Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.

Identifieur interne : 000356 ( PubMed/Curation ); précédent : 000355; suivant : 000357

Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.

Auteurs : D. Kobasa [États-Unis] ; K. Wells ; Y. Kawaoka

Source :

RBID : pubmed:11689658

Descripteurs français

English descriptors

Abstract

The 1957 human pandemic strain of influenza A virus contained an avian virus hemagglutinin (HA) and neuraminidase (NA), both of which acquired specificity for the human receptor, N-acetylneuraminic acid linked to galactose of cellular glycoconjugates via an alpha2-6 bond (NeuAcalpha2-6Gal). Although the NA retained considerable specificity for NeuAcalpha2-3Gal, its original substrate in ducks, it lost the ability to support viral growth in the duck intestine, suggesting a growth-restrictive change other than a shift in substrate specificity. To test this possibility, we generated a panel of reassortant viruses that expressed the NA genes of human H2N2 viruses isolated from 1957 to 1968 with all other genes from the avian virus A/duck/Hong Kong/278/78 (H9N2). Only the NA of A/Singapore/1/57 supported efficient viral growth in the intestines of orally inoculated ducks. The growth-supporting capacity of the NA correlated with a high level of enzymatic activity, comparable to that found to be associated with avian virus NAs. The specific activities of the A/Ann Arbor/6/60 and A/England/12/62 NAs, which showed greatly restricted abilities to support viral growth in ducks, were only 8 and 5%, respectively, of the NA specific activity for A/Singapore/1/57. Using chimeric constructs based on A/Singapore/1/57 and A/England/12/62 NAs, we localized the determinants of high specific NA activity to a region containing six amino acid substitutions in A/England/12/62: Ser331-->Arg, Asp339-->Asn, Asn367-->Ser, Ser370-->Leu, Asn400-->Ser, and Pro431-->Glu. Five of these six residues (excluding Asn400) were required and sufficient for the full specific activity of the A/Singapore/1/57 NA. Thus, in addition to a change in substrate specificity, a reduction in high specific activity may be required for the adaptation of avian virus NAs to growth in humans. This change is likely needed to maintain an optimal balance between NA activity and the lower affinity shown by human virus HAs for their cellular receptor.

