Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: N-Glycan Subtypes in Host-Pathogen Interactions.

Identifieur interne : 000003 ( PubMed/Curation ); précédent : 000002; suivant : 000004

Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: N-Glycan Subtypes in Host-Pathogen Interactions.

Auteurs : Lisa M. Parsons [États-Unis] ; Yanming An [États-Unis] ; Li Qi [États-Unis] ; Mitchell R. White [États-Unis] ; Roosmarijn Van Der Woude [Pays-Bas] ; Kevan L. Hartshorn [États-Unis] ; Jeffery K. Taubenberger [États-Unis] ; Robert P. De Vries [Pays-Bas] ; John F. Cipollo

Source :

RBID : pubmed:31826991

Abstract

Seasonal influenza carrying key hemagglutinin (HA) head region glycosylation sites can be removed from the lung by pulmonary surfactant protein D (SP-D). Little is known about HA head glycosylation of low-pathogenicity avian influenza virus (LPAIV) subtypes. These can pose a pandemic threat through reassortment and emergence in human populations. Since the presence of head region high-mannose glycosites dictates SP-D activity, the ability to predict these glycosite glycan subtypes may be of value. Here, we investigate the activities of two recombinant human SP-D forms against representative LPAIV strains, including H2N1, H5N1, H6N1, H11N9, an avian H3N8, and a human seasonal H3N2 subtype. Using mass spectrometry, we determined the glycan subclasses and heterogeneities at each head glycosylation site. Sequence alignment and molecular structure analysis of the HAs were performed for LPAIV strains in comparison to seasonal H3N2 and avian H3N8. Intramolecular contacts were determined between the protein backbone and glycosite glycan based on available three-dimensional structure data. We found that glycosite "N165" (H3 numbering) is occupied by high-mannose glycans in H3 HA but by complex glycans in all LPAIV HAs. SP-D was not active on LPAIV but was on H3 HAs. Since SP-D affinity for influenza HA depends on the presence of high-mannose glycan on the head region, our data demonstrate that SP-D may not protect against virus containing these HA subtypes. Our results also demonstrate that glycan subtype can be predicted at some glycosites based on sequence comparisons and three-dimensional structural analysis.IMPORTANCE Low-pathogenicity avian influenza virus (LPAIV) subtypes can reassort with circulating human strains and pandemic viruses can emerge in human populations, as was seen in the 1957 pandemic, in which an H2 virus reassorted with the circulating H1N1 to create a novel H2N2 genotype. Lung surfactant protein D (SP-D), a key factor in first-line innate immunity defense, removes influenza type A virus (IAV) through interaction with hemagglutinin (HA) head region high-mannose glycan(s). While it is known that both H1 and H3 HAs have one or more key high-mannose glycosites in the head region, little is known about similar glycosylation of LPAIV strains H2N1, H5N1, H6N1, or H11N9, which may pose future health risks. Here, we demonstrate that the hemagglutinins of LPAIV strains do not have the required high-mannose glycans and do not interact with SP-D, and that sequence analysis can predict glycan subtype, thus predicting the presence or absence of this virulence marker.

