Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a VH3-30-Encoded Heterosubtypic Antibody

Identifieur interne : 000682 ( Pmc/Curation ); précédent : 000681; suivant : 000683

Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a VH3-30-Encoded Heterosubtypic Antibody

Auteurs : Arkadiusz Wyrzucki [Suisse] ; Cyrille Dreyfus [États-Unis] ; Ines Kohler [Suisse] ; Marco Steck [Suisse] ; Ian A. Wilson [États-Unis] ; Lars Hangartner [Suisse]

Source :

RBID : PMC:4054347

Abstract

ABSTRACT

A human monoclonal heterosubtypic antibody, MAb 3.1, with its heavy chain encoded by VH3-30, was isolated using phage display with immobilized hemagglutinin (HA) from influenza virus A/Japan/305/1957(H2N2) as the target. Antibody 3.1 potently neutralizes influenza viruses from the H1a clade (i.e., H1, H2, H5, H6) but has little neutralizing activity against the H1b clade. Its crystal structure in complex with HA from a pandemic H1N1 influenza virus, A/South Carolina/1/1918(H1N1), revealed that like other heterosubtypic anti-influenza virus antibodies, MAb 3.1 contacts a hydrophobic groove in the HA stem, primarily using its heavy chain. However, in contrast to the closely related monoclonal antibody (Mab) FI6 that relies heavily on HCDR3 for binding, MAb 3.1 utilizes residues from HCDR1, HCDR3, and framework region 3 (FR3). Interestingly, HCDR1 of MAb 3.1 adopts an α-helical conformation and engages in hydrophobic interactions with the HA very similar to those of the de novo in silico-designed and affinity-matured synthetic protein HB36.3. These findings improve our understanding of the molecular requirements for binding to the conserved epitope in the stem of the HA protein and, therefore, aid the development of more universal influenza vaccines targeting these epitopes.

IMPORTANCE Influenza viruses rapidly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by acquiring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by immunization or infection protect only against the immunizing or closely related strains. Here, we describe a novel monoclonal antibody that recognizes the conserved heterosubtypic epitope in the stem of influenza A virus hemagglutinin. This antibody, referred to as MAb 3.1, recognizes its epitope in a manner that resembles recognition of a similar epitope by the de novo in silico-designed and affinity-matured synthetic protein HB36.3. Thus, besides providing novel insights into the molecular interactions between heterosubtypic antibodies and influenza virus hemagglutinin, MAb 3.1 demonstrates that de novo in silico-designed and affinity-matured synthetic proteins can foretell naturally selected antibody binding. This knowledge will aid development of a pan-influenza virus vaccine.


