Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak

Identifieur interne : 000943 ( Pmc/Corpus ); précédent : 000942; suivant : 000944

A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak

Auteurs : Adiveppa S. Kadi ; Shivakumari R. Avaradi

Source :

RBID : PMC:4345055

Abstract

Background. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns. Method. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (R0), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated R0 from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase. Result. The estimated R0 with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of R0. Conclusion. Basic reproduction number R0 provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth.


Url:
DOI: 10.1155/2015/256319
PubMed: 25784956
PubMed Central: 4345055

Links to Exploration step

PMC:4345055

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak</title>
<author>
<name sortKey="Kadi, Adiveppa S" sort="Kadi, Adiveppa S" uniqKey="Kadi A" first="Adiveppa S." last="Kadi">Adiveppa S. Kadi</name>
<affiliation>
<nlm:aff id="I1">Department of Studies in Statistics, Karnatak University, Dharwad 580003, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avaradi, Shivakumari R" sort="Avaradi, Shivakumari R" uniqKey="Avaradi S" first="Shivakumari R." last="Avaradi">Shivakumari R. Avaradi</name>
<affiliation>
<nlm:aff id="I1">Department of Studies in Statistics, Karnatak University, Dharwad 580003, India</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25784956</idno>
<idno type="pmc">4345055</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345055</idno>
<idno type="RBID">PMC:4345055</idno>
<idno type="doi">10.1155/2015/256319</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000943</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000943</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak</title>
<author>
<name sortKey="Kadi, Adiveppa S" sort="Kadi, Adiveppa S" uniqKey="Kadi A" first="Adiveppa S." last="Kadi">Adiveppa S. Kadi</name>
<affiliation>
<nlm:aff id="I1">Department of Studies in Statistics, Karnatak University, Dharwad 580003, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Avaradi, Shivakumari R" sort="Avaradi, Shivakumari R" uniqKey="Avaradi S" first="Shivakumari R." last="Avaradi">Shivakumari R. Avaradi</name>
<affiliation>
<nlm:aff id="I1">Department of Studies in Statistics, Karnatak University, Dharwad 580003, India</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computational and Mathematical Methods in Medicine</title>
<idno type="ISSN">1748-670X</idno>
<idno type="eISSN">1748-6718</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Background</italic>
. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns.
<italic>Method</italic>
. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (
<italic>R</italic>
<sub>0</sub>
), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated
<italic>R</italic>
<sub>0</sub>
from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase.
<italic>Result</italic>
. The estimated
<italic>R</italic>
<sub>0</sub>
with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of
<italic>R</italic>
<sub>0</sub>
.
<italic>Conclusion</italic>
. Basic reproduction number
<italic>R</italic>
<sub>0</sub>
provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diekmann, O" uniqKey="Diekmann O">O. Diekmann</name>
</author>
<author>
<name sortKey="Heesterbeek, J A P" uniqKey="Heesterbeek J">J. A. P. Heesterbeek</name>
</author>
<author>
<name sortKey="Metz, J A J" uniqKey="Metz J">J. A. J. Metz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, R M" uniqKey="Anderson R">R. M. Anderson</name>
</author>
<author>
<name sortKey="May, R M" uniqKey="May R">R. M. May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dietz, K" uniqKey="Dietz K">K. Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gani, S R" uniqKey="Gani S">S. R. Gani</name>
</author>
<author>
<name sortKey="Ali, S T" uniqKey="Ali S">S. T. Ali</name>
</author>
<author>
<name sortKey="Kadi, A S" uniqKey="Kadi A">A. S. Kadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heffernan, J M" uniqKey="Heffernan J">J. M. Heffernan</name>
</author>
<author>
<name sortKey="Wahl, L M" uniqKey="Wahl L">L. M. Wahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kermack, W O" uniqKey="Kermack W">W. O. Kermack</name>
</author>
<author>
<name sortKey="Mckendrick, A G" uniqKey="Mckendrick A">A. G. McKendrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feller, W" uniqKey="Feller W">W. Feller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levin, B R" uniqKey="Levin B">B. R. Levin</name>
</author>
<author>
<name sortKey="Bull, J J" uniqKey="Bull J">J. J. Bull</name>
</author>
<author>
<name sortKey="Stewart, F M" uniqKey="Stewart F">F. M. Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heesterbeek, J A P" uniqKey="Heesterbeek J">J. A. P. Heesterbeek</name>
</author>
<author>
<name sortKey="Dietz, K" uniqKey="Dietz K">K. Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Metz, J A J" uniqKey="Metz J">J. A. J. Metz</name>
</author>
<author>
<name sortKey="Diekmann, O" uniqKey="Diekmann O">O. Diekmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J. Wallinga</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M. Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G. Chowell</name>
</author>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H. Nishiura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svensson, A" uniqKey="Svensson A">A. Svensson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J. Wallinga</name>
</author>
<author>
<name sortKey="Teunis, P" uniqKey="Teunis P">P. Teunis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haydon, D T" uniqKey="Haydon D">D. T. Haydon</name>
</author>
<author>
<name sortKey="Chase Topping, M" uniqKey="Chase Topping M">M. Chase-Topping</name>
</author>
<author>
<name sortKey="Shaw, D J" uniqKey="Shaw D">D. J. Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H. Nishiura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robert, C P" uniqKey="Robert C">C. P. Robert</name>
</author>
<author>
<name sortKey="Casella, G" uniqKey="Casella G">G. Casella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anscombe, F J" uniqKey="Anscombe F">F. J. Anscombe</name>
