Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new concept of the epidemic process of influenza A virus.

Identifieur interne : 000461 ( Pmc/Curation ); précédent : 000460; suivant : 000462

A new concept of the epidemic process of influenza A virus.

Auteurs : R. E. Hope-Simpson ; D. B. Golubev

Source :

RBID : PMC:2249185

Abstract

Influenza A virus was discovered in 1933, and since then four major variants have caused all the epidemics of human influenza A. Each had an era of solo world prevalence until 1977 as follows: H0N1 (old style) strains until 1946, H1N1 (old style) strains until 1957, H2N2 strains until 1968, then H3N2 strains, which were joined in 1977 by a renewed prevalence of H1N1 (old style) strains. Serological studies show that H2N2 strains probably had had a previous era of world prevalence during the last quarter of the nineteenth century, and had then been replaced by H3N2 strains from about 1900 to 1918. From about 1907 the H3N2 strains had been joined, as now, by H1N1 (old style) strains until both had been replaced in 1918 by a fifth major variant closely related to swine influenza virus A/Hswine1N1 (old style), which had then had an era of solo world prevalence in mankind until about 1929, when it had been replaced by the H0N1 strains that were first isolated in 1933. Eras of prevalence of a major variant have usually been initiated by a severe pandemic followed at intervals of a year or two by successive epidemics in each of which the nature of the virus is usually a little changed (antigenic drift), but not enough to permit frequent recurrent infections during the same era. Changes of major variant (antigenic shift) are large enough to permit reinfection. At both major and minor changes the strains of the previous variant tend to disappear and to be replaced within a single season, worldwide in the case of a major variant, or in the area of prevalence of a previous minor variant. Pandemics, epidemics and antigenic variations all occur seasonally, and influenza and its viruses virtually disappear from the population of any locality between epidemics, an interval of many consecutive months. A global view, however, shows influenza continually present in the world population, progressing each year south and then north, thus crossing the equator twice yearly around the equinoxes, the tropical monsoon periods. Influenza arrives in the temperate latitudes in the colder months, about 6 months separating its arrival in the two hemispheres. None of this behaviour is explained by the current concept that the virus is surviving like measles virus by direct spread from the sick providing endless chains of human influenza A.(ABSTRACT TRUNCATED AT 400 WORDS)


