Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.

Identifieur interne : 000065 ( PubMed/Curation ); précédent : 000064; suivant : 000066

Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.

Auteurs : Neha Lohia [Inde] ; Manoj Baranwal [Inde]

Source :

RBID : pubmed:26398199

Descripteurs français

English descriptors

Abstract

Cell mediated immune response plays a key role in combating viral infection and thus identification of new vaccine targets manifesting T cell mediated response may serve as an ideal approach for influenza vaccine. The present study involves the application of an immunoinformatics-based consensus approach for epitope prediction (three epitope prediction tools each for CD4+ and CD8+ T cell epitopes) and molecular docking to identify peptide sequences containing T cell epitopes using the conserved sequences from all the Matrix 1 protein sequences of H1N1 virus available until April 2015. Three peptides comprising CD4+ and CD8+ T cell epitopes were obtained, which were not exactly reported in earlier studies. Population coverage study of these multi-epitope peptides revealed that they are capable of inducing a potent immune response belonging to individuals from different populations and ethnicity distributed around the globe. Conservation study with other subtypes of influenza virus infecting humans (H2N2, H5N1, H7N9, and H3N2) revealed that these three peptides were conserved (>90%), with 100% identity in most of these strains. Hence, these peptides can impart immunity against H1N1 as well as other subtypes of influenza virus. A molecular docking study of the predicted peptides with class I and II human leukocyte antigen (HLA) molecules has shown that the majority of them have comparable binding energies to that of native peptides. Hence, these peptides from Matrix 1 protein of H1N1 appear to be promising candidates for universal vaccine design.

