Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential response of respiratory dendritic cell subsets to influenza virus infection.

Identifieur interne : 000264 ( PubMed/Corpus ); précédent : 000263; suivant : 000265

Differential response of respiratory dendritic cell subsets to influenza virus infection.

Auteurs : Xueli Hao ; Taeg S. Kim ; Thomas J. Braciale

Source :

RBID : pubmed:18353940

English descriptors

Abstract

Dendritic cells (DC) are believed to play an important role in the initiation of innate and adaptive immune responses to infection, including respiratory tract infections, where respiratory DC (RDC) perform this role. In this report, we examined the susceptibilities of isolated murine RDC to influenza virus infection in vitro and the effect of the multiplicity of infection (MOI) on costimulatory ligand upregulation and inflammatory cytokine/chemokine production after infection. We found that the efficiency of influenza virus infection of RDC increased with increasing MOIs. Furthermore, distinct subpopulations of RDC differed in their susceptibilities to influenza virus infection and in the magnitude/tempo of costimulatory ligand expression. Additional characterization of the CD11c-positive (CD11c(+)) RDC revealed that the identifiable subsets of RDC differed in susceptibility to infection, with CD11c(+) CD103(+) DC exhibiting the greatest susceptibility, CD11c(+) CD11b(hi) DC exhibiting intermediate susceptibility, and CD11c(+) B220(+) plasmacytoid DC (pDC) exhibiting the least susceptibility to infection. A companion analysis of the in vivo susceptibilities of these RDC subsets to influenza virus revealed a corresponding infection pattern. The three RDC subsets displayed different patterns of cytokine/chemokine production in response to influenza virus infection in vitro: pDC were the predominant producers of most cytokines examined, while CD103(+) DC and CD11b(hi) DC produced elevated levels of the murine chemokine CXCL1 (KC), interleukin 12p40, and RANTES in response to influenza virus infection. Our results indicate that RDC are targets of influenza virus infection and that distinct RDC subsets differ in their susceptibilities and responses to infection.

