Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

Identifieur interne : 000058 ( PubMed/Checkpoint ); précédent : 000057; suivant : 000059

Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

Auteurs : Daniel Dlugolenski [États-Unis] ; Les Jones [États-Unis] ; Elizabeth Howerth [États-Unis] ; David Wentworth [États-Unis] ; S Mark Tompkins [États-Unis] ; Ralph A. Tripp [États-Unis]

Source :

RBID : pubmed:25762737

Descripteurs français

English descriptors

Abstract

Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.

DOI: 10.1128/JVI.00087-15
PubMed: 25762737


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25762737

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.</title>
<author>
<name sortKey="Dlugolenski, Daniel" sort="Dlugolenski, Daniel" uniqKey="Dlugolenski D" first="Daniel" last="Dlugolenski">Daniel Dlugolenski</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, Les" sort="Jones, Les" uniqKey="Jones L" first="Les" last="Jones">Les Jones</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Howerth, Elizabeth" sort="Howerth, Elizabeth" uniqKey="Howerth E" first="Elizabeth" last="Howerth">Elizabeth Howerth</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wentworth, David" sort="Wentworth, David" uniqKey="Wentworth D" first="David" last="Wentworth">David Wentworth</name>
<affiliation wicri:level="2">
<nlm:affiliation>J. Craig Venter Institute, Rockville, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>J. Craig Venter Institute, Rockville, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tompkins, S Mark" sort="Tompkins, S Mark" uniqKey="Tompkins S" first="S Mark" last="Tompkins">S Mark Tompkins</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tripp, Ralph A" sort="Tripp, Ralph A" uniqKey="Tripp R" first="Ralph A" last="Tripp">Ralph A. Tripp</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA ratripp@uga.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25762737</idno>
<idno type="pmid">25762737</idno>
<idno type="doi">10.1128/JVI.00087-15</idno>
<idno type="wicri:Area/PubMed/Corpus">000081</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000081</idno>
<idno type="wicri:Area/PubMed/Curation">000081</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000081</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.</title>
<author>
<name sortKey="Dlugolenski, Daniel" sort="Dlugolenski, Daniel" uniqKey="Dlugolenski D" first="Daniel" last="Dlugolenski">Daniel Dlugolenski</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, Les" sort="Jones, Les" uniqKey="Jones L" first="Les" last="Jones">Les Jones</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Howerth, Elizabeth" sort="Howerth, Elizabeth" uniqKey="Howerth E" first="Elizabeth" last="Howerth">Elizabeth Howerth</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wentworth, David" sort="Wentworth, David" uniqKey="Wentworth D" first="David" last="Wentworth">David Wentworth</name>
<affiliation wicri:level="2">
<nlm:affiliation>J. Craig Venter Institute, Rockville, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>J. Craig Venter Institute, Rockville, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tompkins, S Mark" sort="Tompkins, S Mark" uniqKey="Tompkins S" first="S Mark" last="Tompkins">S Mark Tompkins</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tripp, Ralph A" sort="Tripp, Ralph A" uniqKey="Tripp R" first="Ralph A" last="Tripp">Ralph A. Tripp</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA ratripp@uga.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Chemokine CXCL2 (genetics)</term>
<term>Cytokines (biosynthesis)</term>
<term>Female</term>
<term>Ferrets</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Host Specificity (genetics)</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Influenza A Virus, H1N1 Subtype (genetics)</term>
<term>Influenza A Virus, H1N1 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H1N2 Subtype (genetics)</term>
<term>Influenza A Virus, H1N2 Subtype (pathogenicity)</term>
<term>Influenza, Human (virology)</term>
<term>Killer Cells, Natural (immunology)</term>
<term>Lung (immunology)</term>
<term>Lung (pathology)</term>
<term>Lymphocyte Activation</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Molecular Sequence Data</term>
<term>Neuraminidase (genetics)</term>
<term>Neutrophil Infiltration</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (veterinary)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>Phenotype</term>
<term>RNA Replicase (genetics)</term>
<term>Reassortant Viruses (genetics)</term>
<term>Reassortant Viruses (pathogenicity)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Swine (virology)</term>
<term>Swine Diseases (virology)</term>
<term>T-Lymphocytes (immunology)</term>
<term>Up-Regulation</term>
<term>Viral Proteins (genetics)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Cellules tueuses naturelles (immunologie)</term>
<term>Chimiokine CXCL2 (génétique)</term>
<term>Cytokines (biosynthèse)</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Furets</term>
<term>Glycoprotéine hémagglutinine du virus influenza (génétique)</term>
<term>Grippe humaine (virologie)</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Infections à Orthomyxoviridae (médecine vétérinaire)</term>
<term>Infections à Orthomyxoviridae (virologie)</term>
<term>Infiltration par les neutrophiles</term>
<term>Lignée cellulaire</term>
<term>Lymphocytes T (immunologie)</term>
<term>Maladies des porcs (virologie)</term>
<term>Phénotype</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (immunologie)</term>
<term>Protéines virales (génétique)</term>
<term>RNA replicase (génétique)</term>
<term>Régulation positive</term>
<term>Sialidase (génétique)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Sous-type H1N1 du virus de la grippe A (génétique)</term>
<term>Sous-type H1N1 du virus de la grippe A (pathogénicité)</term>
<term>Sous-type H1N2 du virus de la grippe A (génétique)</term>
<term>Sous-type H1N2 du virus de la grippe A (pathogénicité)</term>
<term>Spécificité d'hôte (génétique)</term>
<term>Suidae (virologie)</term>
<term>Séquence d'acides aminés</term>
<term>Virulence (génétique)</term>
<term>Virus recombinants (génétique)</term>
<term>Virus recombinants (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chemokine CXCL2</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Neuraminidase</term>
<term>RNA Replicase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host Specificity</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H1N2 Subtype</term>
