Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa

Identifieur interne : 000B49 ( Pmc/Corpus ); précédent : 000B48; suivant : 000B50

Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa

Auteurs : Brett N. Archer ; Stefano Tempia ; Laura F. White ; Marcello Pagano ; Cheryl Cohen

Source :

RBID : PMC:3500305

Abstract

Background/Objective

Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09 (hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the initial effective reproductive number (initial Rt) and the temporal variation of Rt.

Methods

We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1) for simultaneous estimation of initial Rt and the SI; estimate initial Rt from SI distributions established from prior field studies (method 2); and the Wallinga and Teunis method (method 3) to model the temporal variation of Rt.

Results

12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of the epidemic (June 21 to August 3, 2009), we simultaneously estimate a mean Rt of 1.47 (95% CI: 1.30–1.72) and mean SI of 2.78 days (95% CI: 1.80–3.75) (method 1). Field studies found a mean SI of 2.3 days between primary cases and laboratory-confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating the SI estimate from field studies using laboratory-confirmed cases, we found an initial Rt of 1.43 (95% CI: 1.38–1.49) (method 2). The mean Rt peaked at 2.91 (95% CI: 0.85–2.91) on June 21, as the epidemic commenced, and Rt>1 was sustained until August 22 (method 3).

Conclusions

Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside of Africa. Estimations using the likelihood-based method are in agreement with field findings.