DOI: 10.1128/JVI.01951-19
PubMed: 31826991

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31826991

Curation

No country items

John F. Cipollo
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA john.cipollo@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA john.cipollo@fda.hhs.gov.</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D:
<i>N</i>
-Glycan Subtypes in Host-Pathogen Interactions.</title>
<author>
<name sortKey="Parsons, Lisa M" sort="Parsons, Lisa M" uniqKey="Parsons L" first="Lisa M" last="Parsons">Lisa M. Parsons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="An, Yanming" sort="An, Yanming" uniqKey="An Y" first="Yanming" last="An">Yanming An</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Qi, Li" sort="Qi, Li" uniqKey="Qi L" first="Li" last="Qi">Li Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="White, Mitchell R" sort="White, Mitchell R" uniqKey="White M" first="Mitchell R" last="White">Mitchell R. White</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Der Woude, Roosmarijn" sort="Van Der Woude, Roosmarijn" uniqKey="Van Der Woude R" first="Roosmarijn" last="Van Der Woude">Roosmarijn Van Der Woude</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hartshorn, Kevan L" sort="Hartshorn, Kevan L" uniqKey="Hartshorn K" first="Kevan L" last="Hartshorn">Kevan L. Hartshorn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Taubenberger, Jeffery K" sort="Taubenberger, Jeffery K" uniqKey="Taubenberger J" first="Jeffery K" last="Taubenberger">Jeffery K. Taubenberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Robert P" sort="De Vries, Robert P" uniqKey="De Vries R" first="Robert P" last="De Vries">Robert P. De Vries</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cipollo, John F" sort="Cipollo, John F" uniqKey="Cipollo J" first="John F" last="Cipollo">John F. Cipollo</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA john.cipollo@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA john.cipollo@fda.hhs.gov.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31826991</idno>
<idno type="pmid">31826991</idno>
<idno type="doi">10.1128/JVI.01951-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000003</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000003</idno>
<idno type="wicri:Area/PubMed/Curation">000003</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D:
<i>N</i>
-Glycan Subtypes in Host-Pathogen Interactions.</title>
<author>
<name sortKey="Parsons, Lisa M" sort="Parsons, Lisa M" uniqKey="Parsons L" first="Lisa M" last="Parsons">Lisa M. Parsons</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="An, Yanming" sort="An, Yanming" uniqKey="An Y" first="Yanming" last="An">Yanming An</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Qi, Li" sort="Qi, Li" uniqKey="Qi L" first="Li" last="Qi">Li Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="White, Mitchell R" sort="White, Mitchell R" uniqKey="White M" first="Mitchell R" last="White">Mitchell R. White</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Der Woude, Roosmarijn" sort="Van Der Woude, Roosmarijn" uniqKey="Van Der Woude R" first="Roosmarijn" last="Van Der Woude">Roosmarijn Van Der Woude</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hartshorn, Kevan L" sort="Hartshorn, Kevan L" uniqKey="Hartshorn K" first="Kevan L" last="Hartshorn">Kevan L. Hartshorn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Taubenberger, Jeffery K" sort="Taubenberger, Jeffery K" uniqKey="Taubenberger J" first="Jeffery K" last="Taubenberger">Jeffery K. Taubenberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Robert P" sort="De Vries, Robert P" uniqKey="De Vries R" first="Robert P" last="De Vries">Robert P. De Vries</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cipollo, John F" sort="Cipollo, John F" uniqKey="Cipollo J" first="John F" last="Cipollo">John F. Cipollo</name>
<affiliation>
<nlm:affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA john.cipollo@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA john.cipollo@fda.hhs.gov.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Seasonal influenza carrying key hemagglutinin (HA) head region glycosylation sites can be removed from the lung by pulmonary surfactant protein D (SP-D). Little is known about HA head glycosylation of low-pathogenicity avian influenza virus (LPAIV) subtypes. These can pose a pandemic threat through reassortment and emergence in human populations. Since the presence of head region high-mannose glycosites dictates SP-D activity, the ability to predict these glycosite glycan subtypes may be of value. Here, we investigate the activities of two recombinant human SP-D forms against representative LPAIV strains, including H2N1, H5N1, H6N1, H11N9, an avian H3N8, and a human seasonal H3N2 subtype. Using mass spectrometry, we determined the glycan subclasses and heterogeneities at each head glycosylation site. Sequence alignment and molecular structure analysis of the HAs were performed for LPAIV strains in comparison to seasonal H3N2 and avian H3N8. Intramolecular contacts were determined between the protein backbone and glycosite glycan based on available three-dimensional structure data. We found that glycosite "N165" (H3 numbering) is occupied by high-mannose glycans in H3 HA but by complex glycans in all LPAIV HAs. SP-D was not active on LPAIV but was on H3 HAs. Since SP-D affinity for influenza HA depends on the presence of high-mannose glycan on the head region, our data demonstrate that SP-D may not protect against virus containing these HA subtypes. Our results also demonstrate that glycan subtype can be predicted at some glycosites based on sequence comparisons and three-dimensional structural analysis.
<b>IMPORTANCE</b>
Low-pathogenicity avian influenza virus (LPAIV) subtypes can reassort with circulating human strains and pandemic viruses can emerge in human populations, as was seen in the 1957 pandemic, in which an H2 virus reassorted with the circulating H1N1 to create a novel H2N2 genotype. Lung surfactant protein D (SP-D), a key factor in first-line innate immunity defense, removes influenza type A virus (IAV) through interaction with hemagglutinin (HA) head region high-mannose glycan(s). While it is known that both H1 and H3 HAs have one or more key high-mannose glycosites in the head region, little is known about similar glycosylation of LPAIV strains H2N1, H5N1, H6N1, or H11N9, which may pose future health risks. Here, we demonstrate that the hemagglutinins of LPAIV strains do not have the required high-mannose glycans and do not interact with SP-D, and that sequence analysis can predict glycan subtype, thus predicting the presence or absence of this virulence marker.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31826991</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D:
<i>N</i>
-Glycan Subtypes in Host-Pathogen Interactions.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01951-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01951-19</ELocationID>
<Abstract>
<AbstractText>Seasonal influenza carrying key hemagglutinin (HA) head region glycosylation sites can be removed from the lung by pulmonary surfactant protein D (SP-D). Little is known about HA head glycosylation of low-pathogenicity avian influenza virus (LPAIV) subtypes. These can pose a pandemic threat through reassortment and emergence in human populations. Since the presence of head region high-mannose glycosites dictates SP-D activity, the ability to predict these glycosite glycan subtypes may be of value. Here, we investigate the activities of two recombinant human SP-D forms against representative LPAIV strains, including H2N1, H5N1, H6N1, H11N9, an avian H3N8, and a human seasonal H3N2 subtype. Using mass spectrometry, we determined the glycan subclasses and heterogeneities at each head glycosylation site. Sequence alignment and molecular structure analysis of the HAs were performed for LPAIV strains in comparison to seasonal H3N2 and avian H3N8. Intramolecular contacts were determined between the protein backbone and glycosite glycan based on available three-dimensional structure data. We found that glycosite "N165" (H3 numbering) is occupied by high-mannose glycans in H3 HA but by complex glycans in all LPAIV HAs. SP-D was not active on LPAIV but was on H3 HAs. Since SP-D affinity for influenza HA depends on the presence of high-mannose glycan on the head region, our data demonstrate that SP-D may not protect against virus containing these HA subtypes. Our results also demonstrate that glycan subtype can be predicted at some glycosites based on sequence comparisons and three-dimensional structural analysis.