<term>Reassortant Viruses</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chimiokine CXCL2</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines virales</term>
<term>RNA replicase</term>
<term>Sialidase</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Sous-type H1N2 du virus de la grippe A</term>
<term>Spécificité d'hôte</term>
<term>Virulence</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cellules tueuses naturelles</term>
<term>Infections à Orthomyxoviridae</term>
<term>Lymphocytes T</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Killer Cells, Natural</term>
<term>Lung</term>
<term>Orthomyxoviridae Infections</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H1N2 Subtype</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Sous-type H1N2 du virus de la grippe A</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Infections à Orthomyxoviridae</term>
<term>Maladies des porcs</term>
<term>Suidae</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
<term>Orthomyxoviridae Infections</term>
<term>Swine</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Female</term>
<term>Ferrets</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Lymphocyte Activation</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Molecular Sequence Data</term>
<term>Neutrophil Infiltration</term>
<term>Phenotype</term>
<term>Sequence Homology, Amino Acid</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Furets</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Infiltration par les neutrophiles</term>
<term>Lignée cellulaire</term>
<term>Phénotype</term>
<term>Régulation positive</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25762737</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.</ArticleTitle>
<Pagination>
<MedlinePgn>5651-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00087-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dlugolenski</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Les</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Howerth</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wentworth</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>J. Craig Venter Institute, Rockville, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tompkins</LastName>
<ForeName>S Mark</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tripp</LastName>
<ForeName>Ralph A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, USA ratripp@uga.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN266200700006C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272201400004C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700006C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN2722001400004C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054426">Chemokine CXCL2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404915">Cxcl2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061290">PA protein, influenza viruses</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054426" MajorTopicYN="N">Chemokine CXCL2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005289" MajorTopicYN="N">Ferrets</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057221" MajorTopicYN="N">Influenza A Virus, H1N2 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007694" MajorTopicYN="N">Killer Cells, Natural</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008213" MajorTopicYN="N">Lymphocyte Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020556" MajorTopicYN="N">Neutrophil Infiltration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25762737</ArticleId>
<ArticleId IdType="pii">JVI.00087-15</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00087-15</ArticleId>
<ArticleId IdType="pmc">PMC4442520</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2007 Apr 20;25(16):3057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2010;6:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20105300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Mar 10;471(7337):157-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21390107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Jan 15;207(2):262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 26;473(7348):519-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21614079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1982;74(2-3):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7165510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine. 2012 Sep;59(3):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 13;337(6091):164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22798590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2013 Apr;43(4):929-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23436540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jun 18;328(5985):1529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20558710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Oct;73(10):8851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2011 Dec;162(1-2):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1951 Oct;94(4):305-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14888814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 May 10;413(2):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21353280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2011 Feb;89(2):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e39990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Dec;95(Pt 12):2594-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25182164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):481-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2012 Jul 6;158(1-2):60-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22397932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(10):e110264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25330303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Aug;11(8):519-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):635-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Nov;86(22):12411-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22951836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Oct;88(20):11981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Apr;67(4):1761-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8445709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19421324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 