Url:
DOI: 10.1371/journal.pone.0049482
PubMed: 23166682
PubMed Central: 3500305

Links to Exploration step

PMC:3500305

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa</title>
<author>
<name sortKey="Archer, Brett N" sort="Archer, Brett N" uniqKey="Archer B" first="Brett N." last="Archer">Brett N. Archer</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tempia, Stefano" sort="Tempia, Stefano" uniqKey="Tempia S" first="Stefano" last="Tempia">Stefano Tempia</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>United States Centers for Disease Control and Prevention, Attaché to the National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="White, Laura F" sort="White, Laura F" uniqKey="White L" first="Laura F." last="White">Laura F. White</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pagano, Marcello" sort="Pagano, Marcello" uniqKey="Pagano M" first="Marcello" last="Pagano">Marcello Pagano</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>School of Public Health, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Cheryl" sort="Cohen, Cheryl" uniqKey="Cohen C" first="Cheryl" last="Cohen">Cheryl Cohen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>School of Public Health, University of Witwatersrand, Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23166682</idno>
<idno type="pmc">3500305</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500305</idno>
<idno type="RBID">PMC:3500305</idno>
<idno type="doi">10.1371/journal.pone.0049482</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000B49</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa</title>
<author>
<name sortKey="Archer, Brett N" sort="Archer, Brett N" uniqKey="Archer B" first="Brett N." last="Archer">Brett N. Archer</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tempia, Stefano" sort="Tempia, Stefano" uniqKey="Tempia S" first="Stefano" last="Tempia">Stefano Tempia</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>United States Centers for Disease Control and Prevention, Attaché to the National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="White, Laura F" sort="White, Laura F" uniqKey="White L" first="Laura F." last="White">Laura F. White</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pagano, Marcello" sort="Pagano, Marcello" uniqKey="Pagano M" first="Marcello" last="Pagano">Marcello Pagano</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>School of Public Health, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Cheryl" sort="Cohen, Cheryl" uniqKey="Cohen C" first="Cheryl" last="Cohen">Cheryl Cohen</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<addr-line>School of Public Health, University of Witwatersrand, Johannesburg, Gauteng, South Africa</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background/Objective</title>
<p>Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09 (hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the initial effective reproductive number (initial
<italic>R
<sub>t</sub>
</italic>
) and the temporal variation of
<italic>R
<sub>t</sub>
</italic>
.</p>
</sec>
<sec>
<title>Methods</title>
<p>We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1) for simultaneous estimation of initial
<italic>R
<sub>t</sub>
</italic>
and the SI; estimate initial
<italic>R
<sub>t</sub>
</italic>
from SI distributions established from prior field studies (method 2); and the Wallinga and Teunis method (method 3) to model the temporal variation of
<italic>R
<sub>t</sub>
</italic>
.</p>
</sec>
<sec>
<title>Results</title>
<p>12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of the epidemic (June 21 to August 3, 2009), we simultaneously estimate a mean
<italic>R
<sub>t</sub>
</italic>
of 1.47 (95% CI: 1.30–1.72) and mean SI of 2.78 days (95% CI: 1.80–3.75) (method 1). Field studies found a mean SI of 2.3 days between primary cases and laboratory-confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating the SI estimate from field studies using laboratory-confirmed cases, we found an initial
<italic>R
<sub>t</sub>
</italic>
of 1.43 (95% CI: 1.38–1.49) (method 2). The mean
<italic>R
<sub>t</sub>
</italic>
peaked at 2.91 (95% CI: 0.85–2.91) on June 21, as the epidemic commenced, and
<italic>R
<sub>t</sub>
</italic>
>1 was sustained until August 22 (method 3).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside of Africa. Estimations using the likelihood-based method are in agreement with field findings.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Sugimoto, Jd" uniqKey="Sugimoto J">JD Sugimoto</name>
</author>
<author>
<name sortKey="Halloran, Me" uniqKey="Halloran M">ME Halloran</name>
</author>
<author>
<name sortKey="Basta, Ne" uniqKey="Basta N">NE Basta</name>
</author>
<author>
<name sortKey="Chao, Dl" uniqKey="Chao D">DL Chao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boelle, Py" uniqKey="Boelle P">PY Boelle</name>
</author>
<author>
<name sortKey="Ansart, S" uniqKey="Ansart S">S Ansart</name>
</author>
<author>
<name sortKey="Cori, A" uniqKey="Cori A">A Cori</name>
</author>
<author>
<name sortKey="Valleron, Aj" uniqKey="Valleron A">AJ Valleron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grassly, Nc" uniqKey="Grassly N">NC Grassly</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H Nishiura</name>
</author>
<author>
<name sortKey="Bettencourt, Lm" uniqKey="Bettencourt L">LM Bettencourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Reed, C" uniqKey="Reed C">C Reed</name>
</author>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lessler, J" uniqKey="Lessler J">J Lessler</name>
</author>
<author>
<name sortKey="Reich, Ng" uniqKey="Reich N">NG Reich</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
<author>
<name sortKey="Nair, Hp" uniqKey="Nair H">HP Nair</name>
</author>
<author>
<name sortKey="Jordan, Ht" uniqKey="Jordan H">HT Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Lf" uniqKey="White L">LF White</name>
</author>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J Wallinga</name>
</author>
<author>
<name sortKey="Finelli, L" uniqKey="Finelli L">L Finelli</name>
</author>
<author>
<name sortKey="Reed, C" uniqKey="Reed C">C Reed</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
<author>
<name sortKey="Fang, Vj" uniqKey="Fang V">VJ Fang</name>
</author>
<author>
<name sortKey="Lau, Ll" uniqKey="Lau L">LL Lau</name>
</author>
<author>
<name sortKey="So, Hc" uniqKey="So H">HC So</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Finelli, L" uniqKey="Finelli L">L Finelli</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Olsen, S" uniqKey="Olsen S">S Olsen</name>
</author>
<author>
<name sortKey="Doshi, S" uniqKey="Doshi S">S Doshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuite, Ar" uniqKey="Tuite A">AR Tuite</name>
</author>
<author>
<name sortKey="Greer, Al" uniqKey="Greer A">AL Greer</name>
</author>
<author>
<name sortKey="Whelan, M" uniqKey="Whelan M">M Whelan</name>
</author>
<author>
<name sortKey="Winter, Al" uniqKey="Winter A">AL Winter</name>
</author>
<author>
<name sortKey="Lee, B" uniqKey="Lee B">B Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, Ow" uniqKey="Morgan O">OW Morgan</name>
</author>
<author>
<name sortKey="Parks, S" uniqKey="Parks S">S Parks</name>
</author>
<author>
<name sortKey="Shim, T" uniqKey="Shim T">T Shim</name>
</author>
<author>
<name sortKey="Blevins, Pa" uniqKey="Blevins P">PA Blevins</name>
</author>
<author>
<name sortKey="Lucas, Pm" uniqKey="Lucas P">PM Lucas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Hanage, Wp" uniqKey="Hanage W">WP Hanage</name>
</author>
<author>
<name sortKey="Van Kerkhove, Md" uniqKey="Van Kerkhove M">MD Van Kerkhove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pourbohloul, B" uniqKey="Pourbohloul B">B Pourbohloul</name>
</author>
<author>
<name sortKey="Ahued, A" uniqKey="Ahued A">A Ahued</name>
</author>
<author>
<name sortKey="Davoudi, B" uniqKey="Davoudi B">B Davoudi</name>
</author>
<author>
<name sortKey="Meza, R" uniqKey="Meza R">R Meza</name>
</author>
<author>
<name sortKey="Meyers, La" uniqKey="Meyers L">LA Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H Nishiura</name>
</author>
<author>
<name sortKey="Wilson, N" uniqKey="Wilson N">N Wilson</name>
</author>
<author>
<name sortKey="Baker, Mg" uniqKey="Baker M">MG Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H Nishiura</name>
</author>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Safan, M" uniqKey="Safan M">M Safan</name>
</author>
<author>
<name sortKey="Castillo Chavez, C" uniqKey="Castillo Chavez C">C Castillo-Chavez</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Lf" uniqKey="White L">LF White</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M Pagano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J Wallinga</name>
</author>
<author>
<name sortKey="Teunis, P" uniqKey="Teunis P">P Teunis</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
<author>
<name sortKey="Fang, Vj" uniqKey="Fang V">VJ Fang</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Malik Peiris, Js" uniqKey="Malik Peiris J">JS Malik Peiris</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
<author>
<name sortKey="Boelle, Py" uniqKey="Boelle P">PY Boelle</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Lavenu, A" uniqKey="Lavenu A">A Lavenu</name>
</author>
<author>
<name sortKey="Valleron, Aj" uniqKey="Valleron A">AJ Valleron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
<author>
<name sortKey="Simonsen, L" uniqKey="Simonsen L">L Simonsen</name>
</author>
<author>
<name sortKey="Miller, M" uniqKey="Miller M">M Miller</name>
</author>
<author>
