Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.

Identifieur interne : 000191 ( PubMed/Curation ); précédent : 000190; suivant : 000192

A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.

Auteurs : Erin M. Sorrell [Pays-Bas] ; Haichen Song ; Lindomar Pena ; Daniel R. Perez

Source :

RBID : pubmed:20826691

Descripteurs français

English descriptors

Abstract

The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.

DOI: 10.1128/JVI.01460-10
PubMed: 20826691

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20826691

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.</title>
<author>
<name sortKey="Sorrell, Erin M" sort="Sorrell, Erin M" uniqKey="Sorrell E" first="Erin M" last="Sorrell">Erin M. Sorrell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands. esorrell@umd.edu</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Virology, Erasmus Medical Center, Rotterdam</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Song, Haichen" sort="Song, Haichen" uniqKey="Song H" first="Haichen" last="Song">Haichen Song</name>
</author>
<author>
<name sortKey="Pena, Lindomar" sort="Pena, Lindomar" uniqKey="Pena L" first="Lindomar" last="Pena">Lindomar Pena</name>
</author>
<author>
<name sortKey="Perez, Daniel R" sort="Perez, Daniel R" uniqKey="Perez D" first="Daniel R" last="Perez">Daniel R. Perez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20826691</idno>
<idno type="pmid">20826691</idno>
<idno type="doi">10.1128/JVI.01460-10</idno>
<idno type="wicri:Area/PubMed/Corpus">000191</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000191</idno>
<idno type="wicri:Area/PubMed/Curation">000191</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000191</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.</title>
<author>
<name sortKey="Sorrell, Erin M" sort="Sorrell, Erin M" uniqKey="Sorrell E" first="Erin M" last="Sorrell">Erin M. Sorrell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands. esorrell@umd.edu</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Virology, Erasmus Medical Center, Rotterdam</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Song, Haichen" sort="Song, Haichen" uniqKey="Song H" first="Haichen" last="Song">Haichen Song</name>
</author>
<author>
<name sortKey="Pena, Lindomar" sort="Pena, Lindomar" uniqKey="Pena L" first="Lindomar" last="Pena">Lindomar Pena</name>
</author>
<author>
<name sortKey="Perez, Daniel R" sort="Perez, Daniel R" uniqKey="Perez D" first="Daniel R" last="Perez">Daniel R. Perez</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chickens</term>
<term>Coturnix</term>
<term>Influenza A Virus, H2N2 Subtype (enzymology)</term>
<term>Influenza A Virus, H2N2 Subtype (genetics)</term>
<term>Influenza A Virus, H2N2 Subtype (physiology)</term>
<term>Influenza in Birds (virology)</term>
<term>Molecular Sequence Data</term>
<term>Neuraminidase (genetics)</term>
<term>Neuraminidase (metabolism)</term>
<term>Poultry Diseases (virology)</term>
<term>Quail</term>
<term>Respiratory System (virology)</term>
<term>Sequence Deletion</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Appareil respiratoire (virologie)</term>
<term>Caille</term>
<term>Coturnix</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de séquence</term>
<term>Grippe chez les oiseaux (virologie)</term>
<term>Lignée cellulaire</term>
<term>Maladies de la volaille (virologie)</term>
<term>Poulets</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (métabolisme)</term>
<term>Réplication virale</term>
<term>Sialidase (génétique)</term>
<term>Sialidase (métabolisme)</term>
<term>Sous-type H2N2 du virus de la grippe A (enzymologie)</term>
<term>Sous-type H2N2 du virus de la grippe A (génétique)</term>
<term>Sous-type H2N2 du virus de la grippe A (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Neuraminidase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Sous-type H2N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines virales</term>
<term>Sialidase</term>
<term>Sous-type H2N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neuraminidase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales</term>
<term>Sialidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Sous-type H2N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Appareil respiratoire</term>
<term>Grippe chez les oiseaux</term>
<term>Maladies de la volaille</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza in Birds</term>
<term>Poultry Diseases</term>
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chickens</term>
<term>Coturnix</term>
<term>Molecular Sequence Data</term>
<term>Quail</term>
<term>Sequence Deletion</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Caille</term>
<term>Coturnix</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de séquence</term>
<term>Lignée cellulaire</term>
<term>Poulets</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20826691</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>11</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.</ArticleTitle>
<Pagination>
<MedlinePgn>11831-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01460-10</ELocationID>
<Abstract>
<AbstractText>The events and mechanisms that lead to interspecies transmission of, and host adaptation to, influenza A virus are unknown; however, both surface and internal proteins have been implicated. Our previous report highlighted the role that Japanese quail play as an intermediate host, expanding the host range of a mallard H2N2 virus, A/mallard/Potsdam/178-4/83 (H2N2), through viral adaptation. This quail-adapted virus supported transmission in quail and increased its host range to replicate and be transmitted efficiently in chickens. Here we report that of the six amino acid changes in the quail-adapted virus, a single change in the hemagglutinin (HA) was crucial for transmission in quail, while the changes in the polymerase genes favored replication at lower temperatures than those for the wild-type mallard virus. Reverse genetic analysis indicated that all adaptive mutations were necessary for transmission in chickens, further implicating quail in extending this virus to terrestrial poultry. Adaptation of the quail-adapted virus in chickens resulted in the alteration of viral tropism from intestinal shedding to shedding and transmission via the respiratory tract. Sequence analysis indicated that this chicken-adapted virus maintained all quail-adaptive mutations, as well as an additional change in the HA and, most notably, a 27-amino-acid deletion in the stalk region of neuraminidase (NA), a genotypic marker of influenza virus adaptation to chickens. This stalk deletion was shown to be responsible for the change in virus tropism from the intestine to the respiratory tract.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sorrell</LastName>
