Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.

Identifieur interne : 000165 ( PubMed/Corpus ); précédent : 000164; suivant : 000166

Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.

Auteurs : Huaxing Wu ; Beili Li ; Xue Wang ; Mingyuan Jin ; Guonian Wang

Source :

RBID : pubmed:21814161

English descriptors

Abstract

In the present study, the anti-influenza A (H2N2) virus activity of patchouli alcohol was studied in vitro, in vivo and in silico. The CC₅₀ of patchouli alcohol was above 20 µM. Patchouli alcohol could inhibit influenza virus with an IC₅₀ of 4.03 ± 0.23 µM. MTT assay showed that the inhibition by patchouli alcohol appears strongly after penetration of the virus into the cell. In the influenza mouse model, patchouli alcohol showed obvious protection against the viral infection at a dose of 5 mg/kg/day. Flexible docking and molecular dynamic simulations indicated that patchouli alcohol was bound to the neuraminidase protein of influenza virus, with an interaction energy of -40.38 kcal mol⁻¹. The invariant key active-site residues Asp151, Arg152, Glu119, Glu276 and Tyr406 played important roles during the binding process. Based on spatial and energetic criteria, patchouli alcohol interfered with the NA functions. Results presented here suggest that patchouli alcohol possesses anti-influenza A (H2N2) virus properties, and therefore is a potential source of anti-influenza agents for the pharmaceutical industry.

