Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.

Identifieur interne : 000266 ( PubMed/Corpus ); précédent : 000265; suivant : 000267

Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.

Auteurs : Michelle Roti ; Junbao Yang ; Deanna Berger ; Laurie Huston ; Eddie A. James ; William W. Kwok

Source :

RBID : pubmed:18209073

English descriptors

Abstract

It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.

DOI: 10.4049/jimmunol.180.3.1758
PubMed: 18209073

Links to Exploration step

pubmed:18209073

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.</title>
<author>
<name sortKey="Roti, Michelle" sort="Roti, Michelle" uniqKey="Roti M" first="Michelle" last="Roti">Michelle Roti</name>
<affiliation>
<nlm:affiliation>Benaroya Research Institute at Virginia Mason, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Junbao" sort="Yang, Junbao" uniqKey="Yang J" first="Junbao" last="Yang">Junbao Yang</name>
</author>
<author>
<name sortKey="Berger, Deanna" sort="Berger, Deanna" uniqKey="Berger D" first="Deanna" last="Berger">Deanna Berger</name>
</author>
<author>
<name sortKey="Huston, Laurie" sort="Huston, Laurie" uniqKey="Huston L" first="Laurie" last="Huston">Laurie Huston</name>
</author>
<author>
<name sortKey="James, Eddie A" sort="James, Eddie A" uniqKey="James E" first="Eddie A" last="James">Eddie A. James</name>
</author>
<author>
<name sortKey="Kwok, William W" sort="Kwok, William W" uniqKey="Kwok W" first="William W" last="Kwok">William W. Kwok</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18209073</idno>
<idno type="pmid">18209073</idno>
<idno type="doi">10.4049/jimmunol.180.3.1758</idno>
<idno type="wicri:Area/PubMed/Corpus">000266</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000266</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.</title>
<author>
<name sortKey="Roti, Michelle" sort="Roti, Michelle" uniqKey="Roti M" first="Michelle" last="Roti">Michelle Roti</name>
<affiliation>
<nlm:affiliation>Benaroya Research Institute at Virginia Mason, University of Washington, Seattle, WA 98195, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Junbao" sort="Yang, Junbao" uniqKey="Yang J" first="Junbao" last="Yang">Junbao Yang</name>
</author>
<author>
<name sortKey="Berger, Deanna" sort="Berger, Deanna" uniqKey="Berger D" first="Deanna" last="Berger">Deanna Berger</name>
</author>
<author>
<name sortKey="Huston, Laurie" sort="Huston, Laurie" uniqKey="Huston L" first="Laurie" last="Huston">Laurie Huston</name>
</author>
<author>
<name sortKey="James, Eddie A" sort="James, Eddie A" uniqKey="James E" first="Eddie A" last="James">Eddie A. James</name>
</author>
<author>
<name sortKey="Kwok, William W" sort="Kwok, William W" uniqKey="Kwok W" first="William W" last="Kwok">William W. Kwok</name>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="ISSN">0022-1767</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>CD4-Positive T-Lymphocytes (immunology)</term>
<term>Cross Reactions</term>
<term>Epitopes, T-Lymphocyte (chemistry)</term>
<term>Epitopes, T-Lymphocyte (immunology)</term>
<term>Female</term>
<term>Hemagglutinins, Viral (chemistry)</term>
<term>Hemagglutinins, Viral (immunology)</term>
<term>Humans</term>
<term>Influenza A Virus, H5N1 Subtype (immunology)</term>
<term>Influenza, Human (immunology)</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Epitopes, T-Lymphocyte</term>
<term>Hemagglutinins, Viral</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Epitopes, T-Lymphocyte</term>
<term>Hemagglutinins, Viral</term>
<term>Influenza A Virus, H5N1 Subtype</term>
<term>Influenza, Human</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cross Reactions</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18209073</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>03</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-1767</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>180</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.</ArticleTitle>
<Pagination>
<MedlinePgn>1758-68</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roti</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Benaroya Research Institute at Virginia Mason, University of Washington, Seattle, WA 98195, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Junbao</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berger</LastName>
<ForeName>DeAnna</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huston</LastName>
<ForeName>Laurie</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Eddie A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kwok</LastName>
<ForeName>William W</ForeName>
<Initials>WW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN266200400028C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200400028C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018984">Epitopes, T-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006389">Hemagglutinins, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015496" MajorTopicYN="N">CD4-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018984" MajorTopicYN="N">Epitopes, T-Lymphocyte</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006389" MajorTopicYN="N">Hemagglutinins, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053124" MajorTopicYN="N">Influenza A Virus, H5N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18209073</ArticleId>
<ArticleId IdType="pii">180/3/1758</ArticleId>
<ArticleId IdType="pmc">PMC3373268</ArticleId>
<ArticleId IdType="mid">NIHMS382796</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.180.3.1758</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1999 Dec;104(12):R63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10606632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):2814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15709000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Jun 1;166(11):6665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):5943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(18):11788-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Sep 29;353(13):1374-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16192482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Nov 15;175(10):6334-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Jan 1;193(1):49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2006 Jan;35(1):2-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16213784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2006 Jan;129(1):156-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Jan;12(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Jan;12(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Jan;12(1):73-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wkly Epidemiol Rec. 2006 Jun 30;81(26):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16812929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2006 Jun;211:8-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Sep 1;177(5):2888-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2006 Oct;19(5):401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16940861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Feb;4(2):e59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2001 Nov;22(11):583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Sep 15;171(6):3163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 28;302(5650):1519-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Feb 15;172(4):2453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1980;58(4):585-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6969132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1982 Mar 11;296(5853):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6174870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Dec;78(12):7639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6174976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 Jun;194(2):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7684877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Feb;70(2):1288-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8551597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Jun 15;162(12):7578-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10358215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000266 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000266 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18209073
   |texte=   Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18209073" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021