DOI: 10.1089/vim.2015.0060
PubMed: 26398199

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26398199

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.</title>
<author>
<name sortKey="Lohia, Neha" sort="Lohia, Neha" uniqKey="Lohia N" first="Neha" last="Lohia">Neha Lohia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Thapar University , Patiala, India .</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Thapar University , Patiala</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baranwal, Manoj" sort="Baranwal, Manoj" uniqKey="Baranwal M" first="Manoj" last="Baranwal">Manoj Baranwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Thapar University , Patiala, India .</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Thapar University , Patiala</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26398199</idno>
<idno type="pmid">26398199</idno>
<idno type="doi">10.1089/vim.2015.0060</idno>
<idno type="wicri:Area/PubMed/Corpus">000065</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000065</idno>
<idno type="wicri:Area/PubMed/Curation">000065</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.</title>
<author>
<name sortKey="Lohia, Neha" sort="Lohia, Neha" uniqKey="Lohia N" first="Neha" last="Lohia">Neha Lohia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Thapar University , Patiala, India .</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Thapar University , Patiala</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baranwal, Manoj" sort="Baranwal, Manoj" uniqKey="Baranwal M" first="Manoj" last="Baranwal">Manoj Baranwal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Thapar University , Patiala, India .</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Thapar University , Patiala</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Viral immunology</title>
<idno type="eISSN">1557-8976</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology</term>
<term>Conserved Sequence</term>
<term>Epitopes, T-Lymphocyte (immunology)</term>
<term>Histocompatibility Antigens Class I (chemistry)</term>
<term>Histocompatibility Antigens Class I (metabolism)</term>
<term>Histocompatibility Antigens Class II (chemistry)</term>
<term>Histocompatibility Antigens Class II (metabolism)</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Molecular Docking Simulation</term>
<term>Protein Binding</term>
<term>Viral Matrix Proteins (chemistry)</term>
<term>Viral Matrix Proteins (immunology)</term>
<term>Viral Matrix Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigènes d'histocompatibilité de classe I ()</term>
<term>Antigènes d'histocompatibilité de classe I (métabolisme)</term>
<term>Antigènes d'histocompatibilité de classe II ()</term>
<term>Antigènes d'histocompatibilité de classe II (métabolisme)</term>
<term>Biologie informatique</term>
<term>Déterminants antigéniques des lymphocytes T (immunologie)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Protéines de la matrice virale ()</term>
<term>Protéines de la matrice virale (immunologie)</term>
<term>Protéines de la matrice virale (métabolisme)</term>
<term>Simulation de docking moléculaire</term>
<term>Sous-type H1N1 du virus de la grippe A (immunologie)</term>
<term>Séquence conservée</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Histocompatibility Antigens Class I</term>
<term>Histocompatibility Antigens Class II</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Epitopes, T-Lymphocyte</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Histocompatibility Antigens Class I</term>
<term>Histocompatibility Antigens Class II</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Protéines de la matrice virale</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes d'histocompatibilité de classe I</term>
<term>Antigènes d'histocompatibilité de classe II</term>
<term>Protéines de la matrice virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Conserved Sequence</term>
<term>Humans</term>
<term>Molecular Docking Simulation</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Antigènes d'histocompatibilité de classe I</term>
<term>Antigènes d'histocompatibilité de classe II</term>
<term>Biologie informatique</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Protéines de la matrice virale</term>
<term>Simulation de docking moléculaire</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell mediated immune response plays a key role in combating viral infection and thus identification of new vaccine targets manifesting T cell mediated response may serve as an ideal approach for influenza vaccine. The present study involves the application of an immunoinformatics-based consensus approach for epitope prediction (three epitope prediction tools each for CD4+ and CD8+ T cell epitopes) and molecular docking to identify peptide sequences containing T cell epitopes using the conserved sequences from all the Matrix 1 protein sequences of H1N1 virus available until April 2015. Three peptides comprising CD4+ and CD8+ T cell epitopes were obtained, which were not exactly reported in earlier studies. Population coverage study of these multi-epitope peptides revealed that they are capable of inducing a potent immune response belonging to individuals from different populations and ethnicity distributed around the globe. Conservation study with other subtypes of influenza virus infecting humans (H2N2, H5N1, H7N9, and H3N2) revealed that these three peptides were conserved (>90%), with 100% identity in most of these strains. Hence, these peptides can impart immunity against H1N1 as well as other subtypes of influenza virus. A molecular docking study of the predicted peptides with class I and II human leukocyte antigen (HLA) molecules has shown that the majority of them have comparable binding energies to that of native peptides. Hence, these peptides from Matrix 1 protein of H1N1 appear to be promising candidates for universal vaccine design. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26398199</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-8976</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Viral immunology</Title>
<ISOAbbreviation>Viral Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.</ArticleTitle>
<Pagination>
<MedlinePgn>570-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/vim.2015.0060</ELocationID>
<Abstract>
<AbstractText>Cell mediated immune response plays a key role in combating viral infection and thus identification of new vaccine targets manifesting T cell mediated response may serve as an ideal approach for influenza vaccine. The present study involves the application of an immunoinformatics-based consensus approach for epitope prediction (three epitope prediction tools each for CD4+ and CD8+ T cell epitopes) and molecular docking to identify peptide sequences containing T cell epitopes using the conserved sequences from all the Matrix 1 protein sequences of H1N1 virus available until April 2015. Three peptides comprising CD4+ and CD8+ T cell epitopes were obtained, which were not exactly reported in earlier studies. Population coverage study of these multi-epitope peptides revealed that they are capable of inducing a potent immune response belonging to individuals from different populations and ethnicity distributed around the globe. Conservation study with other subtypes of influenza virus infecting humans (H2N2, H5N1, H7N9, and H3N2) revealed that these three peptides were conserved (>90%), with 100% identity in most of these strains. Hence, these peptides can impart immunity against H1N1 as well as other subtypes of influenza virus. A molecular docking study of the predicted peptides with class I and II human leukocyte antigen (HLA) molecules has shown that the majority of them have comparable binding energies to that of native peptides. Hence, these peptides from Matrix 1 protein of H1N1 appear to be promising candidates for universal vaccine design. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lohia</LastName>
<ForeName>Neha</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Thapar University , Patiala, India .</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baranwal</LastName>
<ForeName>Manoj</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Thapar University , Patiala, India .</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Viral Immunol</MedlineTA>
<NlmUniqueID>8801552</NlmUniqueID>
<ISSNLinking>0882-8245</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018984">Epitopes, T-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015395">Histocompatibility Antigens Class I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000949">Histocompatibility Antigens Class II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488936">M1 protein, Influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="Y">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018984" MajorTopicYN="N">Epitopes, T-Lymphocyte</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015395" MajorTopicYN="N">Histocompatibility Antigens Class I</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000949" MajorTopicYN="N">Histocompatibility Antigens Class II</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26398199</ArticleId>
<ArticleId IdType="doi">10.1089/vim.2015.0060</ArticleId>
<ArticleId IdType="pmc">PMC4677511</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Immunogenetics. 1999 Nov;50(3-4):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2000 May;61(5):438-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10773346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2001;24(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11485209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1236-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):1262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Jun 1;174(11):7085-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Mar 17;7:153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Jul;24(7):817-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16767078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 May;6(5):404-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17473845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007 Jul 04;8:238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17608956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007 Oct 31;8:424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Immunol. 2008 Jan 22;9:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9 Suppl 1:S18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2008 May;14(5):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2009 Apr 21;6(4):e1000049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19381279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Sep 18;10:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Apr;91(Pt 4):919-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Nov 10;28(48):7690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2011 Jul 14;11:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21752305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Immunol. 2011 Aug 08;12:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21824434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2011 Sep;5(9):e1295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 May 1;188(9):4235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2012 Aug;56(8):548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22581768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Sep 1;430(2):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e39344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2012 Sep 14;30(42):6054-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(18):10258; author reply1259-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1002998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Dec 15;189(12):5867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23169589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Jan 1;190(1):296-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23197262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2013 Mar 23;162(2-4):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23265240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2013 May 04;13:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2014 Jan;22(1):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancers (Basel). 2011 Oct 25;3(4):3991-4009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2014 Apr;172(7):3635-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24562978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2014 Mar 01;14:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 07;9(3):e91273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24609014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2014 Jun;27(5):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24821387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2014 Sep;61(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 08;9(7):e101384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25003973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Nov;111:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25173575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2014 Oct;27(8):367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 08;9(10):e109510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25295515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2015 Jun;22(6):618-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25834017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Inform. 2011 Apr 18;30(4):368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27466953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Jan 1;152(1):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 15;13(2):318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8313876</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26398199
   |texte=   Identification of Conserved Peptides Comprising Multiple T Cell Epitopes of Matrix 1 Protein in H1N1 Influenza Virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26398199" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021