<b>IMPORTANCE</b>
Low-pathogenicity avian influenza virus (LPAIV) subtypes can reassort with circulating human strains and pandemic viruses can emerge in human populations, as was seen in the 1957 pandemic, in which an H2 virus reassorted with the circulating H1N1 to create a novel H2N2 genotype. Lung surfactant protein D (SP-D), a key factor in first-line innate immunity defense, removes influenza type A virus (IAV) through interaction with hemagglutinin (HA) head region high-mannose glycan(s). While it is known that both H1 and H3 HAs have one or more key high-mannose glycosites in the head region, little is known about similar glycosylation of LPAIV strains H2N1, H5N1, H6N1, or H11N9, which may pose future health risks. Here, we demonstrate that the hemagglutinins of LPAIV strains do not have the required high-mannose glycans and do not interact with SP-D, and that sequence analysis can predict glycan subtype, thus predicting the presence or absence of this virulence marker.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Parsons</LastName>
<ForeName>Lisa M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Yanming</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Mitchell R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Woude</LastName>
<ForeName>Roosmarijn</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartshorn</LastName>
<ForeName>Kevan L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taubenberger</LastName>
<ForeName>Jeffery K</ForeName>
<Initials>JK</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9694-7228</Identifier>
<AffiliationInfo>
<Affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Vries</LastName>
<ForeName>Robert P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cipollo</LastName>
<ForeName>John F</ForeName>
<Initials>JF</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9663-8177</Identifier>
<AffiliationInfo>
<Affiliation>Food and Drug Administration, Center for Drug Evaluation and Research, DBRRII, Silver Spring, Maryland, USA john.cipollo@fda.hhs.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL069031</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA AI000986</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">avian viruses</Keyword>
<Keyword MajorTopicYN="N">collectin</Keyword>
<Keyword MajorTopicYN="N">glycomics</Keyword>
<Keyword MajorTopicYN="N">glycosylation</Keyword>
<Keyword MajorTopicYN="N">hemagglutinin</Keyword>
<Keyword MajorTopicYN="N">mass spectrometry</Keyword>
<Keyword MajorTopicYN="N">pandemic</Keyword>
<Keyword MajorTopicYN="N">vaccine</Keyword>
<Keyword MajorTopicYN="N">virulence marker</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31826991</ArticleId>
<ArticleId IdType="pii">JVI.01951-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01951-19</ArticleId>
<ArticleId IdType="pmc">PMC7022373</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Apr;88(8):3953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Mar;82(Pt 3):623-630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11172104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Sep 27;489(7417):526-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(9):e25005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21935489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Sep;79(17):11412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2015 Mar 11;17(3):369-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2015 Sep 4;14(9):3957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26202417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1995 Feb;8(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630882</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pathog Glob Health. 2013 Jul;107(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916331</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1995 Jun 16;270(24):14725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7782337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2011 Aug 15;187(4):1884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21768397</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2007 Jul 26;25(30):5637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17126960</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8593-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2017 Feb 3;16(2):398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28060516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2009 Apr 21;48(15):3335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19249874</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Dis Poverty. 2016 Jun 08;5(1):59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27268229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2008 May 30;4(5):e1000076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516303</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Respir Res. 2008 Sep 23;9:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Crit Care Med. 2011 Mar 15;183(6):767-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935106</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 May;83(9):4205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19359528</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jun;87(12):4485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2162043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1994 Jul;94(1):311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8040272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2000 Oct 15;351 Pt 2:449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023831</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Nov;71(11):8204-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Jun;15(6):1895-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26984886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Aug 31;7(1):10232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28860626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2014 Jun 1;306(11):L1036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24705721</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22453-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Apr 10;412(2):426-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21334038</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2012 Aug 06;9:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22866955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2019 Jan 4;93(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30355697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Oct 31;278(44):43254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Sep 16;187(2):963-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1530650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2018 Jun 13;9:1368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29951070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1981 Nov 10;256(21):11191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7287762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2000 May 22;74(1-2):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Nov 25;286(47):40681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Nov;86(21):11735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2013 Aug 2;12(8):3707-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23848607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2013 Nov;57(9):1367-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1993 Jun;194(2):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Feb;89(4):2442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Nov;82(21):10854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715930</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2006 Aug;12(8):1284-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965717</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):1175-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227848</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Oct 5;443(7111):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Vaccin Immunother. 2018 Mar 4;14(3):508-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29048990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31826991
   |texte=   Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: N-Glycan Subtypes in Host-Pathogen Interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31826991" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021