Url:
DOI: 10.1128/JVI.00178-14
PubMed: 24719426
PubMed Central: 4054347

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4054347

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a V
<sub>H</sub>
3-30-Encoded Heterosubtypic Antibody</title>
<author>
<name sortKey="Wyrzucki, Arkadiusz" sort="Wyrzucki, Arkadiusz" uniqKey="Wyrzucki A" first="Arkadiusz" last="Wyrzucki">Arkadiusz Wyrzucki</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dreyfus, Cyrille" sort="Dreyfus, Cyrille" uniqKey="Dreyfus C" first="Cyrille" last="Dreyfus">Cyrille Dreyfus</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Ines" sort="Kohler, Ines" uniqKey="Kohler I" first="Ines" last="Kohler">Ines Kohler</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Steck, Marco" sort="Steck, Marco" uniqKey="Steck M" first="Marco" last="Steck">Marco Steck</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A." last="Wilson">Ian A. Wilson</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hangartner, Lars" sort="Hangartner, Lars" uniqKey="Hangartner L" first="Lars" last="Hangartner">Lars Hangartner</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24719426</idno>
<idno type="pmc">4054347</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054347</idno>
<idno type="RBID">PMC:4054347</idno>
<idno type="doi">10.1128/JVI.00178-14</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000682</idno>
<idno type="wicri:Area/Pmc/Curation">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000682</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a V
<sub>H</sub>
3-30-Encoded Heterosubtypic Antibody</title>
<author>
<name sortKey="Wyrzucki, Arkadiusz" sort="Wyrzucki, Arkadiusz" uniqKey="Wyrzucki A" first="Arkadiusz" last="Wyrzucki">Arkadiusz Wyrzucki</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dreyfus, Cyrille" sort="Dreyfus, Cyrille" uniqKey="Dreyfus C" first="Cyrille" last="Dreyfus">Cyrille Dreyfus</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Ines" sort="Kohler, Ines" uniqKey="Kohler I" first="Ines" last="Kohler">Ines Kohler</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Steck, Marco" sort="Steck, Marco" uniqKey="Steck M" first="Marco" last="Steck">Marco Steck</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A." last="Wilson">Ian A. Wilson</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hangartner, Lars" sort="Hangartner, Lars" uniqKey="Hangartner L" first="Lars" last="Hangartner">Lars Hangartner</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Institute of Medical Virology, University of Zurich, Zürich, Switzerland</nlm:aff>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Medical Virology, University of Zurich, Zürich</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Virology</title>
<idno type="ISSN">0022-538X</idno>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<p>A human monoclonal heterosubtypic antibody, MAb 3.1, with its heavy chain encoded by V
<sub>H</sub>
3-30, was isolated using phage display with immobilized hemagglutinin (HA) from influenza virus A/Japan/305/1957(H2N2) as the target. Antibody 3.1 potently neutralizes influenza viruses from the H1a clade (i.e., H1, H2, H5, H6) but has little neutralizing activity against the H1b clade. Its crystal structure in complex with HA from a pandemic H1N1 influenza virus, A/South Carolina/1/1918(H1N1), revealed that like other heterosubtypic anti-influenza virus antibodies, MAb 3.1 contacts a hydrophobic groove in the HA stem, primarily using its heavy chain. However, in contrast to the closely related monoclonal antibody (Mab) FI6 that relies heavily on HCDR3 for binding, MAb 3.1 utilizes residues from HCDR1, HCDR3, and framework region 3 (FR3). Interestingly, HCDR1 of MAb 3.1 adopts an α-helical conformation and engages in hydrophobic interactions with the HA very similar to those of the
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic protein HB36.3. These findings improve our understanding of the molecular requirements for binding to the conserved epitope in the stem of the HA protein and, therefore, aid the development of more universal influenza vaccines targeting these epitopes.</p>
<p>
<bold>IMPORTANCE</bold>
Influenza viruses rapidly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by acquiring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by immunization or infection protect only against the immunizing or closely related strains. Here, we describe a novel monoclonal antibody that recognizes the conserved heterosubtypic epitope in the stem of influenza A virus hemagglutinin. This antibody, referred to as MAb 3.1, recognizes its epitope in a manner that resembles recognition of a similar epitope by the
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic protein HB36.3. Thus, besides providing novel insights into the molecular interactions between heterosubtypic antibodies and influenza virus hemagglutinin, MAb 3.1 demonstrates that
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic proteins can foretell naturally selected antibody binding. This knowledge will aid development of a pan-influenza virus vaccine.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Virol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Virol</journal-id>
<journal-id journal-id-type="hwp">jvi</journal-id>
<journal-id journal-id-type="pmc">jvi</journal-id>
<journal-id journal-id-type="publisher-id">JVI</journal-id>
<journal-title-group>
