Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.

Identifieur interne : 000233 ( PubMed/Corpus ); précédent : 000232; suivant : 000234

Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.

Auteurs : Jennifer Uhlendorff ; Tatyana Matrosovich ; Hans-Dieter Klenk ; Mikhail Matrosovich

Source :

RBID : pubmed:19458903

English descriptors

Abstract

Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses.

DOI: 10.1007/s00705-009-0393-x
PubMed: 19458903

Links to Exploration step

pubmed:19458903

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.</title>
<author>
<name sortKey="Uhlendorff, Jennifer" sort="Uhlendorff, Jennifer" uniqKey="Uhlendorff J" first="Jennifer" last="Uhlendorff">Jennifer Uhlendorff</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Hans-Meerwein-Str.2, 35043, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matrosovich, Tatyana" sort="Matrosovich, Tatyana" uniqKey="Matrosovich T" first="Tatyana" last="Matrosovich">Tatyana Matrosovich</name>
</author>
<author>
<name sortKey="Klenk, Hans Dieter" sort="Klenk, Hans Dieter" uniqKey="Klenk H" first="Hans-Dieter" last="Klenk">Hans-Dieter Klenk</name>
</author>
<author>
<name sortKey="Matrosovich, Mikhail" sort="Matrosovich, Mikhail" uniqKey="Matrosovich M" first="Mikhail" last="Matrosovich">Mikhail Matrosovich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19458903</idno>
<idno type="pmid">19458903</idno>
<idno type="doi">10.1007/s00705-009-0393-x</idno>
<idno type="wicri:Area/PubMed/Corpus">000233</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.</title>
<author>
<name sortKey="Uhlendorff, Jennifer" sort="Uhlendorff, Jennifer" uniqKey="Uhlendorff J" first="Jennifer" last="Uhlendorff">Jennifer Uhlendorff</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Hans-Meerwein-Str.2, 35043, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matrosovich, Tatyana" sort="Matrosovich, Tatyana" uniqKey="Matrosovich T" first="Tatyana" last="Matrosovich">Tatyana Matrosovich</name>
</author>
<author>
<name sortKey="Klenk, Hans Dieter" sort="Klenk, Hans Dieter" uniqKey="Klenk H" first="Hans-Dieter" last="Klenk">Hans-Dieter Klenk</name>
</author>
<author>
<name sortKey="Matrosovich, Mikhail" sort="Matrosovich, Mikhail" uniqKey="Matrosovich M" first="Mikhail" last="Matrosovich">Mikhail Matrosovich</name>
</author>
</analytic>
<series>
<title level="j">Archives of virology</title>
<idno type="eISSN">1432-8798</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (genetics)</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Disease Outbreaks</term>
<term>Dogs</term>
<term>Hemadsorption</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (genetics)</term>
<term>Influenza A Virus, H2N2 Subtype (genetics)</term>
<term>Influenza A Virus, H2N2 Subtype (pathogenicity)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (virology)</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation, Missense</term>
<term>Neuraminidase (genetics)</term>
<term>Neuraminidase (metabolism)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Neuraminidase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neuraminidase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Disease Outbreaks</term>
<term>Dogs</term>
<term>Hemadsorption</term>
<term>Humans</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation, Missense</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19458903</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-8798</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>Archives of virology</Title>
<ISOAbbreviation>Arch. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.</ArticleTitle>
<Pagination>
<MedlinePgn>945-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00705-009-0393-x</ELocationID>
<Abstract>
<AbstractText>Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uhlendorff</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Philipps University, Hans-Meerwein-Str.2, 35043, Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matrosovich</LastName>
<ForeName>Tatyana</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Klenk</LastName>
<ForeName>Hans-Dieter</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matrosovich</LastName>
<ForeName>Mikhail</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Arch Virol</MedlineTA>
<NlmUniqueID>7506870</NlmUniqueID>
<ISSNLinking>0304-8608</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006382" MajorTopicYN="Y">Hemadsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053121" MajorTopicYN="N">Influenza A Virus, H2N2 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="N">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19458903</ArticleId>
<ArticleId IdType="doi">10.1007/s00705-009-0393-x</ArticleId>
<ArticleId IdType="pmc">PMC2691527</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Mar 15;281(2):156-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Dec;75(23):11773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001 Dec;146(12):2275-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11811679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2002 May-Jun;12(3):159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11987141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 May 10;309(2):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12758169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Jun 18;125(24):7154-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12797770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3733-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 24;279(39):40819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1974 Oct;61(2):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4472498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1976 Dec 1;159(3):457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1008810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 May 5-11;303(5912):35-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6843658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Sep;137(2):314-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6485252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;138:162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3600320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Sep;61(9):2910-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3612957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1987;2(2):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1989;6(4):341-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2482974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jan;180(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1984642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Aug;183(2):496-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1853557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Jan;11(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1740114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Aug 1;211(1):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7645221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Jan;14(1):104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Sep;71(9):6706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 1998 May;15(5):431-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Feb;73(2):1146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9882316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Aug;73(8):6743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10400772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1959 Aug;234(8):1971-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13672998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(23):13351-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2004 Dec;29(3):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(17):11533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 6;437(7060):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16208372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Nov;61(Pt 11):1483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 2006 Feb;23(1-2):115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16575529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(18):9009-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16940513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Sep 7;443(7107):45-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 2;315(5812):655-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Apr;20(2):243-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17157891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 May 10;361(2):384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2008 Jan;41(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 27;105(21):7558-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Aug;89(Pt 8):1805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000233 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000233 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19458903
   |texte=   Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19458903" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021