<name sortKey="Alonso, Wj" uniqKey="Alonso W">WJ Alonso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Miller, Ma" uniqKey="Miller M">MA Miller</name>
</author>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mills, Ce" uniqKey="Mills C">CE Mills</name>
</author>
<author>
<name sortKey="Robins, Jm" uniqKey="Robins J">JM Robins</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vynnycky, E" uniqKey="Vynnycky E">E Vynnycky</name>
</author>
<author>
<name sortKey="Trindall, A" uniqKey="Trindall A">A Trindall</name>
</author>
<author>
<name sortKey="Mangtani, P" uniqKey="Mangtani P">P Mangtani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Lf" uniqKey="White L">LF White</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M Pagano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Halloran, Me" uniqKey="Halloran M">ME Halloran</name>
</author>
<author>
<name sortKey="Nizam, A" uniqKey="Nizam A">A Nizam</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gani, R" uniqKey="Gani R">R Gani</name>
</author>
<author>
<name sortKey="Hughes, H" uniqKey="Hughes H">H Hughes</name>
</author>
<author>
<name sortKey="Fleming, D" uniqKey="Fleming D">D Fleming</name>
</author>
<author>
<name sortKey="Griffin, T" uniqKey="Griffin T">T Griffin</name>
</author>
<author>
<name sortKey="Medlock, J" uniqKey="Medlock J">J Medlock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jackson, C" uniqKey="Jackson C">C Jackson</name>
</author>
<author>
<name sortKey="Vynnycky, E" uniqKey="Vynnycky E">E Vynnycky</name>
</author>
<author>
<name sortKey="Mangtani, P" uniqKey="Mangtani P">P Mangtani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Lf" uniqKey="White L">LF White</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M Pagano</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23166682</article-id>
<article-id pub-id-type="pmc">3500305</article-id>
<article-id pub-id-type="publisher-id">PONE-D-12-17363</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0049482</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Virology</subject>
<subj-group>
<subject>Viral Transmission and Infection</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Population Biology</subject>
<subj-group>
<subject>Epidemiology</subject>
<subj-group>
<subject>Infectious Disease Epidemiology</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine</subject>
<subj-group>
<subject>Epidemiology</subject>
<subj-group>
<subject>Infectious Disease Epidemiology</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Viral Diseases</subject>
<subj-group>
<subject>Influenza</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Infectious Disease Modeling</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa</article-title>
<alt-title alt-title-type="running-head">Pandemic Influenza Transmissibility South Africa</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Archer</surname>
<given-names>Brett N.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tempia</surname>
<given-names>Stefano</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>White</surname>
<given-names>Laura F.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pagano</surname>
<given-names>Marcello</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cohen</surname>
<given-names>Cheryl</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>United States Centers for Disease Control and Prevention, Attaché to the National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Gauteng, South Africa</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>School of Public Health, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<addr-line>School of Public Health, University of Witwatersrand, Johannesburg, Gauteng, South Africa</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Cowling</surname>
<given-names>Benjamin J.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Hong Kong, Hong Kong</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>cherylc@nicd.ac.za</email>
</corresp>
<fn fn-type="COI-statement">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: BA ST LFW MP CC. Performed the experiments: BA ST LW. Analyzed the data: BA ST LW. Contributed reagents/materials/analysis tools: BA ST LFW MP CC. Wrote the paper: BA ST LFW MP CC.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>11</month>
<year>2012</year>
</pub-date>
<volume>7</volume>
<issue>11</issue>
<elocation-id>e49482</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>6</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>10</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 Archer et al</copyright-statement>
<copyright-year>2012</copyright-year>
<copyright-holder>Archer et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Background/Objective</title>
<p>Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1)pdm09 (hereafter pH1N1) in South Africa during 2009 by estimating the serial interval (SI), the initial effective reproductive number (initial
<italic>R
<sub>t</sub>
</italic>
) and the temporal variation of
<italic>R
<sub>t</sub>
</italic>
.</p>
</sec>
<sec>
<title>Methods</title>
<p>We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1) for simultaneous estimation of initial
<italic>R
<sub>t</sub>
</italic>
and the SI; estimate initial
<italic>R
<sub>t</sub>
</italic>
from SI distributions established from prior field studies (method 2); and the Wallinga and Teunis method (method 3) to model the temporal variation of
<italic>R
<sub>t</sub>
</italic>
.</p>
</sec>
<sec>
<title>Results</title>
<p>12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of the epidemic (June 21 to August 3, 2009), we simultaneously estimate a mean
<italic>R
<sub>t</sub>
</italic>
of 1.47 (95% CI: 1.30–1.72) and mean SI of 2.78 days (95% CI: 1.80–3.75) (method 1). Field studies found a mean SI of 2.3 days between primary cases and laboratory-confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating the SI estimate from field studies using laboratory-confirmed cases, we found an initial
<italic>R
<sub>t</sub>
</italic>
of 1.43 (95% CI: 1.38–1.49) (method 2). The mean
<italic>R
<sub>t</sub>
</italic>
peaked at 2.91 (95% CI: 0.85–2.91) on June 21, as the epidemic commenced, and
<italic>R
<sub>t</sub>
</italic>
>1 was sustained until August 22 (method 3).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside of Africa. Estimations using the likelihood-based method are in agreement with field findings.</p>
</sec>
</abstract>
<funding-group>
<funding-statement>This work was partly supported by the National Institute for Communicable Diseases (NICD), a division of the National Health Laboratory Service (NHLS). Laboratory testing and influenza surveillance activities at the NICD are funded, in part, by an unrestricted grant from the United States Centers for Disease Control and Prevention (CDC) [grant number 5U51/IP000155]. Dr. White and Dr. Pagano were supported by the National Institute of General Medical Sciences (NIGMS) [award number U54GM088558]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NICD, NHLS, US CDC, NIGMS, NIH or the affiliated universities. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="7"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>During 2009, the emergence and worldwide spread of influenza A(H1N1)pdm09 (pH1N1) was observed
<xref rid="pone.0049482-World1" ref-type="bibr">[1]</xref>
. While a rapid and timely estimation of the transmission parameters of this novel virus played an important role in informing transmission potential and mitigation interventions during the 2009 pandemic period, the post-pandemic documentation of these parameters is equally important as many previous estimates were established from analyses conducted during the early stages of epidemics and often from preliminary data
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0049482-Boelle1" ref-type="bibr">[3]</xref>
. Additionally enhancing our knowledge of past pandemics assists in providing greater insight to prepare and respond in future outbreaks.</p>
<p>Four key measures are typically used to describe the transmissibility of an infectious disease. First, the serial interval (SI) describes the mean time between illness onset of two successive cases in the chain of transmission. Second, the secondary attack rate (SAR) describes the proportion of susceptible contacts that acquire infection from an infectious person. Third, the basic reproductive number (
<italic>R
<sub>0</sub>
</italic>
) is defined as the average number of secondary cases per primary case in an idealised entirely susceptible population in the absence of control measures. Finally, the effective reproductive number (
<italic>R
<sub>t</sub>
</italic>
) at any given time point represents the actual average number of secondary cases per primary case observed in a population.
<italic>R
<sub>t</sub>
</italic>
reflects the impact of control measures and the depletion of susceptible persons over time. The initial
<italic>R
<sub>t</sub>
</italic>
may approximate
<italic>R
<sub>0</sub>
</italic>
in pandemic situations.
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
<xref rid="pone.0049482-Chowell1" ref-type="bibr">[5]</xref>
.</p>
<p>Previously published estimates of pH1N1 transmission parameters vary by study setting and methods employed. The majority of studies found the mean SI of pH1N1 to range from 2.5–3.3 days
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0049482-Cauchemez1" ref-type="bibr">[6]</xref>
<xref rid="pone.0049482-Donnelly1" ref-type="bibr">[11]</xref>
; however, Canada and Texas reported a longer SI of 4–5 days, respectively
<xref rid="pone.0049482-Tuite1" ref-type="bibr">[12]</xref>
,
<xref rid="pone.0049482-Morgan1" ref-type="bibr">[13]</xref>
. Estimates of the
<italic>R</italic>
