lpage>
<pub-id pub-id-type="pmid">7501166</pub-id>
</citation>
</ref>
<ref id="B38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shoffner</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Watts</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Juncos</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Torroni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wallace</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Mitochondrial oxidative phosphorylation defects in Parkinson's disease</article-title>
<source>Ann Neurol</source>
<year>1991</year>
<volume>30</volume>
<fpage>332</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="pmid">1952821</pub-id>
</citation>
</ref>
<ref id="B39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bindoff</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Birch-Machin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Cartlidge</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Turnbull</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's Disease</article-title>
<source>J Neurol Sci</source>
<year>1991</year>
<volume>104</volume>
<fpage>203</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="pmid">1658241</pub-id>
</citation>
</ref>
<ref id="B40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haas</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Nasirian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shults</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's Disease</article-title>
<source>Ann Neurol</source>
<year>1995</year>
<volume>37</volume>
<fpage>714</fpage>
<lpage>722</lpage>
<pub-id pub-id-type="pmid">7778844</pub-id>
</citation>
</ref>
<ref id="B41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krige</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Marsden</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Schapira</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research group</article-title>
<source>Ann Neurol</source>
<year>1992</year>
<volume>32</volume>
<fpage>782</fpage>
<lpage>788</lpage>
<pub-id pub-id-type="pmid">1471869</pub-id>
</citation>
</ref>
<ref id="B42">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>MP</given-names>
</name>
</person-group>
<source>The polyol paradigm and complications of diabetes</source>
<year>1987</year>
<publisher-name>Springer-Verlag</publisher-name>
</citation>
</ref>
<ref id="B43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clements</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Deiesus</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Winegrad</surname>
<given-names>AI</given-names>
</name>
</person-group>
<article-title>Raised plasma myoinositol levels in uraemia and experimental neuropathy</article-title>
<source>Lancet</source>
<year>1973</year>
<volume>1</volume>
<fpage>1137</fpage>
<lpage>1141</lpage>
<pub-id pub-id-type="pmid">4123536</pub-id>
</citation>
</ref>
<ref id="B44">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffith</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>den Hollander</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Okonkwo</surname>
<given-names>OC</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Watts</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Marson</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Brain metabolism differs in Alzheimer's disease and Parkinson's disease dementia</article-title>
<source>Alzheimers Dement</source>
<year>2008</year>
<volume>4</volume>
<fpage>421</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="pmid">19012867</pub-id>
</citation>
</ref>
<ref id="B45">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Firbank</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson's disease</article-title>
<source>Dement Geriatr Cogn Disord</source>
<year>2002</year>
<volume>14</volume>
<fpage>64</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">12145453</pub-id>
</citation>
</ref>
<ref id="B46">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Moats</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Shonk</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Woolley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>BD</given-names>
</name>
</person-group>
<article-title>Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy</article-title>
<source>Radiology</source>
<year>1993</year>
<volume>187</volume>
<fpage>433</fpage>
<lpage>437</lpage>
<pub-id pub-id-type="pmid">8475286</pub-id>
</citation>
</ref>
<ref id="B47">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bluml</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Magnetic resonance spectroscopy of the human brain</article-title>
<source>Anat Rec</source>
<year>2001</year>
<volume>265</volume>
<fpage>54</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">11323770</pub-id>
</citation>
</ref>
<ref id="B48">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prestel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gempel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schweitzer</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Prokisch</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ahting</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Freudenstein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bueltmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Naegele</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Berg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Klopstock</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gasser</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation</article-title>
<source>J Neurol</source>
<year>2008</year>
<volume>255</volume>
<fpage>643</fpage>
<lpage>648</lpage>
<pub-id pub-id-type="pmid">18286320</pub-id>
</citation>
</ref>
<ref id="B49">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Pfeiffer</surname>
<given-names>RF</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Ronald F Pfeiffer</surname>
</name>
</person-group>
<article-title>Intestinal Dysfunction</article-title>
<source>Intestinal Dysfunction Parkinson's Disease and Nonmotor Dysfunction</source>
<year>2005</year>
<publisher-name>Ivan Bodis-Wollner: Humana Press</publisher-name>
<fpage>115</fpage>
<lpage>125</lpage>
</citation>
</ref>
<ref id="B50">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johansen</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Rychly</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Ergul</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice</article-title>
<source>Cardiovasc Diabetol</source>
<year>2005</year>
<volume>4</volume>
<fpage>5</fpage>
<pub-id pub-id-type="pmid">15862133</pub-id>
</citation>
</ref>
<ref id="B51">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Irina</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Obrosova</surname>
