Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.

Identifieur interne : 000208 ( PubMed/Corpus ); précédent : 000207; suivant : 000209

Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.

Auteurs : Alicia Sol Rzano ; Jianqiang Ye ; Daniel R. Pérez

Source :

RBID : pubmed:20181702

English descriptors

Abstract

Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.

DOI: 10.1128/JVI.00101-10
PubMed: 20181702

Links to Exploration step

pubmed:20181702

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.</title>
<author>
<name sortKey="Sol Rzano, Alicia" sort="Sol Rzano, Alicia" uniqKey="Sol Rzano A" first="Alicia" last="Sol Rzano">Alicia Sol Rzano</name>
<affiliation>
<nlm:affiliation>Virginia-Maryland Regional College of Veterinary Medicine and Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA. asolor@umd.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Jianqiang" sort="Ye, Jianqiang" uniqKey="Ye J" first="Jianqiang" last="Ye">Jianqiang Ye</name>
</author>
<author>
<name sortKey="Perez, Daniel R" sort="Perez, Daniel R" uniqKey="Perez D" first="Daniel R" last="Pérez">Daniel R. Pérez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20181702</idno>
<idno type="pmid">20181702</idno>
<idno type="doi">10.1128/JVI.00101-10</idno>
<idno type="wicri:Area/PubMed/Corpus">000208</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000208</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.</title>
<author>
<name sortKey="Sol Rzano, Alicia" sort="Sol Rzano, Alicia" uniqKey="Sol Rzano A" first="Alicia" last="Sol Rzano">Alicia Sol Rzano</name>
<affiliation>
<nlm:affiliation>Virginia-Maryland Regional College of Veterinary Medicine and Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA. asolor@umd.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Jianqiang" sort="Ye, Jianqiang" uniqKey="Ye J" first="Jianqiang" last="Ye">Jianqiang Ye</name>
</author>
<author>
<name sortKey="Perez, Daniel R" sort="Perez, Daniel R" uniqKey="Perez D" first="Daniel R" last="Pérez">Daniel R. Pérez</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Female</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Influenza A Virus, H3N2 Subtype (genetics)</term>
<term>Influenza A Virus, H3N2 Subtype (immunology)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Lethal Dose 50</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred DBA</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (pathology)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>RNA Replicase (genetics)</term>
<term>Vaccines, Attenuated (immunology)</term>
<term>Viral Plaque Assay</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>RNA Replicase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Influenza Vaccines</term>
<term>Orthomyxoviridae Infections</term>
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Female</term>
<term>Humans</term>
<term>Lethal Dose 50</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mice, Inbred DBA</term>
<term>Viral Plaque Assay</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20181702</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.</ArticleTitle>
<Pagination>
<MedlinePgn>4587-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00101-10</ELocationID>
<Abstract>
<AbstractText>Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Solórzano</LastName>
<ForeName>Alicia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Virginia-Maryland Regional College of Veterinary Medicine and Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA. asolor@umd.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Jianqiang</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pérez</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C057027">PB2 protein, Influenzavirus A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C077346">influenza virus polymerase basic protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007928" MajorTopicYN="N">Lethal Dose 50</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008811" MajorTopicYN="N">Mice, Inbred DBA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010948" MajorTopicYN="N">Viral Plaque Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20181702</ArticleId>
<ArticleId IdType="pii">JVI.00101-10</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00101-10</ArticleId>
<ArticleId IdType="pmc">PMC2863734</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Med. 2000;51:407-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10774473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2009 Aug;56(6-7):326-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19486316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2001 Dec;146(12):2275-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11811679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Feb 1;306(1):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2003;47(3 Suppl):1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):995-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1966 Aug;97(2):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5921310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1966 Sep 1;124(3):331-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5922742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1966 Sep 1;124(3):347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5926092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Jul 27;274(5669):334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">672956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Immunol Microbiol Infect Dis. 1980;3(1-2):105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6258844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 May;61(5):1670-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3033294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(12):7535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(10):5092-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 May;12(5):787-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Feb;6(2):672-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Philos Soc. 2006 Mar;150(1):86-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Vet Res. 2007 Jul;71(3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17695596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(17):9238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2008 Jan 25;126(4):310-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17719188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1963 May 14;71:377-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Nov;89(Pt 11):2682-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Oct 25;380(2):304-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2008;72:127-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e4857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(9):4287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19224986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 18;459(7249):931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Sep 1;183(5):3294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(20):10417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Dec 15;200(12):1874-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19909080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801978</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20181702
   |texte=   Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20181702" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021