<sub>0</sub>
of pandemic influenza from the USA range from 1.3–2.3
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0049482-White1" ref-type="bibr">[9]</xref>
,
<xref rid="pone.0049482-Donnelly1" ref-type="bibr">[11]</xref>
. Estimates from Mexico range from 1.4–2.9
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0049482-Fraser1" ref-type="bibr">[14]</xref>
,
<xref rid="pone.0049482-Pourbohloul1" ref-type="bibr">[15]</xref>
. Outside of North America,
<italic>R
<sub>0</sub>
</italic>
estimates include: Australia (mean 2.4)
<xref rid="pone.0049482-McBryde1" ref-type="bibr">[16]</xref>
, Canada (mean 2.62)
<xref rid="pone.0049482-Tuite1" ref-type="bibr">[12]</xref>
, Thailand (mean 2.07)
<xref rid="pone.0049482-deSilva1" ref-type="bibr">[17]</xref>
, Peru (range 1.2–1.7)
<xref rid="pone.0049482-Munayco1" ref-type="bibr">[18]</xref>
and New Zealand (mean 1.96)
<xref rid="pone.0049482-Nishiura1" ref-type="bibr">[19]</xref>
. Finally, Japan revised their mean
<italic>R
<sub>0</sub>
</italic>
estimates from 2.3 to 1.28 after repeating analyses later in the pandemic
<xref rid="pone.0049482-Nishiura2" ref-type="bibr">[20]</xref>
; thus demonstrating a need to revisit revised and more complete datasets. A variation in
<italic>R
<sub>t</sub>
</italic>
with progression of the pandemic was observed in Mexico, averaging at 1.47 (based on a negative binomial model)
<xref rid="pone.0049482-Fraser1" ref-type="bibr">[14]</xref>
, but peaking between 2.1–4.0 depending on the generation interval chosen
<xref rid="pone.0049482-Boelle2" ref-type="bibr">[21]</xref>
.</p>
<p>In a previous work, we estimated the SAR and SI of pH1N1 among the first 100 cases detected in South Africa by prospectively examining virus transmission between household contacts
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
. We found a SAR of 10% and a mean SI of 2.3 days (SD ±1.3, range 1–5) between successive laboratory-confirmed cases in the transmission chain. When additionally including suspected secondary cases into the analysis, the SAR increased to 17% and the SI to 2.7 days (SD ±1.5, range 1–6). In this work we incorporate data collected on all laboratory-confirmed cases detected during the 2009 pH1N1 epidemic in South Africa with the aim of describing the transmissibility characteristics (initial
<italic>R
<sub>t</sub>
</italic>
and temporal variation of
<italic>R
<sub>t</sub>
</italic>
) of the epidemic in the country and compare its dynamics with those observed in other countries in the same year.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<sec id="s2a">
<title>Data</title>
<p>During 2009, the National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), South Africa, maintained a central registry of all pH1N1 laboratory-confirmed cases detected throughout the country. The methodology of collating this data has previously been described in detail
<xref rid="pone.0049482-Archer2" ref-type="bibr">[23]</xref>
. Briefly, we collated individual case-based data from all laboratories offering pH1N1 testing throughout South Africa, which included patient age, sex, dates of illness onset and specimen collection, and the administrative location (province) of the healthcare facility where the patient presented. Testing was performed by accredited laboratories, including: the National Influenza Centre (NICD-NHLS), NHLS public-sector laboratories or private-sector laboratories. All testing laboratories performed detection and characterisation of pH1N1 virus by real-time PCR by either the protocol developed by the WHO Collaborating Centre for Influenza, U.S. Centers for Disease Control and Prevention
<xref rid="pone.0049482-World2" ref-type="bibr">[24]</xref>
, or using commercially available kits.</p>
</sec>
<sec id="s2b">
<title>Imputation of Missing Data</title>
<p>Wherever the date of symptom onset was missing, we estimated it from the date of specimen collection using a multiple imputation approach. Firstly, we modelled the lag time from date of symptoms onset to date of specimens collection from cases with complete data via a Poisson regression model using predictors significant at p<0.05. The covariates assessed in the model were patient age, gender, province, date of specimen collection, and collection of a specimen on a weekend day (i.e. Saturday or Sunday). Secondly we obtained an estimated lag-time for each observation with missing date of symptoms onset using a random sampling process from a Poisson distribution centred on the predicted value from the Poisson regression model. A Poisson distribution was selected to model count data. Thirdly we imputed missing dates of symptoms onset by subtracting the estimated lag-time from the date of specimen collection. The imputation process was repeated 100 times for each missing value, creating 100 datasets with information on the onset date (imputed or observed) for 12,630 laboratory-confirmed cases.</p>
</sec>
<sec id="s2c">
<title>Estimation of Intial
<italic>R
<sub>t</sub>
</italic>
and Temporal Variation in
<italic>R
<sub>t</sub>
</italic>
</title>
<p>We based the estimation of initial
<italic>R
<sub>t</sub>
</italic>
and temporal variation of
<italic>R
<sub>t</sub>
</italic>
on date of symptoms onset (observed and imputed). In all analyses we modelled the SI via a multinomial distribution. When estimating initial
<italic>R
<sub>t</sub>
</italic>
, we focus our analysis on the exponential growth phase of the epidemic in South Africa (i.e. the period from the first occurrence of five consecutive days with confirmed cases reported to the epidemic peak). The parameters were estimated using three methods:</p>
<sec id="s2c1">
<title>Method 1</title>
<p>We make use of the likelihood-based method for the simultaneous estimation of initial
<italic>R
<sub>t</sub>
</italic>
and the SI described by White and Pagano (2008)
<xref rid="pone.0049482-White2" ref-type="bibr">[25]</xref>
. This method is well suited for estimation of initial
<italic>R
<sub>t</sub>
</italic>
and SI in real-time with observed aggregated daily counts of new cases, denoted by
<italic>N = (N
<sub>0</sub>
, N
<sub>1</sub>
…,N
<sub>T</sub>
)</italic>
where
<italic>T</italic>
is the last day of observation and
<italic>N
<sub>0</sub>
</italic>
are the initial number of seed cases that begin the outbreak. The
<italic>N
<sub>i</sub>
</italic>
are assumed to be composed of a mixture of cases that were generated by the previous
<italic>k</italic>
days, where
<italic>k</italic>
is the maximal value of the serial interval. We denote these as
<italic>X
<sub>j</sub>
</italic>
, the number of cases that appear on day
<italic>i</italic>
that were infected by individuals with onset of symptoms on day
<italic>j</italic>
. We assume that the number of infectees generated by infectors with symptoms on day
<italic>j</italic>
follows a Poisson distribution with parameter
<italic>R
<sub>t</sub>
N
<sub>j</sub>
</italic>
. Additionally,
<italic>X
<sub>j</sub>
</italic>
 = 
<italic>(X
<sub>j,j+1</sub>
</italic>
,
<italic>X
<sub>j,j+2</sub>
</italic>
…,
<italic>X
<sub>j,j+k+1</sub>
)</italic>
, the vector of cases infected by the
<italic>N
<sub>j</sub>
</italic>
individuals, follows a multinomial distribution with parameters
<italic>p</italic>
,
<italic>k</italic>
and
<italic>X
<sub>j</sub>
</italic>
. Here
<italic>p</italic>
is a vector of probabilities that denotes the serial interval distribution. Using these assumptions, the following likelihood is obtained:
<disp-formula id="pone.0049482.e001">
<graphic xlink:href="pone.0049482.e001.jpg" position="anchor" orientation="portrait"></graphic>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e002.jpg"></inline-graphic>
</inline-formula>
.</p>
<p>Parameter estimates are obtained using maximum likelihood methods. For this method we used 6 days as the maximal value of the SI (
<italic>k</italic>
), which is consistent with the length of the SI observed in field investigations in South Africa
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
. In addition we implemented a sensitivity analysis to assess the variation of the initial
<italic>R
<sub>t</sub>
</italic>
estimates vis-à-vis
<italic>k</italic>
values of 4 days and 8 days, respectively.</p>
<fig id="pone-0049482-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0049482.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Epidemic curve of laboratory-confirmed influenza A(H1N1)pdm09 cases, South Africa, June 12 to September 30, 2009.</title>
<p>Bars show original recorded data applying date of symptom onset where available (n = 758) and substitute by date of specimen collection where onset was unavailable (total n = 12,526). The line shows imputed data where date of symptom onset for missing case-based data was obtained by multiple imputations adjusted by provincial location of specimen collection and the occurrence of a case on a weekend day (n = 12,491).</p>
</caption>
<graphic xlink:href="pone.0049482.g001"></graphic>
</fig>
<table-wrap id="pone-0049482-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0049482.t001</object-id>
<label>Table 1</label>
<caption>
<title>Observed lag-time between date of symptom onset and date of specimen collection, incidence rate ratio (IRR) and significance value of the covariates significant in the Poisson regression model.</title>
</caption>
<alternatives>
<graphic id="pone-0049482-t001-1" xlink:href="pone.0049482.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Factor</td>
<td align="left" rowspan="1" colspan="1">Observed Lag-Time Mean (Std. dev.)</td>
<td align="left" rowspan="1" colspan="1">Model IRR</td>
