Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.

Identifieur interne : 000008 ( PubMed/Corpus ); précédent : 000007; suivant : 000009

The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.

Auteurs : Wenjuan Du ; Hongbo Guo ; Vera S. Nijman ; Jennifer Doedt ; Erhard Van Der Vries ; Joline Van Der Lee ; Zeshi Li ; Geert-Jan Boons ; Frank J M. Van Kuppeveld ; Erik De Vries ; Mikhail Matrosovich ; Cornelis A M. De Haan

Source :

RBID : pubmed:31181126

English descriptors

Abstract

Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.

DOI: 10.1371/journal.ppat.1007860
PubMed: 31181126

Links to Exploration step

pubmed:31181126

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.</title>
<author>
<name sortKey="Du, Wenjuan" sort="Du, Wenjuan" uniqKey="Du W" first="Wenjuan" last="Du">Wenjuan Du</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hongbo" sort="Guo, Hongbo" uniqKey="Guo H" first="Hongbo" last="Guo">Hongbo Guo</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nijman, Vera S" sort="Nijman, Vera S" uniqKey="Nijman V" first="Vera S" last="Nijman">Vera S. Nijman</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doedt, Jennifer" sort="Doedt, Jennifer" uniqKey="Doedt J" first="Jennifer" last="Doedt">Jennifer Doedt</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Vries, Erhard" sort="Van Der Vries, Erhard" uniqKey="Van Der Vries E" first="Erhard" last="Van Der Vries">Erhard Van Der Vries</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Lee, Joline" sort="Van Der Lee, Joline" uniqKey="Van Der Lee J" first="Joline" last="Van Der Lee">Joline Van Der Lee</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Zeshi" sort="Li, Zeshi" uniqKey="Li Z" first="Zeshi" last="Li">Zeshi Li</name>
<affiliation>
<nlm:affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boons, Geert Jan" sort="Boons, Geert Jan" uniqKey="Boons G" first="Geert-Jan" last="Boons">Geert-Jan Boons</name>
<affiliation>
<nlm:affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Kuppeveld, Frank J M" sort="Van Kuppeveld, Frank J M" uniqKey="Van Kuppeveld F" first="Frank J M" last="Van Kuppeveld">Frank J M. Van Kuppeveld</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Erik" sort="De Vries, Erik" uniqKey="De Vries E" first="Erik" last="De Vries">Erik De Vries</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matrosovich, Mikhail" sort="Matrosovich, Mikhail" uniqKey="Matrosovich M" first="Mikhail" last="Matrosovich">Mikhail Matrosovich</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31181126</idno>
<idno type="pmid">31181126</idno>
<idno type="doi">10.1371/journal.ppat.1007860</idno>
<idno type="wicri:Area/PubMed/Corpus">000008</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.</title>
<author>
<name sortKey="Du, Wenjuan" sort="Du, Wenjuan" uniqKey="Du W" first="Wenjuan" last="Du">Wenjuan Du</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Hongbo" sort="Guo, Hongbo" uniqKey="Guo H" first="Hongbo" last="Guo">Hongbo Guo</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nijman, Vera S" sort="Nijman, Vera S" uniqKey="Nijman V" first="Vera S" last="Nijman">Vera S. Nijman</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doedt, Jennifer" sort="Doedt, Jennifer" uniqKey="Doedt J" first="Jennifer" last="Doedt">Jennifer Doedt</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Vries, Erhard" sort="Van Der Vries, Erhard" uniqKey="Van Der Vries E" first="Erhard" last="Van Der Vries">Erhard Van Der Vries</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der Lee, Joline" sort="Van Der Lee, Joline" uniqKey="Van Der Lee J" first="Joline" last="Van Der Lee">Joline Van Der Lee</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Zeshi" sort="Li, Zeshi" uniqKey="Li Z" first="Zeshi" last="Li">Zeshi Li</name>
<affiliation>
<nlm:affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boons, Geert Jan" sort="Boons, Geert Jan" uniqKey="Boons G" first="Geert-Jan" last="Boons">Geert-Jan Boons</name>
<affiliation>
<nlm:affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Kuppeveld, Frank J M" sort="Van Kuppeveld, Frank J M" uniqKey="Van Kuppeveld F" first="Frank J M" last="Van Kuppeveld">Frank J M. Van Kuppeveld</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Erik" sort="De Vries, Erik" uniqKey="De Vries E" first="Erik" last="De Vries">Erik De Vries</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matrosovich, Mikhail" sort="Matrosovich, Mikhail" uniqKey="Matrosovich M" first="Mikhail" last="Matrosovich">Mikhail Matrosovich</name>
<affiliation>
<nlm:affiliation>Institute of Virology, Philipps University, Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation>
<nlm:affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Chlorocebus aethiops</term>
<term>Dogs</term>
<term>Humans</term>
<term>Influenza A Virus, H2N2 Subtype (chemistry)</term>
<term>Influenza A Virus, H2N2 Subtype (genetics)</term>
<term>Influenza A Virus, H2N2 Subtype (metabolism)</term>
<term>Influenza A Virus, H3N2 Subtype (chemistry)</term>
<term>Influenza A Virus, H3N2 Subtype (genetics)</term>
<term>Influenza A Virus, H3N2 Subtype (metabolism)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>N-Acetylneuraminic Acid (genetics)</term>
<term>N-Acetylneuraminic Acid (metabolism)</term>
<term>Neuraminidase (chemistry)</term>
<term>Neuraminidase (genetics)</term>
<term>Neuraminidase (metabolism)</term>
<term>Receptors, Virus (chemistry)</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
<term>Virion (chemistry)</term>
<term>Virion (genetics)</term>
<term>Virion (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Neuraminidase</term>
<term>Receptors, Virus</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>N-Acetylneuraminic Acid</term>
<term>Neuraminidase</term>
<term>Receptors, Virus</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Influenza A Virus, H2N2 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>N-Acetylneuraminic Acid</term>
<term>Neuraminidase</term>
<term>Receptors, Virus</term>
<term>Viral Proteins</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Chlorocebus aethiops</term>
<term>Dogs</term>
<term>Humans</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31181126</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007860</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1007860</ELocationID>
<Abstract>
<AbstractText>Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Wenjuan</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Hongbo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nijman</LastName>
<ForeName>Vera S</ForeName>
<Initials>VS</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doedt</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology, Philipps University, Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Vries</LastName>
<ForeName>Erhard</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0001-8528-2585</Identifier>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Lee</LastName>
<ForeName>Joline</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zeshi</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0002-8358-3162</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boons</LastName>
<ForeName>Geert-Jan</ForeName>
<Initials>GJ</Initials>
<Identifier Source="ORCID">0000-0003-3111-5954</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Kuppeveld</LastName>
<ForeName>Frank J M</ForeName>
<Initials>FJM</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Vries</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matrosovich</LastName>
<ForeName>Mikhail</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-1618-2083</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Virology, Philipps University, Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>Cornelis A M</ForeName>
<Initials>CAM</Initials>
<Identifier Source="ORCID">0000-0002-4459-9874</Identifier>
<AffiliationInfo>
<Affiliation>Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="C487630">NA protein, influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GZP2782OP0</RegistryNumber>
<NameOfSubstance UI="D019158">N-Acetylneuraminic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053121" MajorTopicYN="Y">Influenza A Virus, H2N2 Subtype</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="Y">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019158" MajorTopicYN="N">N-Acetylneuraminic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="Y">Neuraminidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="Y">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="Y">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="Y">Virion</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31181126</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1007860</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-18-02468</ArticleId>
