Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

Identifieur interne : 000469 ( Pmc/Curation ); précédent : 000468; suivant : 000470

Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

Auteurs : Brian J. Coburn [États-Unis] ; Bradley G. Wagner [États-Unis] ; Sally Blower [États-Unis]

Source :

RBID : PMC:2715422

Abstract

Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0 estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza.


Url:
DOI: 10.1186/1741-7015-7-30
PubMed: 19545404
PubMed Central: 2715422

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2715422

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)</title>
<author>
<name sortKey="Coburn, Brian J" sort="Coburn, Brian J" uniqKey="Coburn B" first="Brian J" last="Coburn">Brian J. Coburn</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Bradley G" sort="Wagner, Bradley G" uniqKey="Wagner B" first="Bradley G" last="Wagner">Bradley G. Wagner</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Blower, Sally" sort="Blower, Sally" uniqKey="Blower S" first="Sally" last="Blower">Sally Blower</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19545404</idno>
<idno type="pmc">2715422</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715422</idno>
<idno type="RBID">PMC:2715422</idno>
<idno type="doi">10.1186/1741-7015-7-30</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000469</idno>
<idno type="wicri:Area/Pmc/Curation">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000469</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)</title>
<author>
<name sortKey="Coburn, Brian J" sort="Coburn, Brian J" uniqKey="Coburn B" first="Brian J" last="Coburn">Brian J. Coburn</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Bradley G" sort="Wagner, Bradley G" uniqKey="Wagner B" first="Bradley G" last="Wagner">Bradley G. Wagner</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Blower, Sally" sort="Blower, Sally" uniqKey="Blower S" first="Sally" last="Blower">Sally Blower</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Medicine</title>
<idno type="eISSN">1741-7015</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (
<italic>R</italic>
<sub>0</sub>
). The
<italic>R</italic>
<sub>0 </sub>
for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of
<italic>R</italic>
<sub>0 </sub>
estimated for the 1918–1919 pandemic strain (mean
<italic>R</italic>
<sub>0</sub>
~2: range 1.4 to 2.8) and is comparable to
<italic>R</italic>
<sub>0 </sub>
values estimated for seasonal strains of influenza (mean
<italic>R</italic>
<sub>0 </sub>
1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Med</journal-id>
<journal-title>BMC Medicine</journal-title>
<issn pub-type="epub">1741-7015</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19545404</article-id>
<article-id pub-id-type="pmc">2715422</article-id>
<article-id pub-id-type="publisher-id">1741-7015-7-30</article-id>
<article-id pub-id-type="doi">10.1186/1741-7015-7-30</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)</article-title>
</title-group>
<contrib-group>
<contrib id="A1" contrib-type="author">
<name>
<surname>Coburn</surname>
<given-names>Brian J</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>bcoburn@mednet.ucla.edu</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Wagner</surname>
<given-names>Bradley G</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>bwagner@mednet.ucla.edu</email>
</contrib>
<contrib id="A3" corresp="yes" contrib-type="author">
<name>
<surname>Blower</surname>
<given-names>Sally</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>sblower@mednet.ucla.edu</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Biomedical Modeling Center, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA</aff>
<pub-date pub-type="collection">
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>22</day>
<month>6</month>
<year>2009</year>
</pub-date>
<volume>7</volume>
<fpage>30</fpage>
<lpage>30</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.biomedcentral.com/1741-7015/7/30"></ext-link>
<history>
<date date-type="received">
<day>2</day>
<month>6</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>6</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2009 Blower et al.; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2009</copyright-year>
<copyright-holder>Blower et al.; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an open access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Coburn J Brian bcoburn@mednet.ucla.edu Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) 2009BMC Medicine 7(1): 30-. (2009)1741-7015(2009)7:1<30>urn:ISSN:1741-7015</pmc-comment>
</license>
</permissions>
<abstract>
<p>Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (
<italic>R</italic>
<sub>0</sub>
). The
<italic>R</italic>
<sub>0 </sub>
for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of
<italic>R</italic>
<sub>0 </sub>
estimated for the 1918–1919 pandemic strain (mean
<italic>R</italic>
<sub>0</sub>
~2: range 1.4 to 2.8) and is comparable to
<italic>R</italic>
<sub>0 </sub>
values estimated for seasonal strains of influenza (mean
<italic>R</italic>
<sub>0 </sub>
1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000469 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000469 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2715422
   |texte=   Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:19545404" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021