<td align="left" rowspan="1" colspan="1">p-value</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Province</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"><0.001
<xref ref-type="table-fn" rid="nt101">a</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Eastern Cape</td>
<td align="left" rowspan="1" colspan="1">2.1 (2.0)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Free State</td>
<td align="left" rowspan="1" colspan="1">1.9 (1.7)</td>
<td align="left" rowspan="1" colspan="1">0.90</td>
<td align="left" rowspan="1" colspan="1">0.620</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gauteng</td>
<td align="left" rowspan="1" colspan="1">1.7 (2.0)</td>
<td align="left" rowspan="1" colspan="1">0.78</td>
<td align="left" rowspan="1" colspan="1">0.140</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KwaZulu-Natal</td>
<td align="left" rowspan="1" colspan="1">3.7 (3.4)</td>
<td align="left" rowspan="1" colspan="1">1.73</td>
<td align="left" rowspan="1" colspan="1">0.003</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Limpopo</td>
<td align="left" rowspan="1" colspan="1">1.4 (1.0)</td>
<td align="left" rowspan="1" colspan="1">0.66</td>
<td align="left" rowspan="1" colspan="1">0.047</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mpumalanga</td>
<td align="left" rowspan="1" colspan="1">1.3 (1.5)</td>
<td align="left" rowspan="1" colspan="1">0.59</td>
<td align="left" rowspan="1" colspan="1">0.042</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Northern Cape</td>
<td align="left" rowspan="1" colspan="1">2.1 (1.9)</td>
<td align="left" rowspan="1" colspan="1">0.95</td>
<td align="left" rowspan="1" colspan="1">0.797</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">North West</td>
<td align="left" rowspan="1" colspan="1">1.6 (1.1)</td>
<td align="left" rowspan="1" colspan="1">0.80</td>
<td align="left" rowspan="1" colspan="1">0.575</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Western Cape</td>
<td align="left" rowspan="1" colspan="1">1.0 (1.9)</td>
<td align="left" rowspan="1" colspan="1">0.50</td>
<td align="left" rowspan="1" colspan="1"><0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Day of specimen collection</bold>
</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Week day</td>
<td align="left" rowspan="1" colspan="1">1.7 (2.1)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Weekend day</td>
<td align="left" rowspan="1" colspan="1">1.1 (1.9)</td>
<td align="left" rowspan="1" colspan="1">0.75</td>
<td align="left" rowspan="1" colspan="1">0.003</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label>a</label>
<p>Pooled p-value for province covariate.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s2c2">
<title>Method 2</title>
<p>We assume a known distribution of the SI in South Africa and we estimate the initial
<italic>R
<sub>t</sub>
</italic>
using the maximum likelihood estimator for known SI described by White and Pagano (2008)
<xref rid="pone.0049482-White1" ref-type="bibr">[9]</xref>
,
<xref rid="pone.0049482-White2" ref-type="bibr">[25]</xref>
. The estimator of initial
<italic>R
<sub>t</sub>
</italic>
in this case is a modification of Method 1 and is given by:
<disp-formula id="pone.0049482.e003">
<graphic xlink:href="pone.0049482.e003.jpg" position="anchor" orientation="portrait"></graphic>
</disp-formula>
</p>
<p>For this analysis we use the two SI distributions observed from investigations of the first 100 pH1N1 cases in South Africa
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
: (1) the SI distribution between primary cases and laboratory-confirmed secondary cases only (39%, 24%, 14%, 17%, 3% and 3% for day 1 to 6 respectively), and (2) the SI distribution between primary cases and suspected plus laboratory-confirmed secondary cases (30%, 17%, 20%, 23%, 7% and 3% for day 1 to 6 respectively). We consider suspected secondary cases, individuals that developed ILI symptoms within 14 days from the symptom onset of a confirmed index case within the same household.</p>
</sec>
<sec id="s2c3">
<title>Method 3</title>
<p>We make use of the Wallinga and Teunis’ method for estimation of
<italic>R
<sub>t</sub>
</italic>
from the imputed data
<xref rid="pone.0049482-Wallinga1" ref-type="bibr">[26]</xref>
. This method uses the daily case counts of cases and assumes the serial interval is known. We make the same assumptions for the serial interval as in method 2. The method calculates the relative probability a case on day
<italic>i</italic>
infects a case on day
<italic>j</italic>
as:
<disp-formula id="pone.0049482.e004">
<graphic xlink:href="pone.0049482.e004.jpg" position="anchor" orientation="portrait"></graphic>
</disp-formula>
where
<italic>p
<sub>k</sub>
</italic>
is the probability of a serial interval of length
<italic>k</italic>
.</p>
<p>Then the estimate for the reproductive number for case
<italic>i</italic>
, is:
<disp-formula id="pone.0049482.e005">
<graphic xlink:href="pone.0049482.e005.jpg" position="anchor" orientation="portrait"></graphic>
</disp-formula>
</p>
<p>This method requires that we make use of the entire epidemic curve. We calculate
<italic>R
<sub>t</sub>
</italic>
as the average of the
<italic>R
<sub>i</sub>
</italic>
when
<italic>i</italic>
is in the epidemic period, as previously defined.</p>
<p>Estimates are reported as the means across the 100 imputations. For all estimates, we calculate bootstrap confidence intervals as has been described previously
<xref rid="pone.0049482-White1" ref-type="bibr">[9]</xref>
,
<xref rid="pone.0049482-Wallinga1" ref-type="bibr">[26]</xref>
. We combine the results from all 100 imputations to obtain a confidence interval that incorporates both imputation error, as well as random error
<xref rid="pone.0049482-Rubin1" ref-type="bibr">[27]</xref>
.</p>
<p>All analyses were performed using R version 2.14.</p>
<fig id="pone-0049482-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0049482.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Distribution of serial interval and initial effective reproductive number (
<italic>R
<sub>t</sub>
</italic>
) across 100 simulations for the influenza A(H1N1)pdm09 epidemic in South Africa using the likelihood-based simultaneous estimation method (method 1).</title>
</caption>
<graphic xlink:href="pone.0049482.g002"></graphic>
</fig>
<fig id="pone-0049482-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0049482.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Distribution of the initial effective reproduction number (
<italic>R
<sub>t</sub>
</italic>
) across 100 simulations for the pandemic influenza A(H1N1)pdm09 epidemic in South Africa, assuming known serial interval (SI) estimates derived from (A) confirmed secondary cases only (SI: 2.3 days) and (B) confirmed plus suspected secondary cases (SI: 2.7 days) in the transmission chain (method 2).</title>
</caption>
<graphic xlink:href="pone.0049482.g003"></graphic>
</fig>
</sec>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Data and Imputation</title>
<p>12,630 laboratory-confirmed pH1N1 cases were captured by the South African central registry during 2009. The overall demographic, spatial and temporal distribution of these cases has been previously described
<xref rid="pone.0049482-Archer2" ref-type="bibr">[23]</xref>
. Data on date of symptom onset was available for 758 (6%) cases and date of specimen collection for 12,500 (99%) cases. The first case reported illness onset of June 12, 2009 and the epidemic peaked on week 32 (August 3–9, 2009) (
<xref ref-type="fig" rid="pone-0049482-g001">Figure 1</xref>
). The epidemic growth period (when sustained transmission began) started on June 21 (range in imputations: June 20–21) and ended on August 11 (range: August 4–25).</p>
<fig id="pone-0049482-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0049482.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Temporal variation in the mean effective reproductive number (
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e006.jpg"></inline-graphic>
</inline-formula>
) of influenza A(H1N1)pdm09 in South Africa, June 15 to October 4, 2009 (method 3).</title>
</caption>
<graphic xlink:href="pone.0049482.g004"></graphic>
</fig>
<p>The lag-time between symptom onset and specimen collection was significantly associated with the provincial location of specimen collection, as well as the collection of a specimen on a weekend day (
<xref ref-type="table" rid="pone-0049482-t001">Table 1</xref>
). We used these two covariates in the multiple-imputation to predict the date of symptom onset where missing for all cases (
<xref ref-type="fig" rid="pone-0049482-g001">Figure 1</xref>
). Other available variables, including date of specimen collection (period during the epidemic), patient age and sex were not significantly associated with the lag-time between symptom onset and specimen collection and, therefore, not included in the final model. Analyses to simultaneously estimate initial
<italic>R
<sub>t</sub>
</italic>
and serial interval, and estimate initial
<italic>R
<sub>t</sub>
</italic>
given a known serial interval, were performed over the exponential growth phase of the epidemic from June 21 to August 3, 2009.</p>
</sec>
<sec id="s3b">
<title>Simultaneous Estimation of
<italic>R
<sub>t</sub>
</italic>
and Serial Interval</title>
<p>Using the likelihood-based method to simultaneously estimate initial
<italic>R
<sub>t</sub>
</italic>
and the SI across 100 imputations of the dataset (Method 1), we estimated a
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e007.jpg"></inline-graphic>
</inline-formula>
of 1.47 (95% CI: 1.30–1.72) and a mean SI of 2.78 days (95% CI: 1.80–3.75) (
<xref ref-type="fig" rid="pone-0049482-g002">Figure 2</xref>
).