<ArticleId IdType="pmc">PMC6586374</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2007 Feb 2;315(5812):655-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272724</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2010 Sep;91(Pt 9):2322-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2012 Oct 16;84(20):8650-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22985263</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1995 Jul;76 ( Pt 7):1719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1979 Apr 15;94(2):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">464297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Mol Sci. 2017 Jul 17;18(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28714909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1975 Feb 15;50(3):296-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1116600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1979 Feb 10;254(3):789-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">83994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Feb 18;286(7):5868-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21173148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Dec;89(23):12211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2017 Jun;98(6):1274-1281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28612701</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Influenza Other Respir Viruses. 2012 Jul;6(4):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1994 Nov 15;205(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7975212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 May 12;91(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28356530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1984 Sep;137(2):314-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6485252</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glycoconj J. 2006 Feb;23(1-2):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16575525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2017 Feb;23(2):220-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27869615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Mar 15;281(2):156-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11277689</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Sep 29;90(20):9457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512075</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 May 14;5(5):e10645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498717</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Aug;183(2):496-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1853557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biologicals. 2001 Mar;29(1):27-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11482890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2016 Dec;24(12):991-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27491885</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Infect. 2016 Dec;22(12):975-983</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27424943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Jun 20;415(1):12-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 May 10;361(2):384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 1993 Jul;304(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8323299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1980 Oct 25;255(20):9713-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7430095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Mar 8;21(3):356-366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28279346</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Biotechnol. 2008 Apr 18;8:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423015</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glycobiology. 1998 Oct;8(10):1007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9719681</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glycoconj J. 2007 Dec;24(9):591-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17805962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2005 Aug;43(8):4139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2019;8(1):327-338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30866786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):9197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24899180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1996 Mar 15;217(2):452-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8610436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2013 Nov 22;10:321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24261589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Apr 13;91(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28202753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Nov 09;6:36826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27827454</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Sep 7;443(7107):45-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1988 Dec 15;263(35):18911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3143719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2000 May 22;74(1-2):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Apr 10;334(2):276-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2006 Feb 3;355(5):1143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343533</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2006 Aug 31;3:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718832</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioessays. 2003 Jul;25(7):657-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815721</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry (Mosc). 2015 Jul;80(7):872-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26542001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342319</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Sep;71(9):6706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Jan;180(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1984642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Jan 11;21(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28017661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Naturae. 2009 Jul;1(2):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glycobiology. 2011 Aug;21(8):988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21863598</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1987 Feb 5;262(4):1596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3805045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1989 Oct 17;28(21):8388-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2605190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(7):e38665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808012</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1987 Sep;61(9):2910-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3612957</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Sep 26;92(20):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30089692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1999 Nov 15;275(2):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10552901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2013;4:1491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1995 Aug;69(8):5011-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7541844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2009;154(6):945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22281708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Aug;73(8):6743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10400772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1996 Aug;70(8):5519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8764064</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2018 Aug 13;14(8):e1007233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30102740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31181126
   |texte=   The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31181126" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021