<given-names></given-names>
</name>
</person-group>
<article-title>Increased Sorbitol Pathway Activity Generates Oxidative Stress in Tissue Sites for Diabetic Complications</article-title>
<source>Antioxid Redox Signal</source>
<year>2005</year>
<volume>7</volume>
<fpage>1543</fpage>
<lpage>1552</lpage>
<pub-id pub-id-type="pmid">16356118</pub-id>
</citation>
</ref>
<ref id="B52">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Regenold</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Kling</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Elevated sorbitol concentration in the cerebrospinal fluid of patients with mood disorders</article-title>
<source>Psychoneuroendocrinology</source>
<year>2000</year>
<volume>25</volume>
<fpage>593</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="pmid">10840171</pub-id>
</citation>
</ref>
<ref id="B53">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Regenold</surname>
<given-names>WT</given-names>
</name>
<name>
<surname>Phatak</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Makley</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Kling</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression</article-title>
<source>J Neurol Sci</source>
<year>2008</year>
<volume>275</volume>
<fpage>106</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">18783801</pub-id>
</citation>
</ref>
<ref id="B54">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peppard</surname>
<given-names>RichardF</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>WR Wayne</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>GeoffD</given-names>
</name>
<name>
<surname>Grochowski</surname>
<given-names>Edward</given-names>
</name>
<name>
<surname>Schulzer</surname>
<given-names>Michael</given-names>
</name>
<name>
<surname>Guttman</surname>
<given-names>Mark</given-names>
</name>
<name>
<surname>McGeer</surname>
<given-names>PatrickL</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>AnthonyG</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>JosephKC</given-names>
</name>
<name>
<surname>Calne</surname>
<given-names>DonaldB</given-names>
</name>
</person-group>
<article-title>Cerebral Glucose Metabolism in Parkinson's Disease With and Without Dementia</article-title>
<source>Arch Neurol</source>
<year>1992</year>
<volume>49</volume>
<fpage>1262</fpage>
<lpage>1268</lpage>
<pub-id pub-id-type="pmid">1449406</pub-id>
</citation>
</ref>
<ref id="B55">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parnetti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gaiti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Polidori</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Brunetti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Palumbo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chionne</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cadini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cecchetti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Senin</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Increased cerebrospinal fluid pyruvate levels in Alzheimer's disease</article-title>
<source>Neurosci Lett</source>
<year>1995</year>
<volume>199</volume>
<fpage>231</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="pmid">8577405</pub-id>
</citation>
</ref>
<ref id="B56">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parnetti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gaiti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brunetti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Avellini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Polidori</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cecchetti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Palumbo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Senin</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Increased CSF pyruvate levels as a marker of impaired energy metabolism in Alzheimer's disease</article-title>
<source>J Am Geriatr Soc</source>
<year>1995</year>
<volume>43</volume>
<fpage>316</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">7884130</pub-id>
</citation>
</ref>
<ref id="B57">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Younes-Mhenni</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Frih-Ayed</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kerkeni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bost</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chazot</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Peripheral blood markers of oxidative stress in Parkinson's disease</article-title>
<source>Eur Neurol</source>
<year>2007</year>
<volume>58</volume>
<fpage>78</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">17565220</pub-id>
</citation>
</ref>
<ref id="B58">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizuta</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Tsunoda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Satake</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Nakabayashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakashima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toda</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Calbindin 1, fibroblast growth factor 20, and alpha-synuclein in sporadic Parkinson's disease</article-title>
<source>Hum Genet</source>
<year>2008</year>
<volume>124</volume>
<fpage>89</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">18568448</pub-id>
</citation>
</ref>
<ref id="B59">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anantharam</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lehrmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kanthasamy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Banerjee</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Freed</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Kanthasamy</surname>
<given-names>AG</given-names>
</name>
</person-group>
<article-title>Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease</article-title>
<source>Neurochem Int</source>
<year>2007</year>
<volume>50</volume>
<fpage>834</fpage>
<lpage>847</lpage>
<pub-id pub-id-type="pmid">17397968</pub-id>
</citation>
</ref>
<ref id="B60">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tooyama</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Moroo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Insulin receptor mRNA in the substantia nigra in Parkinson's disease</article-title>
<source>Neurosci Lett</source>
<year>1996</year>
<volume>204</volume>
<fpage>201</fpage>
<lpage>204</lpage>
<pub-id pub-id-type="pmid">8938265</pub-id>
</citation>
</ref>