DOI: 10.1128/JVI.75.23.11773-11780.2001
PubMed: 11689658

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11689658

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.</title>
<author>
<name sortKey="Kobasa, D" sort="Kobasa, D" uniqKey="Kobasa D" first="D" last="Kobasa">D. Kobasa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wells, K" sort="Wells, K" uniqKey="Wells K" first="K" last="Wells">K. Wells</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Y. Kawaoka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11689658</idno>
<idno type="pmid">11689658</idno>
<idno type="doi">10.1128/JVI.75.23.11773-11780.2001</idno>
<idno type="wicri:Area/PubMed/Corpus">000356</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000356</idno>
<idno type="wicri:Area/PubMed/Curation">000356</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.</title>
<author>
<name sortKey="Kobasa, D" sort="Kobasa, D" uniqKey="Kobasa D" first="D" last="Kobasa">D. Kobasa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wells, K" sort="Wells, K" uniqKey="Wells K" first="K" last="Wells">K. Wells</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Y. Kawaoka</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA Primers</term>
<term>Ducks</term>
<term>Influenza A virus (enzymology)</term>
<term>Influenza A virus (growth & development)</term>
<term>Influenza A virus (physiology)</term>
<term>Intestines (virology)</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Neuraminidase (chemistry)</term>
<term>Neuraminidase (genetics)</term>
<term>Neuraminidase (metabolism)</term>
<term>Reassortant Viruses (enzymology)</term>
<term>Reassortant Viruses (genetics)</term>
<term>Reassortant Viruses (growth & development)</term>
<term>Reassortant Viruses (physiology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN</term>
<term>Animaux</term>
<term>Canards</term>
<term>Intestins (virologie)</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Réplication virale</term>
<term>Sialidase ()</term>
<term>Sialidase (génétique)</term>
<term>Sialidase (métabolisme)</term>
<term>Substitution d'acide aminé</term>
<term>Séquence nucléotidique</term>
<term>Virus de la grippe A (croissance et développement)</term>
<term>Virus de la grippe A (enzymologie)</term>
<term>Virus de la grippe A (physiologie)</term>
<term>Virus recombinants (croissance et développement)</term>
<term>Virus recombinants (enzymologie)</term>
<term>Virus recombinants (génétique)</term>
<term>Virus recombinants (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Virus de la grippe A</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus de la grippe A</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Sialidase</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sialidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de la grippe A</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Ducks</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Animaux</term>
<term>Canards</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Réplication virale</term>
<term>Sialidase</term>
<term>Substitution d'acide aminé</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 1957 human pandemic strain of influenza A virus contained an avian virus hemagglutinin (HA) and neuraminidase (NA), both of which acquired specificity for the human receptor, N-acetylneuraminic acid linked to galactose of cellular glycoconjugates via an alpha2-6 bond (NeuAcalpha2-6Gal). Although the NA retained considerable specificity for NeuAcalpha2-3Gal, its original substrate in ducks, it lost the ability to support viral growth in the duck intestine, suggesting a growth-restrictive change other than a shift in substrate specificity. To test this possibility, we generated a panel of reassortant viruses that expressed the NA genes of human H2N2 viruses isolated from 1957 to 1968 with all other genes from the avian virus A/duck/Hong Kong/278/78 (H9N2). Only the NA of A/Singapore/1/57 supported efficient viral growth in the intestines of orally inoculated ducks. The growth-supporting capacity of the NA correlated with a high level of enzymatic activity, comparable to that found to be associated with avian virus NAs. The specific activities of the A/Ann Arbor/6/60 and A/England/12/62 NAs, which showed greatly restricted abilities to support viral growth in ducks, were only 8 and 5%, respectively, of the NA specific activity for A/Singapore/1/57. Using chimeric constructs based on A/Singapore/1/57 and A/England/12/62 NAs, we localized the determinants of high specific NA activity to a region containing six amino acid substitutions in A/England/12/62: Ser331-->Arg, Asp339-->Asn, Asn367-->Ser, Ser370-->Leu, Asn400-->Ser, and Pro431-->Glu. Five of these six residues (excluding Asn400) were required and sufficient for the full specific activity of the A/Singapore/1/57 NA. Thus, in addition to a change in substrate specificity, a reduction in high specific activity may be required for the adaptation of avian virus NAs to growth in humans. This change is likely needed to maintain an optimal balance between NA activity and the lower affinity shown by human virus HAs for their cellular receptor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11689658</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>75</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2001</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.</ArticleTitle>
<Pagination>
<MedlinePgn>11773-80</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The 1957 human pandemic strain of influenza A virus contained an avian virus hemagglutinin (HA) and neuraminidase (NA), both of which acquired specificity for the human receptor, N-acetylneuraminic acid linked to galactose of cellular glycoconjugates via an alpha2-6 bond (NeuAcalpha2-6Gal). Although the NA retained considerable specificity for NeuAcalpha2-3Gal, its original substrate in ducks, it lost the ability to support viral growth in the duck intestine, suggesting a growth-restrictive change other than a shift in substrate specificity. To test this possibility, we generated a panel of reassortant viruses that expressed the NA genes of human H2N2 viruses isolated from 1957 to 1968 with all other genes from the avian virus A/duck/Hong Kong/278/78 (H9N2). Only the NA of A/Singapore/1/57 supported efficient viral growth in the intestines of orally inoculated ducks. The growth-supporting capacity of the NA correlated with a high level of enzymatic activity, comparable to that found to be associated with avian virus NAs. The specific activities of the A/Ann Arbor/6/60 and A/England/12/62 NAs, which showed greatly restricted abilities to support viral growth in ducks, were only 8 and 5%, respectively, of the NA specific activity for A/Singapore/1/57. Using chimeric constructs based on A/Singapore/1/57 and A/England/12/62 NAs, we localized the determinants of high specific NA activity to a region containing six amino acid substitutions in A/England/12/62: Ser331-->Arg, Asp339-->Asn, Asn367-->Ser, Ser370-->Leu, Asn400-->Ser, and Pro431-->Glu. Five of these six residues (excluding Asn400) were required and sufficient for the full specific activity of the A/Singapore/1/57 NA. Thus, in addition to a change in substrate specificity, a reduction in high specific activity may be required for the adaptation of avian virus NAs to growth in humans. This change is likely needed to maintain an optimal balance between NA activity and the lower affinity shown by human virus HAs for their cellular receptor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kobasa</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wells</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawaoka</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA021765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA-21765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004372" MajorTopicYN="N">Ducks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11689658</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.75.23.11773-11780.2001</ArticleId>
<ArticleId IdType="pmc">PMC114763</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Jul;74(13):6015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10846083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jun;74(11):5206-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):9300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1970 Nov;42(3):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5529980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1974 Oct;61(2):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4472498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1978 Jun 1;87(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">664248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Jun;127(2):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6868370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Jul 15;128(1):260-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6880029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Sep;137(2):314-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6485252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Sep;61(9):2910-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3612957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 Nov;173(1):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2815586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1989 Jun;7(6):580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2698650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jan;180(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1984642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Sep 20;221(2):473-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1920428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1992 Nov;14(3):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1438172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Jun;194(2):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1993 Aug;29(2):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Nov 15;205(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7975212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Mar;70(3):1818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1996 Jan;40(1):40-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8787876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Sep;71(9):6706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Aug;73(8):6743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10400772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000356 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000356 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:11689658
   |texte=   Amino acids responsible for the absolute sialidase activity of the influenza A virus neuraminidase: relationship to growth in the duck intestine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:11689658" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021