<journal-title>Journal of Virology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-538X</issn>
<issn pub-type="epub">1098-5514</issn>
<publisher>
<publisher-name>American Society for Microbiology</publisher-name>
<publisher-loc>1752 N St., N.W., Washington, DC</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24719426</article-id>
<article-id pub-id-type="pmc">4054347</article-id>
<article-id pub-id-type="publisher-id">00178-14</article-id>
<article-id pub-id-type="doi">10.1128/JVI.00178-14</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Vaccines and Antiviral Agents</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a V
<sub>H</sub>
3-30-Encoded Heterosubtypic Antibody</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wyrzucki</surname>
<given-names>Arkadiusz</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dreyfus</surname>
<given-names>Cyrille</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kohler</surname>
<given-names>Ines</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Steck</surname>
<given-names>Marco</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Wilson</surname>
<given-names>Ian A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hangartner</surname>
<given-names>Lars</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<aff id="aff1">
<label>a</label>
Institute of Medical Virology, University of Zurich, Zürich, Switzerland</aff>
<aff id="aff2">
<label>b</label>
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA</aff>
<aff id="aff3">
<label>c</label>
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Williams</surname>
<given-names>B.</given-names>
</name>
<role>Editor</role>
</contrib>
</contrib-group>
<author-notes>
<corresp id="cor1">Address correspondence to Lars Hangartner,
<email>hangartner.lars@virology.uzh.ch</email>
(antibodies and virology), or Ian A. Wilson,
<email>wilson@scripps.edu</email>
(structure).</corresp>
<fn fn-type="equal">
<p>A.W. and C.D. contributed equally to this article.</p>
</fn>
<fn id="fn1" fn-type="present-address">
<label>*</label>
<p>Present address: Cyrille Dreyfus, Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>6</month>
<year>2014</year>
</pub-date>
<volume>88</volume>
<issue>12</issue>
<fpage>7083</fpage>
<lpage>7092</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>1</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>4</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014, American Society for Microbiology. All Rights Reserved.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>American Society for Microbiology</copyright-holder>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zjv01214007083.pdf"></self-uri>
<abstract>
<title>ABSTRACT</title>
<p>A human monoclonal heterosubtypic antibody, MAb 3.1, with its heavy chain encoded by V
<sub>H</sub>
3-30, was isolated using phage display with immobilized hemagglutinin (HA) from influenza virus A/Japan/305/1957(H2N2) as the target. Antibody 3.1 potently neutralizes influenza viruses from the H1a clade (i.e., H1, H2, H5, H6) but has little neutralizing activity against the H1b clade. Its crystal structure in complex with HA from a pandemic H1N1 influenza virus, A/South Carolina/1/1918(H1N1), revealed that like other heterosubtypic anti-influenza virus antibodies, MAb 3.1 contacts a hydrophobic groove in the HA stem, primarily using its heavy chain. However, in contrast to the closely related monoclonal antibody (Mab) FI6 that relies heavily on HCDR3 for binding, MAb 3.1 utilizes residues from HCDR1, HCDR3, and framework region 3 (FR3). Interestingly, HCDR1 of MAb 3.1 adopts an α-helical conformation and engages in hydrophobic interactions with the HA very similar to those of the
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic protein HB36.3. These findings improve our understanding of the molecular requirements for binding to the conserved epitope in the stem of the HA protein and, therefore, aid the development of more universal influenza vaccines targeting these epitopes.</p>
<p>
<bold>IMPORTANCE</bold>
Influenza viruses rapidly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by acquiring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by immunization or infection protect only against the immunizing or closely related strains. Here, we describe a novel monoclonal antibody that recognizes the conserved heterosubtypic epitope in the stem of influenza A virus hemagglutinin. This antibody, referred to as MAb 3.1, recognizes its epitope in a manner that resembles recognition of a similar epitope by the
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic protein HB36.3. Thus, besides providing novel insights into the molecular interactions between heterosubtypic antibodies and influenza virus hemagglutinin, MAb 3.1 demonstrates that
<italic>de novo in silico</italic>
-designed and affinity-matured synthetic proteins can foretell naturally selected antibody binding. This knowledge will aid development of a pan-influenza virus vaccine.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000682 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000682 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4054347
   |texte=   Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a VH3-30-Encoded Heterosubtypic Antibody
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:24719426" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021