Url:
PubMed: 3301379
PubMed Central: 2249185

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2249185

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A new concept of the epidemic process of influenza A virus.</title>
<author>
<name sortKey="Hope Simpson, R E" sort="Hope Simpson, R E" uniqKey="Hope Simpson R" first="R. E." last="Hope-Simpson">R. E. Hope-Simpson</name>
</author>
<author>
<name sortKey="Golubev, D B" sort="Golubev, D B" uniqKey="Golubev D" first="D. B." last="Golubev">D. B. Golubev</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">3301379</idno>
<idno type="pmc">2249185</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2249185</idno>
<idno type="RBID">PMC:2249185</idno>
<date when="1987">1987</date>
<idno type="wicri:Area/Pmc/Corpus">000461</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000461</idno>
<idno type="wicri:Area/Pmc/Curation">000461</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000461</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A new concept of the epidemic process of influenza A virus.</title>
<author>
<name sortKey="Hope Simpson, R E" sort="Hope Simpson, R E" uniqKey="Hope Simpson R" first="R. E." last="Hope-Simpson">R. E. Hope-Simpson</name>
</author>
<author>
<name sortKey="Golubev, D B" sort="Golubev, D B" uniqKey="Golubev D" first="D. B." last="Golubev">D. B. Golubev</name>
</author>
</analytic>
<series>
<title level="j">Epidemiology and Infection</title>
<idno type="ISSN">0950-2688</idno>
<imprint>
<date when="1987">1987</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Influenza A virus was discovered in 1933, and since then four major variants have caused all the epidemics of human influenza A. Each had an era of solo world prevalence until 1977 as follows: H0N1 (old style) strains until 1946, H1N1 (old style) strains until 1957, H2N2 strains until 1968, then H3N2 strains, which were joined in 1977 by a renewed prevalence of H1N1 (old style) strains. Serological studies show that H2N2 strains probably had had a previous era of world prevalence during the last quarter of the nineteenth century, and had then been replaced by H3N2 strains from about 1900 to 1918. From about 1907 the H3N2 strains had been joined, as now, by H1N1 (old style) strains until both had been replaced in 1918 by a fifth major variant closely related to swine influenza virus A/Hswine1N1 (old style), which had then had an era of solo world prevalence in mankind until about 1929, when it had been replaced by the H0N1 strains that were first isolated in 1933. Eras of prevalence of a major variant have usually been initiated by a severe pandemic followed at intervals of a year or two by successive epidemics in each of which the nature of the virus is usually a little changed (antigenic drift), but not enough to permit frequent recurrent infections during the same era. Changes of major variant (antigenic shift) are large enough to permit reinfection. At both major and minor changes the strains of the previous variant tend to disappear and to be replaced within a single season, worldwide in the case of a major variant, or in the area of prevalence of a previous minor variant. Pandemics, epidemics and antigenic variations all occur seasonally, and influenza and its viruses virtually disappear from the population of any locality between epidemics, an interval of many consecutive months. A global view, however, shows influenza continually present in the world population, progressing each year south and then north, thus crossing the equator twice yearly around the equinoxes, the tropical monsoon periods. Influenza arrives in the temperate latitudes in the colder months, about 6 months separating its arrival in the two hemispheres. None of this behaviour is explained by the current concept that the virus is surviving like measles virus by direct spread from the sick providing endless chains of human influenza A.(ABSTRACT TRUNCATED AT 400 WORDS)</p>
</div>
</front>
</TEI>
<pmc article-type="review-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Epidemiol Infect</journal-id>
<journal-id journal-id-type="pmc">epidinfect</journal-id>
<journal-title>Epidemiology and Infection</journal-title>
<issn pub-type="ppub">0950-2688</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">3301379</article-id>
<article-id pub-id-type="pmc">2249185</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A new concept of the epidemic process of influenza A virus.</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hope-Simpson</surname>
<given-names>R. E.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Golubev</surname>
<given-names>D. B.</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<month>8</month>
<year>1987</year>
</pub-date>
<volume>99</volume>
<issue>1</issue>
<fpage>5</fpage>
<lpage>54</lpage>
<abstract>
<p>Influenza A virus was discovered in 1933, and since then four major variants have caused all the epidemics of human influenza A. Each had an era of solo world prevalence until 1977 as follows: H0N1 (old style) strains until 1946, H1N1 (old style) strains until 1957, H2N2 strains until 1968, then H3N2 strains, which were joined in 1977 by a renewed prevalence of H1N1 (old style) strains. Serological studies show that H2N2 strains probably had had a previous era of world prevalence during the last quarter of the nineteenth century, and had then been replaced by H3N2 strains from about 1900 to 1918. From about 1907 the H3N2 strains had been joined, as now, by H1N1 (old style) strains until both had been replaced in 1918 by a fifth major variant closely related to swine influenza virus A/Hswine1N1 (old style), which had then had an era of solo world prevalence in mankind until about 1929, when it had been replaced by the H0N1 strains that were first isolated in 1933. Eras of prevalence of a major variant have usually been initiated by a severe pandemic followed at intervals of a year or two by successive epidemics in each of which the nature of the virus is usually a little changed (antigenic drift), but not enough to permit frequent recurrent infections during the same era. Changes of major variant (antigenic shift) are large enough to permit reinfection. At both major and minor changes the strains of the previous variant tend to disappear and to be replaced within a single season, worldwide in the case of a major variant, or in the area of prevalence of a previous minor variant. Pandemics, epidemics and antigenic variations all occur seasonally, and influenza and its viruses virtually disappear from the population of any locality between epidemics, an interval of many consecutive months. A global view, however, shows influenza continually present in the world population, progressing each year south and then north, thus crossing the equator twice yearly around the equinoxes, the tropical monsoon periods. Influenza arrives in the temperate latitudes in the colder months, about 6 months separating its arrival in the two hemispheres. None of this behaviour is explained by the current concept that the virus is surviving like measles virus by direct spread from the sick providing endless chains of human influenza A.(ABSTRACT TRUNCATED AT 400 WORDS)</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000461 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000461 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2249185
   |texte=   A new concept of the epidemic process of influenza A virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:3301379" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021