<ref id="B61">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gatto</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Riobó</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Carreras</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Cherñavsky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rubio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Satz</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Poderoso</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson's disease</article-title>
<source>Nitric Oxide</source>
<year>2000</year>
<volume>4</volume>
<fpage>534</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">11020342</pub-id>
</citation>
</ref>
<ref id="B62">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizuno</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikebe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nakagawa-Hattori</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ozawa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Role of mitochondria in the etiology and pathogenesis of Parkinson's disease</article-title>
<source>Biochim Biophys Acta</source>
<year>1995</year>
<volume>1271</volume>
<fpage>265</fpage>
<lpage>274</lpage>
<pub-id pub-id-type="pmid">7599219</pub-id>
</citation>
</ref>
<ref id="B63">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Block</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Breese</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Knapp</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Crews</surname>
<given-names>FT</given-names>
</name>
</person-group>
<article-title>Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration</article-title>
<source>Glia</source>
<year>2007</year>
<volume>55</volume>
<fpage>453</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="pmid">17203472</pub-id>
</citation>
</ref>
<ref id="B64">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegel</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>NB</given-names>
</name>
</person-group>
<article-title>Neurotrophic factors in Alzheimer's and Parkinson's disease brain</article-title>
<source>Brain Res Brain Res Rev</source>
<year>2000</year>
<volume>33</volume>
<fpage>199</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">11011066</pub-id>
</citation>
</ref>
<ref id="B65">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cannizzaro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tel</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>BY</given-names>
</name>
<name>
<surname>Jenner</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Increased neuropeptide Y mRNA expression in striatum in Parkinson's disease</article-title>
<source>Brain Res Mol Brain Res</source>
<year>2003</year>
<volume>110</volume>
<fpage>169</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="pmid">12591154</pub-id>
</citation>
</ref>
<ref id="B66">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vilim</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Aarnisalo</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Nieminen</surname>
<given-names>M-L</given-names>
</name>
<name>
<surname>Lintunen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Karlstedt</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kontinen</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Kalso</surname>
<given-names>E</given-names>
</name>
<name>
<surname>States</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Panula</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ziff</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Gene for Pain Modulatory Neuropeptide NPFF: Induction in Spinal Cord by Noxious Stimuli</article-title>
<source>Mol Pharmacol</source>
<year>1999</year>
<volume>55</volume>
<fpage>804</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="pmid">10220558</pub-id>
</citation>
</ref>
<ref id="B67">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biaggioni</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Parkinson's Disease: Autonomic Neuronopathy With Impaired Cardiovascular Regulation</article-title>
<source>Hypertension</source>
<year>2007</year>
<volume>49</volume>
<fpage>21</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">17101846</pub-id>
</citation>
</ref>
<ref id="B68">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>PF</given-names>
</name>
</person-group>
<article-title>Inflammation in Parkinson's disease: an update</article-title>
<source>Curr Opin Investig Drugs</source>
<year>2008</year>
<volume>9</volume>
<fpage>478</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="pmid">18465657</pub-id>
</citation>
</ref>
<ref id="B69">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marchetti</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Serra</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>L'Episcopo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tirolo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Caniglia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Testa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cioni</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gennuso</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rocchitta</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Desole</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Mazzarino</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Miele</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Morale</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Hormones are key actors in gene × environment interactions programming the vulnerability to Parkinson's disease: glia as a common final pathway</article-title>
<source>Ann N Y Acad Sci</source>
<year>2005</year>
<volume>1057</volume>
<fpage>296</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">16399902</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Ahmed, Shiek Ssj" sort="Ahmed, Shiek Ssj" uniqKey="Ahmed S" first="Shiek" last="Ahmed">Shiek Ahmed</name>
</noRegion>
<name sortKey="Christlet, Hema T Thanka" sort="Christlet, Hema T Thanka" uniqKey="Christlet H" first="Hema" last="Christlet">Hema Christlet</name>
<name sortKey="Kumar, Suresh" sort="Kumar, Suresh" uniqKey="Kumar S" first="Suresh" last="Kumar">Suresh Kumar</name>
<name sortKey="Santosh, Winkins" sort="Santosh, Winkins" uniqKey="Santosh W" first="Winkins" last="Santosh">Winkins Santosh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/JankovicV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    JankovicV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:2720938
   |texte=   Metabolic profiling of Parkinson's disease: evidence of biomarker from gene expression analysis and rapid neural network detection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:19594911" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a JankovicV1 

Wicri

This area was generated with Dilib version V0.6.19.
Data generation: Wed Feb 10 22:03:07 2016. Site generation: Tue Feb 13 16:14:27 2024