Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.

Identifieur interne : 000365 ( PubMed/Corpus ); précédent : 000364; suivant : 000366

Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.

Auteurs : M. Matrosovich ; A. Tuzikov ; N. Bovin ; A. Gambaryan ; A. Klimov ; M R Castrucci ; I. Donatelli ; Y. Kawaoka

Source :

RBID : pubmed:10954551

English descriptors

Abstract

Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.

DOI: 10.1128/jvi.74.18.8502-8512.2000
PubMed: 10954551

Links to Exploration step

pubmed:10954551

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.</title>
<author>
<name sortKey="Matrosovich, M" sort="Matrosovich, M" uniqKey="Matrosovich M" first="M" last="Matrosovich">M. Matrosovich</name>
<affiliation>
<nlm:affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Russia. Mikhail.Mastrosovich@stjude.org</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuzikov, A" sort="Tuzikov, A" uniqKey="Tuzikov A" first="A" last="Tuzikov">A. Tuzikov</name>
</author>
<author>
<name sortKey="Bovin, N" sort="Bovin, N" uniqKey="Bovin N" first="N" last="Bovin">N. Bovin</name>
</author>
<author>
<name sortKey="Gambaryan, A" sort="Gambaryan, A" uniqKey="Gambaryan A" first="A" last="Gambaryan">A. Gambaryan</name>
</author>
<author>
<name sortKey="Klimov, A" sort="Klimov, A" uniqKey="Klimov A" first="A" last="Klimov">A. Klimov</name>
</author>
<author>
<name sortKey="Castrucci, M R" sort="Castrucci, M R" uniqKey="Castrucci M" first="M R" last="Castrucci">M R Castrucci</name>
</author>
<author>
<name sortKey="Donatelli, I" sort="Donatelli, I" uniqKey="Donatelli I" first="I" last="Donatelli">I. Donatelli</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Y. Kawaoka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10954551</idno>
<idno type="pmid">10954551</idno>
<idno type="doi">10.1128/jvi.74.18.8502-8512.2000</idno>
<idno type="wicri:Area/PubMed/Corpus">000365</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000365</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.</title>
<author>
<name sortKey="Matrosovich, M" sort="Matrosovich, M" uniqKey="Matrosovich M" first="M" last="Matrosovich">M. Matrosovich</name>
<affiliation>
<nlm:affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Russia. Mikhail.Mastrosovich@stjude.org</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuzikov, A" sort="Tuzikov, A" uniqKey="Tuzikov A" first="A" last="Tuzikov">A. Tuzikov</name>
</author>
<author>
<name sortKey="Bovin, N" sort="Bovin, N" uniqKey="Bovin N" first="N" last="Bovin">N. Bovin</name>
</author>
<author>
<name sortKey="Gambaryan, A" sort="Gambaryan, A" uniqKey="Gambaryan A" first="A" last="Gambaryan">A. Gambaryan</name>
</author>
<author>
<name sortKey="Klimov, A" sort="Klimov, A" uniqKey="Klimov A" first="A" last="Klimov">A. Klimov</name>
</author>
<author>
<name sortKey="Castrucci, M R" sort="Castrucci, M R" uniqKey="Castrucci M" first="M R" last="Castrucci">M R Castrucci</name>
</author>
<author>
<name sortKey="Donatelli, I" sort="Donatelli, I" uniqKey="Donatelli I" first="I" last="Donatelli">I. Donatelli</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Y. Kawaoka</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Disease Outbreaks</term>
<term>Ducks (virology)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (chemistry)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (metabolism)</term>
<term>Humans</term>
<term>Influenza A virus (isolation & purification)</term>
<term>Influenza A virus (metabolism)</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation, Missense</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>Receptors, Virus (metabolism)</term>
<term>Seals, Earless (virology)</term>
<term>Sequence Alignment</term>
<term>Sialic Acids (metabolism)</term>
<term>Species Specificity</term>
<term>Swine (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Receptors, Virus</term>
<term>Sialic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Ducks</term>
<term>Seals, Earless</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation, Missense</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>Sequence Alignment</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10954551</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>74</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2000</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.</ArticleTitle>
<Pagination>
<MedlinePgn>8502-12</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matrosovich</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, Russia. Mikhail.Mastrosovich@stjude.org</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuzikov</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bovin</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gambaryan</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Klimov</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Castrucci</LastName>
<ForeName>M R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donatelli</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawaoka</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>P30 CA021765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA-21765</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012794">Sialic Acids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004372" MajorTopicYN="N">Ducks</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046048" MajorTopicYN="N">Seals, Earless</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012794" MajorTopicYN="N">Sialic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>11</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
<ArticleId IdType="pmc">PMC116362</ArticleId>
<ArticleId IdType="doi">10.1128/jvi.74.18.8502-8512.2000</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Aug;72(8):6373-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 Nov;173(1):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2815586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Aug 1;247(2):223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Feb;73(2):1146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9882316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Jun 5;258(2):232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1959 Aug;8:539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13809995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Histochem Suppl. 1990;40:35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2091044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jun;182(2):475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2024485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Feb;66(2):1129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 1992 Sep;39(1-2):111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1430058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1993 Apr;28(1):37-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8493812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Jun;194(2):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Sep;196(1):111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8356788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 1993 Apr;10(2):142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8400823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1993 Aug;29(2):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Nov 15;205(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7975212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1995 Jan;76 ( Pt 1):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7844533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Sep;20(9):374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7482707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Oct 1;212(2):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7571425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1997 Mar;78 ( Pt 3):553-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Mar 10;404(2-3):192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9119062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 May 26;232(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9185585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 9;232(2):345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9191848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 23;233(1):224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 16;279(5349):393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Feb 1;241(1):101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9454721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1998 Feb 14;351(9101):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Jul 7-13;304(5921):76-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6191220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Sep;129(2):521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6623931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Dec;131(2):394-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6197808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1984 Aug;51(2):567-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6748165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1986 Jan 30;148(2):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3942036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1987 Jul;159(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:10954551
   |texte=   Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:10954551" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021