<ForeName>Erin M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands. esorrell@umd.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Haichen</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pena</LastName>
<ForeName>Lindomar</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perez</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>CY067271</AccessionNumber>
<AccessionNumber>CY067272</AccessionNumber>
<AccessionNumber>CY067273</AccessionNumber>
<AccessionNumber>CY067274</AccessionNumber>
<AccessionNumber>DQ017486</AccessionNumber>
<AccessionNumber>DQ017487</AccessionNumber>
<AccessionNumber>DQ017488</AccessionNumber>
<AccessionNumber>DQ017489</AccessionNumber>
<AccessionNumber>DQ017490</AccessionNumber>
<AccessionNumber>DQ017491</AccessionNumber>
<AccessionNumber>DQ017492</AccessionNumber>
<AccessionNumber>DQ017493</AccessionNumber>
<AccessionNumber>DQ017494</AccessionNumber>
<AccessionNumber>DQ017495</AccessionNumber>
<AccessionNumber>DQ017496</AccessionNumber>
<AccessionNumber>DQ017497</AccessionNumber>
<AccessionNumber>DQ017498</AccessionNumber>
<AccessionNumber>DQ017499</AccessionNumber>
<AccessionNumber>DQ017500</AccessionNumber>
<AccessionNumber>DQ017501</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01AI052155</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 CI000355</GrantID>
<Acronym>CI</Acronym>
<Agency>NCPDCID CDC HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1U01CI000355</GrantID>
<Acronym>CI</Acronym>
<Agency>NCPDCID CDC HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI052155</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="C487630">NA protein, influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003370" MajorTopicYN="N">Coturnix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053121" MajorTopicYN="N">Influenza A Virus, H2N2 Subtype</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005585" MajorTopicYN="N">Influenza in Birds</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011201" MajorTopicYN="N">Poultry Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011784" MajorTopicYN="N">Quail</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012137" MajorTopicYN="N">Respiratory System</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="Y">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20826691</ArticleId>
<ArticleId IdType="pii">JVI.01460-10</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01460-10</ArticleId>
<ArticleId IdType="pmc">PMC2977859</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2007 Mar;51(1 Suppl):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7712-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2004 Aug;29(1):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Jun;75(11):5398-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9363-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 1986;15(4):647-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1999 Dec;80 ( Pt 12):3167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Sep;12(9):1353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Feb 15;267(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10662623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2002 Aug 19;20(25-26):3165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001;146(5):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 May 20;323(1):24-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 19;324(5934):1557-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Jun 18;360(25):2616-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Oct 25;263(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10544106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 May;81(Pt 5):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jan;76(2):507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Contrib Microbiol Immunol. 1987;8:20-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Oct;82(Pt 10):2475-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1978 May 1;86(1):78-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">664233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1997 Aug;176 Suppl 1:S14-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9240688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jan;87(Pt 1):171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(9):e3170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jan;5(1):e1000252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Mar;77(5):3148-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Mar;5(3):e1000350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19300497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001 Dec;146(12):2275-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11811679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Feb;73(2):1146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9882316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Mar 15;346(2):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Sep 7;293(5536):1840-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11546875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Jul 15;196(2):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2003;47(3 Suppl):1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Feb;67(2):759-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8419645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2008;62:403-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9654-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10920197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2001 Nov 5;79(1-2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11551658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Jun;194(2):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(2):940-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 May 25;310(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1982 Mar 11;296(5853):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6174870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2011 Jan 10;147(1-2):59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:20826691
   |texte=   A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:20826691" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021