DOI: 10.1128/JVI.02367-07
PubMed: 18353940

Links to Exploration step

pubmed:18353940

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential response of respiratory dendritic cell subsets to influenza virus infection.</title>
<author>
<name sortKey="Hao, Xueli" sort="Hao, Xueli" uniqKey="Hao X" first="Xueli" last="Hao">Xueli Hao</name>
<affiliation>
<nlm:affiliation>Carter Immunology Center, UVA, P.O. Box 801386, Charlottesville, VA 22908, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Taeg S" sort="Kim, Taeg S" uniqKey="Kim T" first="Taeg S" last="Kim">Taeg S. Kim</name>
</author>
<author>
<name sortKey="Braciale, Thomas J" sort="Braciale, Thomas J" uniqKey="Braciale T" first="Thomas J" last="Braciale">Thomas J. Braciale</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18353940</idno>
<idno type="pmid">18353940</idno>
<idno type="doi">10.1128/JVI.02367-07</idno>
<idno type="wicri:Area/PubMed/Corpus">000264</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000264</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential response of respiratory dendritic cell subsets to influenza virus infection.</title>
<author>
<name sortKey="Hao, Xueli" sort="Hao, Xueli" uniqKey="Hao X" first="Xueli" last="Hao">Xueli Hao</name>
<affiliation>
<nlm:affiliation>Carter Immunology Center, UVA, P.O. Box 801386, Charlottesville, VA 22908, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Taeg S" sort="Kim, Taeg S" uniqKey="Kim T" first="Taeg S" last="Kim">Taeg S. Kim</name>
</author>
<author>
<name sortKey="Braciale, Thomas J" sort="Braciale, Thomas J" uniqKey="Braciale T" first="Thomas J" last="Braciale">Thomas J. Braciale</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antigens, CD (analysis)</term>
<term>CD11b Antigen (analysis)</term>
<term>CD11c Antigen (analysis)</term>
<term>Cytokines (biosynthesis)</term>
<term>Dendritic Cells (chemistry)</term>
<term>Dendritic Cells (immunology)</term>
<term>Female</term>
<term>Flow Cytometry</term>
<term>Influenza A Virus, H2N2 Subtype (immunology)</term>
<term>Integrin alpha Chains (analysis)</term>
<term>Leukocyte Common Antigens (analysis)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Respiratory System (immunology)</term>
<term>Respiratory System (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Antigens, CD</term>
<term>CD11b Antigen</term>
<term>CD11c Antigen</term>
<term>Integrin alpha Chains</term>
<term>Leukocyte Common Antigens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Dendritic Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Dendritic Cells</term>
<term>Influenza A Virus, H2N2 Subtype</term>
<term>Orthomyxoviridae Infections</term>
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Flow Cytometry</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dendritic cells (DC) are believed to play an important role in the initiation of innate and adaptive immune responses to infection, including respiratory tract infections, where respiratory DC (RDC) perform this role. In this report, we examined the susceptibilities of isolated murine RDC to influenza virus infection in vitro and the effect of the multiplicity of infection (MOI) on costimulatory ligand upregulation and inflammatory cytokine/chemokine production after infection. We found that the efficiency of influenza virus infection of RDC increased with increasing MOIs. Furthermore, distinct subpopulations of RDC differed in their susceptibilities to influenza virus infection and in the magnitude/tempo of costimulatory ligand expression. Additional characterization of the CD11c-positive (CD11c(+)) RDC revealed that the identifiable subsets of RDC differed in susceptibility to infection, with CD11c(+) CD103(+) DC exhibiting the greatest susceptibility, CD11c(+) CD11b(hi) DC exhibiting intermediate susceptibility, and CD11c(+) B220(+) plasmacytoid DC (pDC) exhibiting the least susceptibility to infection. A companion analysis of the in vivo susceptibilities of these RDC subsets to influenza virus revealed a corresponding infection pattern. The three RDC subsets displayed different patterns of cytokine/chemokine production in response to influenza virus infection in vitro: pDC were the predominant producers of most cytokines examined, while CD103(+) DC and CD11b(hi) DC produced elevated levels of the murine chemokine CXCL1 (KC), interleukin 12p40, and RANTES in response to influenza virus infection. Our results indicate that RDC are targets of influenza virus infection and that distinct RDC subsets differ in their susceptibilities and responses to infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18353940</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>05</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential response of respiratory dendritic cell subsets to influenza virus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>4908-19</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02367-07</ELocationID>
<Abstract>
<AbstractText>Dendritic cells (DC) are believed to play an important role in the initiation of innate and adaptive immune responses to infection, including respiratory tract infections, where respiratory DC (RDC) perform this role. In this report, we examined the susceptibilities of isolated murine RDC to influenza virus infection in vitro and the effect of the multiplicity of infection (MOI) on costimulatory ligand upregulation and inflammatory cytokine/chemokine production after infection. We found that the efficiency of influenza virus infection of RDC increased with increasing MOIs. Furthermore, distinct subpopulations of RDC differed in their susceptibilities to influenza virus infection and in the magnitude/tempo of costimulatory ligand expression. Additional characterization of the CD11c-positive (CD11c(+)) RDC revealed that the identifiable subsets of RDC differed in susceptibility to infection, with CD11c(+) CD103(+) DC exhibiting the greatest susceptibility, CD11c(+) CD11b(hi) DC exhibiting intermediate susceptibility, and CD11c(+) B220(+) plasmacytoid DC (pDC) exhibiting the least susceptibility to infection. A companion analysis of the in vivo susceptibilities of these RDC subsets to influenza virus revealed a corresponding infection pattern. The three RDC subsets displayed different patterns of cytokine/chemokine production in response to influenza virus infection in vitro: pDC were the predominant producers of most cytokines examined, while CD103(+) DC and CD11b(hi) DC produced elevated levels of the murine chemokine CXCL1 (KC), interleukin 12p40, and RANTES in response to influenza virus infection. Our results indicate that RDC are targets of influenza virus infection and that distinct RDC subsets differ in their susceptibilities and responses to infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Xueli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Carter Immunology Center, UVA, P.O. Box 801386, Charlottesville, VA 22908, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Taeg S</ForeName>
<Initials>TS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Braciale</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI-37293</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI037293</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-15608</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 AI015608</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL-33391</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL033391</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI015608</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-57168</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 AI057168</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL033391-27</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>03</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015703">Antigens, CD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039481">CD11b Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039521">CD11c Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039001">Integrin alpha Chains</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C091367">alpha E integrins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="D017493">Leukocyte Common Antigens</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015703" MajorTopicYN="N">Antigens, CD</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039481" MajorTopicYN="N">CD11b Antigen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039521" MajorTopicYN="N">CD11c Antigen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003713" MajorTopicYN="N">Dendritic Cells</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053121" MajorTopicYN="N">Influenza A Virus, H2N2 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039001" MajorTopicYN="N">Integrin alpha Chains</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017493" MajorTopicYN="N">Leukocyte Common Antigens</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012137" MajorTopicYN="N">Respiratory System</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18353940</ArticleId>
<ArticleId IdType="pii">JVI.02367-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02367-07</ArticleId>
<ArticleId IdType="pmc">PMC2346724</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Jun;74(12):5460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2007 Oct 31;327(1-2):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17716680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2001 Jan 1;193(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 May 1;166(9):5448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11313382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2001;2(4):245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11686890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2001 Oct;18(4):692-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11716176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2001 Dec;2(12):1144-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2002;20:621-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2002 Mar;2(3):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11913066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Jul;70(7):3874-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Jul 1;169(1):108-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2003 Feb;18(2):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Apr 7;197(7):885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 May 5;197(9):1141-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Apr 1;172(7):4077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8670-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2004 Jul 5;200(1):89-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Oct 15;173(8):4875-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1986 Feb 1;163(2):436-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3511172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1989 Apr 1;169(4):1255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2784483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Allergy. 1989 Nov;19(6):597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2688847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1991 Jun 1;173(6):1345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1992 Aug 1;176(2):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1386874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Jul 1;153(1):256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8207240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Oct;69(10):6359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7666537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Mar 5;392(6671):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9510252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Mar 19;392(6673):245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 1998 Mar;198(5):552-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9561373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1999 Mar 1;189(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 1999 Jul;6(7):1258-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Dec;5(12):1219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2005 Aug;17(4):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Aug 1;175(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2005 Dec;23(6):649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Feb 15;176(4):2161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2006 Apr 1;107(7):2613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Allergy Asthma Immunol. 2006 May;96(5):643-51; quiz 652-3, 678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16729776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Feb 1;178(3):1882-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Jun 1;178(11):6861-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2000;18:767-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000264 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000264 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18353940
   |texte=   Differential response of respiratory dendritic cell subsets to influenza virus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18353940" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021