DOI: 10.3390/molecules16086489
PubMed: 21814161

Links to Exploration step

pubmed:21814161

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.</title>
<author>
<name sortKey="Wu, Huaxing" sort="Wu, Huaxing" uniqKey="Wu H" first="Huaxing" last="Wu">Huaxing Wu</name>
<affiliation>
<nlm:affiliation>Department of Endoscopy, the Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Beili" sort="Li, Beili" uniqKey="Li B" first="Beili" last="Li">Beili Li</name>
</author>
<author>
<name sortKey="Wang, Xue" sort="Wang, Xue" uniqKey="Wang X" first="Xue" last="Wang">Xue Wang</name>
</author>
<author>
<name sortKey="Jin, Mingyuan" sort="Jin, Mingyuan" uniqKey="Jin M" first="Mingyuan" last="Jin">Mingyuan Jin</name>
</author>
<author>
<name sortKey="Wang, Guonian" sort="Wang, Guonian" uniqKey="Wang G" first="Guonian" last="Wang">Guonian Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21814161</idno>
<idno type="pmid">21814161</idno>
<idno type="doi">10.3390/molecules16086489</idno>
<idno type="wicri:Area/PubMed/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.</title>
<author>
<name sortKey="Wu, Huaxing" sort="Wu, Huaxing" uniqKey="Wu H" first="Huaxing" last="Wu">Huaxing Wu</name>
<affiliation>
<nlm:affiliation>Department of Endoscopy, the Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Beili" sort="Li, Beili" uniqKey="Li B" first="Beili" last="Li">Beili Li</name>
</author>
<author>
<name sortKey="Wang, Xue" sort="Wang, Xue" uniqKey="Wang X" first="Xue" last="Wang">Xue Wang</name>
</author>
<author>
<name sortKey="Jin, Mingyuan" sort="Jin, Mingyuan" uniqKey="Jin M" first="Mingyuan" last="Jin">Mingyuan Jin</name>
</author>
<author>
<name sortKey="Wang, Guonian" sort="Wang, Guonian" uniqKey="Wang G" first="Guonian" last="Wang">Guonian Wang</name>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Administration, Oral</term>
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Cell Survival (drug effects)</term>
<term>Dogs</term>
<term>Influenza A Virus, H2N2 Subtype (drug effects)</term>
<term>Influenza A Virus, H2N2 Subtype (growth & development)</term>
<term>Inhibitory Concentration 50</term>
<term>Mice</term>
<term>Mice, Inbred Strains</term>
<term>Molecular Dynamics Simulation</term>
<term>Neuraminidase (antagonists & inhibitors)</term>
<term>Neuraminidase (chemistry)</term>
<term>Neuraminidase (metabolism)</term>
<term>Orthomyxoviridae Infections (drug therapy)</term>
<term>Orthomyxoviridae Infections (mortality)</term>
<term>Orthomyxoviridae Infections (pathology)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>Oseltamivir (pharmacology)</term>
<term>Protein Binding</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Structure, Secondary</term>
<term>Sesquiterpenes (pharmacology)</term>
<term>Sesquiterpenes (therapeutic use)</term>
<term>Survival Rate</term>
<term>Thermodynamics</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Oseltamivir</term>
<term>Sesquiterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Sesquiterpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
<term>Influenza A Virus, H2N2 Subtype</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Administration, Oral</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Dogs</term>
<term>Inhibitory Concentration 50</term>
<term>Mice</term>
<term>Mice, Inbred Strains</term>
<term>Molecular Dynamics Simulation</term>
<term>Protein Binding</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Structure, Secondary</term>
<term>Survival Rate</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the present study, the anti-influenza A (H2N2) virus activity of patchouli alcohol was studied in vitro, in vivo and in silico. The CC₅₀ of patchouli alcohol was above 20 µM. Patchouli alcohol could inhibit influenza virus with an IC₅₀ of 4.03 ± 0.23 µM. MTT assay showed that the inhibition by patchouli alcohol appears strongly after penetration of the virus into the cell. In the influenza mouse model, patchouli alcohol showed obvious protection against the viral infection at a dose of 5 mg/kg/day. Flexible docking and molecular dynamic simulations indicated that patchouli alcohol was bound to the neuraminidase protein of influenza virus, with an interaction energy of -40.38 kcal mol⁻¹. The invariant key active-site residues Asp151, Arg152, Glu119, Glu276 and Tyr406 played important roles during the binding process. Based on spatial and energetic criteria, patchouli alcohol interfered with the NA functions. Results presented here suggest that patchouli alcohol possesses anti-influenza A (H2N2) virus properties, and therefore is a potential source of anti-influenza agents for the pharmaceutical industry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21814161</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.</ArticleTitle>
<Pagination>
<MedlinePgn>6489-501</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules16086489</ELocationID>
<Abstract>
<AbstractText>In the present study, the anti-influenza A (H2N2) virus activity of patchouli alcohol was studied in vitro, in vivo and in silico. The CC₅₀ of patchouli alcohol was above 20 µM. Patchouli alcohol could inhibit influenza virus with an IC₅₀ of 4.03 ± 0.23 µM. MTT assay showed that the inhibition by patchouli alcohol appears strongly after penetration of the virus into the cell. In the influenza mouse model, patchouli alcohol showed obvious protection against the viral infection at a dose of 5 mg/kg/day. Flexible docking and molecular dynamic simulations indicated that patchouli alcohol was bound to the neuraminidase protein of influenza virus, with an interaction energy of -40.38 kcal mol⁻¹. The invariant key active-site residues Asp151, Arg152, Glu119, Glu276 and Tyr406 played important roles during the binding process. Based on spatial and energetic criteria, patchouli alcohol interfered with the NA functions. Results presented here suggest that patchouli alcohol possesses anti-influenza A (H2N2) virus properties, and therefore is a potential source of anti-influenza agents for the pharmaceutical industry.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Huaxing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Endoscopy, the Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Beili</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xue</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Mingyuan</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Guonian</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012717">Sesquiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20O93L6F9H</RegistryNumber>
<NameOfSubstance UI="D053139">Oseltamivir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>HHH8CPR1M2</RegistryNumber>
<NameOfSubstance UI="C052983">patchouli alcohol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000284" MajorTopicYN="N">Administration, Oral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053121" MajorTopicYN="N">Influenza A Virus, H2N2 Subtype</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020128" MajorTopicYN="N">Inhibitory Concentration 50</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008815" MajorTopicYN="N">Mice, Inbred Strains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053139" MajorTopicYN="N">Oseltamivir</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012717" MajorTopicYN="N">Sesquiterpenes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015996" MajorTopicYN="N">Survival Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21814161</ArticleId>
<ArticleId IdType="pii">molecules16086489</ArticleId>
<ArticleId IdType="doi">10.3390/molecules16086489</ArticleId>
<ArticleId IdType="pmc">PMC6264369</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Jun 15;6(6):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2004 Feb;5(2):119-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15011946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 1999 Nov;7(11):2487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10632058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 May 5-11;303(5912):41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6188957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2008 Apr 1;16(7):3839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Mar 14;34(10):3144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7880809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Apr;13(4):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Sep 29;353(13):1363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16192481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Sep 9;53(17):6421-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20695427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2010 Dec;28(3):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20919748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Jan 28;42(3):718-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12534284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2000;51:407-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10774473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2005 Oct;24(2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(17):4816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 Jul;103(1-2):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Med. 2012 Jan;66(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21671149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2009 Nov 21;11(43):10035-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19865756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Feb 1;92(3):798-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Mar 20;323(5921):1560-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2003 Jul 3;11(13):2739-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1997 Jan 29;119(4):681-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16526129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2007 Jun;28(6):280-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17481739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2003 Dec 18;46(26):5628-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2000 Mar 4;355(9206):827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10711940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2010;11(12):4932-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21614183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jun 3;363(6428):418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8502295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Aug 28-Sep 3;364(9436):759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Dec;13(12):1859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2010 Dec 7;267(3):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 Oct;3(10):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7849585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 1985 Sep;33(9):3881-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4092287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 Dec;6(12):967-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18049471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21814161
   |texte=   Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21814161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021