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e008.jpg"></inline-graphic>
</inline-formula>
estimates ranged from 1.31 (95% CI: 1.21–1.48) to 1.54 (95% CI: 1.37–2.03) when the maximal value of the SI ranged from 4 to 8 days.</p>
</sec>
<sec id="s3c">
<title>Estimation of
<italic>R
<sub>t</sub>
</italic>
Assuming Known Serial Intervals</title>
<p>We first utilised the SI established from the aforementioned field investigations of the initial 100 cases in estimating
<italic>R
<sub>t</sub>
</italic>
, as described in method 2. When performing the analysis using the SI distribution observed for laboratory-confirmed pH1N1 secondary cases only (mean 2.3 days, SD ±1.3, range 1–5)
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
, we found an initial
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e009.jpg"></inline-graphic>
</inline-formula>
of 1.43 (95% CI: 1.38–1.49) (
<xref ref-type="fig" rid="pone-0049482-g003">Figure 3A</xref>
). When performing the analysis using the SI distribution observed for both confirmed and suspected secondary cases (mean 2.7 days, SD ±1.5, range 1–6)
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
, we found an initial
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e010.jpg"></inline-graphic>
</inline-formula>
of 1.49 (95% CI: 1.44–1.55) (
<xref ref-type="fig" rid="pone-0049482-g003">Figure 3B</xref>
).</p>
</sec>
<sec id="s3d">
<title>Estimation of
<italic>R
<sub>t</sub>
</italic>
</title>
<p>
<xref ref-type="fig" rid="pone-0049482-g004">Figure 4</xref>
shows the variation in
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e011.jpg"></inline-graphic>
</inline-formula>
with the progression of the outbreak over time. We observed relatively high
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e012.jpg"></inline-graphic>
</inline-formula>
values following the introduction of pH1N1 virus into South Africa, corresponding to high rates of transmission and exponential growth of the local epidemic during this period.
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e013.jpg"></inline-graphic>
</inline-formula>
peaked on the first day of the epidemic growth period (June 21) at 2.91 (95% CI: 0.85–3.99).
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e014.jpg"></inline-graphic>
</inline-formula>
began to drop from July 27 onward and remained consistently below one after August 22. This corresponds with the decline in the daily incidence of new cases detected. Averaging the
<italic>R
<sub>t</sub>
</italic>
values obtained during the epidemic growth period (June 21 to August 3, 2009), we estimate initial
<italic>R
<sub>t</sub>
</italic>
to be 1.42 (95% CI: 1.20–1.71).</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>Utilising temporal data on illness onset and specimen collection, and the epidemic curve derived from these data, we provide estimates of the transmissibility parameters of pH1N1 during the first wave experienced in South Africa. Our results focus primarily on the use of analytical techniques to estimate initial
<italic>R
<sub>t</sub>
</italic>
and SI without incorporating contact tracing or household transmission studies. However, when parameters from field studies are available, we show that these can be incorporated to provide robust estimates of transmission parameters. We found that initial
<italic>R
<sub>t</sub>
</italic>
estimates established using the likelihood-based method for the simultaneous estimation of
<italic>R
<sub>t</sub>
</italic>
and SI (method 1: initial
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e015.jpg"></inline-graphic>
</inline-formula>
: 1.47, SI: 2.78 days) are in agreement with those obtained using SI observed in field investigations
<xref rid="pone.0049482-Archer1" ref-type="bibr">[22]</xref>
(method 2: initial
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e016.jpg"></inline-graphic>
</inline-formula>
: 1.43 and 1.49 using observed SI for laboratory confirmed or laboratory confirmed and suspected cases respectively). In addition, the mean SI estimate obtained with method 1 (2.78 days) is in agreement with field findings (SI: 2.3–2.7 days using observed SI for laboratory confirmed or laboratory confirmed and suspected cases respectively). Previous estimates of initial
<italic>R
<sub>t</sub>
</italic>
and the mean SI for pH1N1 have ranged between 1.3–2.9 and 2.5–3.3 days, respectively
<xref rid="pone.0049482-Yang1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0049482-Cauchemez1" ref-type="bibr">[6]</xref>
<xref rid="pone.0049482-Donnelly1" ref-type="bibr">[11]</xref>
,
<xref rid="pone.0049482-Fraser1" ref-type="bibr">[14]</xref>
<xref rid="pone.0049482-Nishiura1" ref-type="bibr">[19]</xref>
. Our estimates are consistent with these findings, regardless of the method used for the analysis and despite difference in climate, demography and health systems across these countries. It appears that once established, the transmission characteristics of pH1N1 are very consistent. Differences in transmission rates may occur within smaller subgroups of the overall population; however, this has not been well-studied.</p>
<p>Previous estimates of the epidemiological parameters of seasonal influenza epidemics found a SI = 2–4 days
<xref rid="pone.0049482-Cowling2" ref-type="bibr">[28]</xref>
<xref rid="pone.0049482-Viboud1" ref-type="bibr">[30]</xref>
, and a
<italic>R
<sub>t</sub>
</italic>
a little over 1 with slight variation between climates;
<italic>R
<sub>t</sub>
</italic>
 = 1.03 in Brazil
<xref rid="pone.0049482-Chowell2" ref-type="bibr">[31]</xref>
versus
<italic>R
<sub>t</sub>
</italic>
 = 1.1–1.3 in more temperate climates
<xref rid="pone.0049482-Chowell3" ref-type="bibr">[32]</xref>
. A number of studies have retrospectively estimated the transmissibility of influenza pandemics. During the 1918 Spanish influenza A(H1N1) pandemic, when assuming a SI = 4 days,
<italic>R
<sub>0</sub>
</italic>
estimates range from 2.0–4.3 in community settings
<xref rid="pone.0049482-Mills1" ref-type="bibr">[33]</xref>
,
<xref rid="pone.0049482-Vynnycky1" ref-type="bibr">[34]</xref>
, and even higher values (
<italic>R
<sub>0</sub>
</italic>
 = 2.6–10.6) in confined settings such as ships and prisons
<xref rid="pone.0049482-Vynnycky1" ref-type="bibr">[34]</xref>
. A separate analysis predicted a slightly lower SI of 3.3 in community settings and a SI of 3.81 in confined settings during the 1918 pandemic, and subsequently estimated
<italic>R
<sub>0</sub>
</italic>
values of 1.34–3.21 and 4.97 in these respective settings
<xref rid="pone.0049482-White3" ref-type="bibr">[35]</xref>
.
<italic>R
<sub>0</sub>
</italic>
estimates from the 1957 Asian influenza A(H2N2) pandemic range from 1.65–1.68
<xref rid="pone.0049482-Longini1" ref-type="bibr">[36]</xref>
,
<xref rid="pone.0049482-Gani1" ref-type="bibr">[37]</xref>
. During the first wave of the 1968–1969 Hong Kong influenza A(H3N2) pandemic, estimates of
<italic>R
<sub>0</sub>
</italic>
range from 1.06–2.06 and increased to 1.21–3.58 during the second wave
<xref rid="pone.0049482-Jackson1" ref-type="bibr">[38]</xref>
.</p>
<p>Given our findings, the overall transmissibility of pH1N1 in South African during 2009 was more similar to that of seasonal influenza strains than the 1918 pandemic, and comparable to lower end estimates of the latter pandemics. However, by showing variation in transmissibility with time, we demonstrate that shortly after introduction of pH1N1 into the country, transmission of the virus reached an
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e017.jpg"></inline-graphic>
</inline-formula>
of 2.9, resulting in exponential growth of the local epidemic and widespread illness. Nonetheless, we show that after a period of less than 2 months of heightened transmission,
<inline-formula>
<inline-graphic xlink:href="pone.0049482.e018.jpg"></inline-graphic>
</inline-formula>
dropped below 1, corresponding to a decline in the incidence of new cases; likely a result of a combination of herd immunity, public health infection control measures and climate impact on virus transmission.</p>
<p>There are several limitations in this analysis which merit discussion. First, we assume that all cases are known and reported. It has been shown previously that, if cases are not reported, this may bias estimates generated using this method
<xref rid="pone.0049482-White4" ref-type="bibr">[39]</xref>
. If the proportion of cases reported remains consistent over the study, then the estimates of transmissibility will not be biased; however, if the reporting fraction varies through time, then biased estimates of the reproductive number and serial interval may result. Likewise, variation in case ascertainment with time may bias our estimates of the temporal variation of
<italic>R
<sub>t</sub>
</italic>
. Generally higher reporting rates may be anticipated in the early phase, with reporting fatigue later becoming a factor. Secondly, data for this study are derived from laboratory-based surveillance data from several regions across South Africa; a large and diverse country. Our findings do not incorporate heterogeneities (such as spatial and demographic differences) that likely exist in transmission patterns, or assess the degree to which these impact aggregate measures of initial
<italic>R
<sub>t</sub>
</italic>
. Methodologies that incorporate heterogeneities inherent in public health data warrant further study.</p>
