Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FluTE, a publicly available stochastic influenza epidemic simulation model.

Identifieur interne : 000187 ( PubMed/Checkpoint ); précédent : 000186; suivant : 000188

FluTE, a publicly available stochastic influenza epidemic simulation model.

Auteurs : Dennis L. Chao [États-Unis] ; M Elizabeth Halloran ; Valerie J. Obenchain ; Ira M. Longini

Source :

RBID : pubmed:20126529

Descripteurs français

English descriptors

Abstract

Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.

DOI: 10.1371/journal.pcbi.1000656
PubMed: 20126529


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20126529

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FluTE, a publicly available stochastic influenza epidemic simulation model.</title>
<author>
<name sortKey="Chao, Dennis L" sort="Chao, Dennis L" uniqKey="Chao D" first="Dennis L" last="Chao">Dennis L. Chao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistics and Quantitative Infectious Diseases/Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America. dchao@fhcrc.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistics and Quantitative Infectious Diseases/Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Halloran, M Elizabeth" sort="Halloran, M Elizabeth" uniqKey="Halloran M" first="M Elizabeth" last="Halloran">M Elizabeth Halloran</name>
</author>
<author>
<name sortKey="Obenchain, Valerie J" sort="Obenchain, Valerie J" uniqKey="Obenchain V" first="Valerie J" last="Obenchain">Valerie J. Obenchain</name>
</author>
<author>
<name sortKey="Longini, Ira M" sort="Longini, Ira M" uniqKey="Longini I" first="Ira M" last="Longini">Ira M. Longini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20126529</idno>
<idno type="pmid">20126529</idno>
<idno type="doi">10.1371/journal.pcbi.1000656</idno>
<idno type="wicri:Area/PubMed/Corpus">000210</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000210</idno>
<idno type="wicri:Area/PubMed/Curation">000210</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000210</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000187</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000187</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FluTE, a publicly available stochastic influenza epidemic simulation model.</title>
<author>
<name sortKey="Chao, Dennis L" sort="Chao, Dennis L" uniqKey="Chao D" first="Dennis L" last="Chao">Dennis L. Chao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistics and Quantitative Infectious Diseases/Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America. dchao@fhcrc.org</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Statistics and Quantitative Infectious Diseases/Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Halloran, M Elizabeth" sort="Halloran, M Elizabeth" uniqKey="Halloran M" first="M Elizabeth" last="Halloran">M Elizabeth Halloran</name>
</author>
<author>
<name sortKey="Obenchain, Valerie J" sort="Obenchain, Valerie J" uniqKey="Obenchain V" first="Valerie J" last="Obenchain">Valerie J. Obenchain</name>
</author>
<author>
<name sortKey="Longini, Ira M" sort="Longini, Ira M" uniqKey="Longini I" first="Ira M" last="Longini">Ira M. Longini</name>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Influenza, Human (transmission)</term>
<term>Models, Biological</term>
<term>Prevalence</term>
<term>Software</term>
<term>Stochastic Processes</term>
<term>United States</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Flambées de maladies</term>
<term>Grippe humaine (transmission)</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Modèles biologiques</term>
<term>Processus stochastiques</term>
<term>Prévalence</term>
<term>Simulation numérique</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Prevalence</term>
<term>Software</term>
<term>Stochastic Processes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Flambées de maladies</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Modèles biologiques</term>
<term>Processus stochastiques</term>
<term>Prévalence</term>
<term>Simulation numérique</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20126529</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>FluTE, a publicly available stochastic influenza epidemic simulation model.</ArticleTitle>
<Pagination>
<MedlinePgn>e1000656</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1000656</ELocationID>
<Abstract>
<AbstractText>Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chao</LastName>
<ForeName>Dennis L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Center for Statistics and Quantitative Infectious Diseases/Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America. dchao@fhcrc.org</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halloran</LastName>
<ForeName>M Elizabeth</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Obenchain</LastName>
<ForeName>Valerie J</ForeName>
<Initials>VJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Longini</LastName>
<ForeName>Ira M</ForeName>
<Initials>IM</Initials>
<Suffix>Jr</Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI032042</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 GM070749</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AI32042</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01-GM070749</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013269" MajorTopicYN="Y">Stochastic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20126529</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1000656</ArticleId>
<ArticleId IdType="pmc">PMC2813259</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2006 Nov 15;164(10):936-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2007 Jan 15;165(2):212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2007 Mar;11(2):98-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16899385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Nov 15;298(5597):1428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12434061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2002 Sep 10;20(27-28):3254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Jan;4(1):e13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2008 Mar 25;5(3):e74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Apr 1;167(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Inf Technol Biomed. 2008 Jul;12(4):513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Dec 15;168(12):1343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiology. 2009 May;20(3):344-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2009 May 14;14(19). pii: 19205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2009 Jun 4;14(22). pii: 19227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Jun 18;360(25):2605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2009;7:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19545404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2009 Sep 15;170(6):679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 30;326(5953):729-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Value Health. 2009 Mar-Apr;12(2):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18671770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):681-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2004 Apr 1;159(7):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15033640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 May 13;429(6988):180-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health Rep. 1965 Dec;80(12):1067-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4954378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1971 Apr;93(4):267-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5550343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1976 Feb;103(2):152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">814808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1980 Aug;29(2):348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7216417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 1990;28(4):365-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2117040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1991 Sep;47(3):961-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1742449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 1998 Jan 1;147(1):23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Rev. 1999;21(1):73-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10520474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1961 Feb;83(2)Pt 2:29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13790691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Halloran, M Elizabeth" sort="Halloran, M Elizabeth" uniqKey="Halloran M" first="M Elizabeth" last="Halloran">M Elizabeth Halloran</name>
<name sortKey="Longini, Ira M" sort="Longini, Ira M" uniqKey="Longini I" first="Ira M" last="Longini">Ira M. Longini</name>
<name sortKey="Obenchain, Valerie J" sort="Obenchain, Valerie J" uniqKey="Obenchain V" first="Valerie J" last="Obenchain">Valerie J. Obenchain</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Chao, Dennis L" sort="Chao, Dennis L" uniqKey="Chao D" first="Dennis L" last="Chao">Dennis L. Chao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000187 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000187 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20126529
   |texte=   FluTE, a publicly available stochastic influenza epidemic simulation model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20126529" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021