Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.

Identifieur interne : 000095 ( PubMed/Corpus ); précédent : 000094; suivant : 000096

The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.

Auteurs : Christopher D. O'Donnell ; Leatrice Vogel ; Yumiko Matsuoka ; Hong Jin ; Kanta Subbarao

Source :

RBID : pubmed:25122789

English descriptors

Abstract

The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults.

DOI: 10.1128/JVI.01107-14
PubMed: 25122789

Links to Exploration step

pubmed:25122789

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.</title>
<author>
<name sortKey="O Donnell, Christopher D" sort="O Donnell, Christopher D" uniqKey="O Donnell C" first="Christopher D" last="O'Donnell">Christopher D. O'Donnell</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Leatrice" sort="Vogel, Leatrice" uniqKey="Vogel L" first="Leatrice" last="Vogel">Leatrice Vogel</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsuoka, Yumiko" sort="Matsuoka, Yumiko" uniqKey="Matsuoka Y" first="Yumiko" last="Matsuoka">Yumiko Matsuoka</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Hong" sort="Jin, Hong" uniqKey="Jin H" first="Hong" last="Jin">Hong Jin</name>
<affiliation>
<nlm:affiliation>MedImmune LLC, Mountain View, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Subbarao, Kanta" sort="Subbarao, Kanta" uniqKey="Subbarao K" first="Kanta" last="Subbarao">Kanta Subbarao</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA ksubbarao@niaid.nih.gov.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25122789</idno>
<idno type="pmid">25122789</idno>
<idno type="doi">10.1128/JVI.01107-14</idno>
<idno type="wicri:Area/PubMed/Corpus">000095</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000095</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.</title>
<author>
<name sortKey="O Donnell, Christopher D" sort="O Donnell, Christopher D" uniqKey="O Donnell C" first="Christopher D" last="O'Donnell">Christopher D. O'Donnell</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Leatrice" sort="Vogel, Leatrice" uniqKey="Vogel L" first="Leatrice" last="Vogel">Leatrice Vogel</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsuoka, Yumiko" sort="Matsuoka, Yumiko" uniqKey="Matsuoka Y" first="Yumiko" last="Matsuoka">Yumiko Matsuoka</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Hong" sort="Jin, Hong" uniqKey="Jin H" first="Hong" last="Jin">Hong Jin</name>
<affiliation>
<nlm:affiliation>MedImmune LLC, Mountain View, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Subbarao, Kanta" sort="Subbarao, Kanta" uniqKey="Subbarao K" first="Kanta" last="Subbarao">Kanta Subbarao</name>
<affiliation>
<nlm:affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA ksubbarao@niaid.nih.gov.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Drug Stability</term>
<term>Hemagglutinins (chemistry)</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Influenza A Virus, H1N1 Subtype (chemistry)</term>
<term>Influenza A Virus, H1N1 Subtype (genetics)</term>
<term>Influenza A Virus, H1N1 Subtype (physiology)</term>
<term>Influenza Vaccines (chemistry)</term>
<term>Influenza Vaccines (genetics)</term>
<term>Protein Stability (drug effects)</term>
<term>Protein Stability (radiation effects)</term>
<term>Reassortant Viruses (chemistry)</term>
<term>Reassortant Viruses (genetics)</term>
<term>Reassortant Viruses (physiology)</term>
<term>Temperature</term>
<term>Vaccines, Attenuated (chemistry)</term>
<term>Vaccines, Attenuated (genetics)</term>
<term>Viral Matrix Proteins (genetics)</term>
<term>Virus Replication (drug effects)</term>
<term>Virus Replication (radiation effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hemagglutinins</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Protein Stability</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza Vaccines</term>
<term>Reassortant Viruses</term>
<term>Vaccines, Attenuated</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Protein Stability</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Stability</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25122789</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.</ArticleTitle>
<Pagination>
<MedlinePgn>12374-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01107-14</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We investigated the HA stability of pandemic live attenuated influenza vaccine (pLAIV) viruses and observed that the pLAIV viruses consistently had a less stable HA than the corresponding wild-type influenza viruses. The reduced HA stability and temperature sensitivity of the pLAIV viruses may account for their restricted replication in clinical trials.</AbstractText>
<CopyrightInformation>Copyright © 2014, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Donnell</LastName>
<ForeName>Christopher D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vogel</LastName>
<ForeName>Leatrice</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsuoka</LastName>
<ForeName>Yumiko</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>MedImmune LLC, Mountain View, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subbarao</LastName>
<ForeName>Kanta</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA ksubbarao@niaid.nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K04 AI000155</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>Z01 AI000155</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006388">Hemagglutinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488936">M1 protein, Influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004355" MajorTopicYN="N">Drug Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006388" MajorTopicYN="N">Hemagglutinins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25122789</ArticleId>
<ArticleId IdType="pii">JVI.01107-14</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01107-14</ArticleId>
<ArticleId IdType="pmc">PMC4248896</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2013 Feb;9(2):e1003151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23459660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1986 Dec;67 ( Pt 12):2813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3794667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2002;15(2):295-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12081014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1982 Jul;43(1):284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7109028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Mol Med. 2005 Dec;5(8):791-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16375713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1986 Feb;57(2):603-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2008;153(10):1977-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18825482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2008 Nov;2(6):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2013 Jan;7(1):66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22417012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 Mar 1;199(5):711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 1999 Oct-Dec;9(4):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10578119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2002 Apr;282(4):C736-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7695-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2004;1(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2006;211(3):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17091214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1763066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(10):e1003657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24130481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2002 Aug 19;20(25-26):3165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2003 Jun 6;52(22):516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jul 7;233(2):402-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9217063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jan;10(1):e1003831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Feb;86(3):1405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22090129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jan 20;370(2):403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17936324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 May;93(Pt 5):970-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22258863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Sep;87(17):9911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2001 Sep;77(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11451488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2011 Apr 12;29(17):3144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21377509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2011 Jan;24(1):210-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21233513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Feb 1;306(1):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2011 Aug 26;60(33):1128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2007 Mar;51(1 Suppl):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):995-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Jan;86(Pt 1):181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Oct;70(10):6653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8794300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Mar 15;24(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Jan;12(1):66-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Aug 6;27(36):4953-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(22):11950-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Apr;83(8):3568-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2010;10:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(3):1527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Dec;191(2):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1448912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jan;87(Pt 1):171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Dec;10(12):2196-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15663860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Nov;69(11):6643-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7474073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1984 Aug;51(2):497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6431119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Dec;167(2):554-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2974219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11599-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Mol Med. 2001 Aug 06;3(21):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Dec 20;395(2):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 May;188(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1566569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(9):4826-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23449784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1999 Sep 11;354(9182):916-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10489954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1988 Jun;64(6):2653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3042736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Aug 15;378(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 16;279(5349):393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1985 Sep;3(3 Suppl):215-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4060851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2002 May 15;20 Suppl 2:S66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Apr;88(Pt 4):1266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1968 Aug 10;219(5154):645-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5665725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2000 Apr 5;198(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10767563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(4):1781-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 21;486(7403):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2003 Oct 1;21(27-30):4430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14505926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Jun 8;27(28):3744-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Feb;40(2):431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3967299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000095 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000095 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25122789
   |texte=   The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25122789" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021