<p>Despite these limitations, the post-pandemic estimates presented here add to the body of knowledge of pH1N1 transmissibility parameters, which were previously dominated by estimates from developed nations and often based on preliminary data. It remains important that revised parameters, from complete datasets and diverse geographies, are incorporated into planning mitigation strategies for future pandemics. Nonetheless, the methods used in this study would be adaptable to generating real-time estimates during future epidemics. As we continue to build epidemiological capacity in developing nations, including South Africa, we must keep in mind the need for rapid assessments of transmissibility of novel pathogens, in addition to disease severity, to better inform public health interventions.</p>
</sec>
</body>
<back>
<ack>
<p>We would like to acknowledge and thank the many individuals and organisations who contributed to the investigation and response to pandemic influenza in South Africa, including the public- and private-sector laboratories that contributed data to the national central registry of confirmed cases. We also acknowledge Prof. Marc Lipsitch, Harvard School of Public Health, who contributed to the conceptualization of this analysis.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0049482-World1">
<label>1</label>
<mixed-citation publication-type="other">World Health Organization (2010) Pandemic (H1N1) 2009 - update 112. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2010_08_06/en/index.html">http://www.who.int/csr/don/2010_08_06/en/index.html</ext-link>
. Accessed 2012 Mar 19.</mixed-citation>
</ref>
<ref id="pone.0049482-Yang1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Sugimoto</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Halloran</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Basta</surname>
<given-names>NE</given-names>
</name>
,
<name>
<surname>Chao</surname>
<given-names>DL</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>The transmissibility and control of pandemic influenza A (H1N1) virus</article-title>
.
<source>Science</source>
<volume>326</volume>
:
<fpage>729</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="pmid">19745114</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Boelle1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Boelle</surname>
<given-names>PY</given-names>
</name>
,
<name>
<surname>Ansart</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cori</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Valleron</surname>
<given-names>AJ</given-names>
</name>
(
<year>2011</year>
)
<article-title>Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review</article-title>
.
<source>Influenza Other Respi Viruses</source>
<volume>5</volume>
:
<fpage>306</fpage>
<lpage>316</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0049482-Grassly1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Grassly</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
(
<year>2008</year>
)
<article-title>Mathematical models of infectious disease transmission</article-title>
.
<source>Nat Rev Microbiol</source>
<volume>6</volume>
:
<fpage>477</fpage>
<lpage>487</lpage>
.
<pub-id pub-id-type="pmid">18533288</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Chowell1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Nishiura</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Bettencourt</surname>
<given-names>LM</given-names>
</name>
(
<year>2007</year>
)
<article-title>Comparative estimation of the reproduction number for pandemic influenza from daily case notification data</article-title>
.
<source>J R Soc Interface</source>
<volume>4</volume>
:
<fpage>155</fpage>
<lpage>166</lpage>
.
<pub-id pub-id-type="pmid">17254982</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Cauchemez1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Reed</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Ghani</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States</article-title>
.
<source>N Engl J Med</source>
<volume>361</volume>
:
<fpage>2619</fpage>
<lpage>2627</lpage>
.
<pub-id pub-id-type="pmid">20042753</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Lessler1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lessler</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Reich</surname>
<given-names>NG</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Nair</surname>
<given-names>HP</given-names>
</name>
,
<name>
<surname>Jordan</surname>
<given-names>HT</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school</article-title>
.
<source>N Engl J Med</source>
<volume>361</volume>
:
<fpage>2628</fpage>
<lpage>2636</lpage>
.
<pub-id pub-id-type="pmid">20042754</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Odaira1">
<label>8</label>
<mixed-citation publication-type="other">Odaira F, Takahashi H, Toyokawa T, Tsuchihashi Y, Kodama T,
<etal>et al</etal>
.. (2009) Assessment of secondary attack rate and effectiveness of antiviral prophylaxis among household contacts in an influenza A(H1N1)v outbreak in Kobe, Japan, May-June 2009. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-White1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Wallinga</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Finelli</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Reed</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA</article-title>
.
<source>Influenza Other Respi Viruses</source>
<volume>3</volume>
:
<fpage>267</fpage>
<lpage>276</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0049482-Cowling1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
,
<name>
<surname>Fang</surname>
<given-names>VJ</given-names>
</name>
,
<name>
<surname>Lau</surname>
<given-names>LL</given-names>
</name>
,
<name>
<surname>So</surname>
<given-names>HC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Comparative epidemiology of pandemic and seasonal influenza A in households</article-title>
.
<source>N Engl J Med</source>
<volume>362</volume>
:
<fpage>2175</fpage>
<lpage>2184</lpage>
.
<pub-id pub-id-type="pmid">20558368</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Donnelly1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Finelli</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Olsen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Doshi</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Serial intervals and the temporal distribution of secondary infections within households of 2009 pandemic influenza A (H1N1): Implications for influenza control recommendations</article-title>
.
<source>CID</source>
<volume>52</volume>
:
<fpage>S123</fpage>
<lpage>S130</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0049482-Tuite1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tuite</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Greer</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Whelan</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Winter</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza</article-title>
.
<source>CMAJ</source>
<volume>182</volume>
:
<fpage>131</fpage>
<lpage>136</lpage>
.
<pub-id pub-id-type="pmid">19959592</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Morgan1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morgan</surname>
<given-names>OW</given-names>
</name>
,
<name>
<surname>Parks</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Shim</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Blevins</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>Lucas</surname>
<given-names>PM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Household transmission of pandemic (H1N1) 2009, San Antonio, Texas, USA, April-May 2009</article-title>
.
<source>Emerg Infect Dis</source>
<volume>16</volume>
:
<fpage>631</fpage>
<lpage>637</lpage>
.
<pub-id pub-id-type="pmid">20350377</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Fraser1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hanage</surname>
<given-names>WP</given-names>
</name>
,
<name>
<surname>Van Kerkhove</surname>
<given-names>MD</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Pandemic potential of a strain of influenza A (H1N1): early findings</article-title>
.
<source>Science</source>
<volume>324</volume>
:
<fpage>1557</fpage>
<lpage>1561</lpage>
.
<pub-id pub-id-type="pmid">19433588</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Pourbohloul1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pourbohloul</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Ahued</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Davoudi</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Meza</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Meyers</surname>
<given-names>LA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America</article-title>
.
<source>Influenza Other Respi Viruses</source>
<volume>3</volume>
:
<fpage>215</fpage>
<lpage>222</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0049482-McBryde1">
<label>16</label>
<mixed-citation publication-type="other">McBryde E, Bergeri I, van Gemert C, Rotty J, Headley E,
<etal>et al</etal>
.. (2009) Early transmission characteristics of influenza A(H1N1)v in Australia: Victorian state, 16 May - 3 June 2009. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-deSilva1">
<label>17</label>
<mixed-citation publication-type="other">de Silva UC, Warachit J, Waicharoen S, Chittaganpitch M (2009) A preliminary analysis of the epidemiology of influenza A(H1N1)v virus infection in Thailand from early outbreak data, June-July 2009. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-Munayco1">
<label>18</label>
<mixed-citation publication-type="other">Munayco CV, Gomez J, Laguna-Torres VA, Arrasco J, Kochel TJ,
<etal>et al</etal>
.. (2009) Epidemiological and transmissibility analysis of influenza A(H1N1)v in a southern hemisphere setting: Peru. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-Nishiura1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nishiura</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>MG</given-names>