22;409(6823):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11234016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2008 Sep 1;112(5):2028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2015;386:109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 15;330(6002):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Sep;91(Pt 9):2314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2013 Jul;57 Suppl 1:S12-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23794726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2006;50(3):151-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17131933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Nov 23;28(50):8015-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20934458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2013 Dec;57(12):1703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2014 Feb;61(1):4-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23556412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1980 Sep;12(3):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6260835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 1995;11(2-3):209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8828147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):5017-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2012 Mar 12;209(3):565-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22393124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Jun;94(Pt 6):1236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23695819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1978 Jun 1;87(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">664248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Feb;86(3):1750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22090127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 Mar;477:61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25659818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2011 Jul;179(1):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can Vet J. 2009 Nov;50(11):1153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20119537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2012 Jul 15;206(2):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2013 Nov;7(6):900-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23710888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2013 Aug;47(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23740270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2014;10:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(17):9601-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(10):e110026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25333824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010;7:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20158900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 Aug 27;33(2):266-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22809692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Oct 15;179(8):5407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17911627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2001 Aug;96(2):107-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11445142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Oct;87(19):10460-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 May;170(1):346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2718386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Aug;86(16):8872-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2014 Jan;14(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(19):10309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Dec;88(23):13737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25231317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2011;719:81-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22125037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2012;9:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Sep 1;189(5):2099-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006;3:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:4794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2010 Aug;56(8):1340-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20567024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1986 Feb;133(2):218-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3004270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2014;385:35-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Tech. 2009 Apr;28(1):137-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19618623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2013;530:337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Jul;4(7):e1000102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18617994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 13;337(6091):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):1175-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2013;10:321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24261589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2010 Jan;1(1):9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Apr;88(7):3802-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24429367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Anim. 1994 Apr;28(2):178-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8035571</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Dlugolenski, Daniel" sort="Dlugolenski, Daniel" uniqKey="Dlugolenski D" first="Daniel" last="Dlugolenski">Daniel Dlugolenski</name>
</region>
<name sortKey="Howerth, Elizabeth" sort="Howerth, Elizabeth" uniqKey="Howerth E" first="Elizabeth" last="Howerth">Elizabeth Howerth</name>
<name sortKey="Jones, Les" sort="Jones, Les" uniqKey="Jones L" first="Les" last="Jones">Les Jones</name>
<name sortKey="Tompkins, S Mark" sort="Tompkins, S Mark" uniqKey="Tompkins S" first="S Mark" last="Tompkins">S Mark Tompkins</name>
<name sortKey="Tripp, Ralph A" sort="Tripp, Ralph A" uniqKey="Tripp R" first="Ralph A" last="Tripp">Ralph A. Tripp</name>
<name sortKey="Wentworth, David" sort="Wentworth, David" uniqKey="Wentworth D" first="David" last="Wentworth">David Wentworth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000058 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000058 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25762737
   |texte=   Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25762737" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021