</name>
(
<year>2009</year>
)
<article-title>Estimating the reproduction number of the novel influenza A virus (H1N1) in a Southern Hemisphere setting: preliminary estimate in New Zealand</article-title>
.
<source>N Z Med J</source>
<volume>122</volume>
:
<fpage>73</fpage>
<lpage>77</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0049482-Nishiura2">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nishiura</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Safan</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Castillo-Chavez</surname>
<given-names>C</given-names>
</name>
(
<year>2010</year>
)
<article-title>Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009</article-title>
.
<source>Theor Biol Med Model</source>
<volume>7</volume>
:
<fpage>1</fpage>
.
<pub-id pub-id-type="pmid">20056004</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Boelle2">
<label>21</label>
<mixed-citation publication-type="other">Boelle PY, Bernillon P, Desenclos JC (2009) A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-Archer1">
<label>22</label>
<mixed-citation publication-type="other">Archer BN, Timothy GA, Cohen C, Tempia T, Huma M,
<etal>et al</etal>
.. (2012) Introduction of 2009 pandemic influenza A(H1N1) into South Africa: Clinical presentation, epidemiology and transmissibility of the first 100 cases. J Infect Dis Suppl: Influenza in Africa.</mixed-citation>
</ref>
<ref id="pone.0049482-Archer2">
<label>23</label>
<mixed-citation publication-type="other">Archer B, Cohen C, Naidoo D, Thomas J, Makunga C,
<etal>et al</etal>
.. (2009) Interim report on pandemic H1N1 influenza virus infections in South Africa, April to October 2009: epidemiology and factors associated with fatal cases. Euro Surveill 14.</mixed-citation>
</ref>
<ref id="pone.0049482-World2">
<label>24</label>
<mixed-citation publication-type="other">World Health Organization (2009) CDC protocol of realtime RTPCR for swine influenza A(H1N1), revision 1. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/resources/publications/swineflu/CDCrealtimeRTPCRprotocol_20090428.pdf">http://www.who.int/csr/resources/publications/swineflu/CDCrealtimeRTPCRprotocol_20090428.pdf</ext-link>
. Accessed 2012 Mar 19.</mixed-citation>
</ref>
<ref id="pone.0049482-White2">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Pagano</surname>
<given-names>M</given-names>
</name>
(
<year>2008</year>
)
<article-title>A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic</article-title>
.
<source>Stat Med</source>
<volume>27</volume>
:
<fpage>2999</fpage>
<lpage>3016</lpage>
.
<pub-id pub-id-type="pmid">18058829</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Wallinga1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wallinga</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Teunis</surname>
<given-names>P</given-names>
</name>
(
<year>2004</year>
)
<article-title>Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures</article-title>
.
<source>Am J Epidemiol</source>
<volume>160</volume>
:
<fpage>509</fpage>
<lpage>516</lpage>
.
<pub-id pub-id-type="pmid">15353409</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Rubin1">
<label>27</label>
<mixed-citation publication-type="other">Rubin DB, Little RJA (2002) Statistical analysis with missing data. New York: Hoboken, NJ: J Wiley & Sons.</mixed-citation>
</ref>
<ref id="pone.0049482-Cowling2">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Fang</surname>
<given-names>VJ</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Malik Peiris</surname>
<given-names>JS</given-names>
</name>
,
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
(
<year>2009</year>
)
<article-title>Estimation of the serial interval of influenza</article-title>
.
<source>Epidemiology</source>
<volume>20</volume>
:
<fpage>344</fpage>
<lpage>347</lpage>
.
<pub-id pub-id-type="pmid">19279492</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Ferguson1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Strategies for containing an emerging influenza pandemic in Southeast Asia</article-title>
.
<source>Nature</source>
<volume>437</volume>
:
<fpage>209</fpage>
<lpage>214</lpage>
.
<pub-id pub-id-type="pmid">16079797</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Viboud1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Boelle</surname>
<given-names>PY</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lavenu</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Valleron</surname>
<given-names>AJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Risk factors of influenza transmission in households</article-title>
.
<source>Br J Gen Pract</source>
<volume>54</volume>
:
<fpage>684</fpage>
<lpage>689</lpage>
.
<pub-id pub-id-type="pmid">15353055</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Chowell2">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Simonsen</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Alonso</surname>
<given-names>WJ</given-names>
</name>
(
<year>2010</year>
)
<article-title>The reproduction number of seasonal influenza epidemics in Brazil, 1996–2006</article-title>
.
<source>Proc Biol Sci</source>
<volume>277</volume>
:
<fpage>1857</fpage>
<lpage>1866</lpage>
.
<pub-id pub-id-type="pmid">20150218</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Chowell3">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
(
<year>2008</year>
)
<article-title>Seasonal influenza in the United States, France, and Australia: transmission and prospects for control</article-title>
.
<source>Epidemiol Infect</source>
<volume>136</volume>
:
<fpage>852</fpage>
<lpage>864</lpage>
.
<pub-id pub-id-type="pmid">17634159</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Mills1">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mills</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Robins</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
(
<year>2004</year>
)
<article-title>Transmissibility of 1918 pandemic influenza</article-title>
.
<source>Nature</source>
<volume>432</volume>
:
<fpage>904</fpage>
<lpage>906</lpage>
.
<pub-id pub-id-type="pmid">15602562</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Vynnycky1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vynnycky</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Trindall</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Mangtani</surname>
<given-names>P</given-names>
</name>
(
<year>2007</year>
)
<article-title>Estimates of the reproduction numbers of Spanish influenza using morbidity data</article-title>
.
<source>Int J Epidemiol</source>
<volume>36</volume>
:
<fpage>881</fpage>
<lpage>889</lpage>
.
<pub-id pub-id-type="pmid">17517812</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-White3">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Pagano</surname>
<given-names>M</given-names>
</name>
(
<year>2008</year>
)
<article-title>Transmissibility of the influenza virus in the 1918 pandemic</article-title>
.
<source>PLoS One</source>
<volume>3</volume>
:
<fpage>e1498</fpage>
.
<pub-id pub-id-type="pmid">18231585</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Longini1">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
<suffix>Jr</suffix>
</name>
,
<name>
<surname>Halloran</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
(
<year>2004</year>
)
<article-title>Containing pandemic influenza with antiviral agents</article-title>
.
<source>Am J Epidemiol</source>
<volume>159</volume>
:
<fpage>623</fpage>
<lpage>633</lpage>
.
<pub-id pub-id-type="pmid">15033640</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Gani1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gani</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Hughes</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Fleming</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Griffin</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Medlock</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Potential impact of antiviral drug use during influenza pandemic</article-title>
.
<source>Emerg Infect Dis</source>
<volume>11</volume>
:
<fpage>1355</fpage>
<lpage>1362</lpage>
.
<pub-id pub-id-type="pmid">16229762</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-Jackson1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jackson</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Vynnycky</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Mangtani</surname>
<given-names>P</given-names>
</name>
(
<year>2010</year>
)
<article-title>Estimates of the transmissibility of the 1968 (Hong Kong) influenza pandemic: evidence of increased transmissibility between successive waves</article-title>
.
<source>Am J Epidemiol</source>
<volume>171</volume>
:
<fpage>465</fpage>
<lpage>478</lpage>
.
<pub-id pub-id-type="pmid">20007674</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0049482-White4">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>White</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Pagano</surname>
<given-names>M</given-names>
</name>
(
<year>2010</year>
)
<article-title>Reporting errors in infectious disease outbreaks, with an application to Pandemic Influenza A/H1N1</article-title>
.
<source>Epidemiol Perspect Innov</source>
<volume>7</volume>
:
<fpage>12</fpage>
.
<pub-id pub-id-type="pmid">21159178</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3500305
   |texte=   Reproductive Number and Serial Interval of the First Wave of Influenza A(H1N1)pdm09 Virus in South Africa
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:23166682" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021