</author>
<author>
<name sortKey="Bayes, T" uniqKey="Bayes T">T. Bayes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, R M" uniqKey="Anderson R">R. M. Anderson</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C. Fraser</name>
</author>
<author>
<name sortKey="Ghani, A C" uniqKey="Ghani A">A. C. Ghani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, L F" uniqKey="White L">L. F. White</name>
</author>
<author>
<name sortKey="Pagano, M" uniqKey="Pagano M">M. Pagano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garske, T" uniqKey="Garske T">T. Garske</name>
</author>
<author>
<name sortKey="Clarke, P" uniqKey="Clarke P">P. Clarke</name>
</author>
<author>
<name sortKey="Ghani, A C" uniqKey="Ghani A">A. C. Ghani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, B J" uniqKey="Cowling B">B. J. Cowling</name>
</author>
<author>
<name sortKey="Fang, V J" uniqKey="Fang V">V. J. Fang</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S. Riley</name>
</author>
<author>
<name sortKey="Peiris, J S M" uniqKey="Peiris J">J. S. M. Peiris</name>
</author>
<author>
<name sortKey="Leung, G M" uniqKey="Leung G">G. M. Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S. Cauchemez</name>
</author>
<author>
<name sortKey="Donnelly, C A" uniqKey="Donnelly C">C. A. Donnelly</name>
</author>
<author>
<name sortKey="Reed, C" uniqKey="Reed C">C. Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, N M" uniqKey="Ferguson N">N. M. Ferguson</name>
</author>
<author>
<name sortKey="Cummings, D A T" uniqKey="Cummings D">D. A. T. Cummings</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S. Cauchemez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samsuzzoha, M D" uniqKey="Samsuzzoha M">M. D. Samsuzzoha</name>
</author>
<author>
<name sortKey="Singh, M" uniqKey="Singh M">M. Singh</name>
</author>
<author>
<name sortKey="Lucy, D" uniqKey="Lucy D">D. Lucy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Sugimoto, J D" uniqKey="Sugimoto J">J. D. Sugimoto</name>
</author>
<author>
<name sortKey="Elizabeth Halloran, M" uniqKey="Elizabeth Halloran M">M. Elizabeth Halloran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghani, A" uniqKey="Ghani A">A. Ghani</name>
</author>
<author>
<name sortKey="Baguelin, M" uniqKey="Baguelin M">M. Baguelin</name>
</author>
<author>
<name sortKey="Griffin, J" uniqKey="Griffin J">J. Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pourbohloul, B" uniqKey="Pourbohloul B">B. Pourbohloul</name>
</author>
<author>
<name sortKey="Ahued, A" uniqKey="Ahued A">A. Ahued</name>
</author>
<author>
<name sortKey="Davoudi, B" uniqKey="Davoudi B">B. Davoudi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baguelin, M" uniqKey="Baguelin M">M. Baguelin</name>
</author>
<author>
<name sortKey="Hoek, A J V" uniqKey="Hoek A">A. J. V. Hoek</name>
</author>
<author>
<name sortKey="Jit, M" uniqKey="Jit M">M. Jit</name>
</author>
<author>
<name sortKey="Flasche, S" uniqKey="Flasche S">S. Flasche</name>
</author>
<author>
<name sortKey="White, P J" uniqKey="White P">P. J. White</name>
</author>
<author>
<name sortKey="Edmunds, W J" uniqKey="Edmunds W">W. J. Edmunds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J T" uniqKey="Wu J">J. T. Wu</name>
</author>
<author>
<name sortKey="Ma, E S K" uniqKey="Ma E">E. S. K. Ma</name>
</author>
<author>
<name sortKey="Lee, C K" uniqKey="Lee C">C. K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birrell, P J" uniqKey="Birrell P">P. J. Birrell</name>
</author>
<author>
<name sortKey="Ketsetzis, G" uniqKey="Ketsetzis G">G. Ketsetzis</name>
</author>
<author>
<name sortKey="Gay, N J" uniqKey="Gay N">N. J. Gay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H. Nishiura</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Comput Math Methods Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Comput Math Methods Med</journal-id>
<journal-id journal-id-type="publisher-id">CMMM</journal-id>
<journal-title-group>
<journal-title>Computational and Mathematical Methods in Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1748-670X</issn>
<issn pub-type="epub">1748-6718</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25784956</article-id>
<article-id pub-id-type="pmc">4345055</article-id>
<article-id pub-id-type="doi">10.1155/2015/256319</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kadi</surname>
<given-names>Adiveppa S.</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Avaradi</surname>
<given-names>Shivakumari R.</given-names>
</name>
<xref ref-type="aff" rid="I1"></xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">Department of Studies in Statistics, Karnatak University, Dharwad 580003, India</aff>
<author-notes>
<corresp id="cor1">*Shivakumari R. Avaradi:
<email>shiv.avaradi@gmail.com</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Xiaojun Yao</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>15</day>
<month>2</month>
<year>2015</year>
</pub-date>
<volume>2015</volume>
<elocation-id>256319</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>10</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>16</day>
<month>1</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>1</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 A. S. Kadi and S. R. Avaradi.</copyright-statement>
<copyright-year>2015</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Background</italic>
. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns.
<italic>Method</italic>
. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (
<italic>R</italic>
<sub>0</sub>
), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated
<italic>R</italic>
<sub>0</sub>
from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase.
<italic>Result</italic>
. The estimated
<italic>R</italic>
<sub>0</sub>
with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of
<italic>R</italic>
<sub>0</sub>
.
<italic>Conclusion</italic>
. Basic reproduction number
<italic>R</italic>
<sub>0</sub>
provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Influenza is an emerging infectious disease and influenza-like illness (ILI) is a clinical illness caused by the influenza virus, which gave rise to human pandemics such as 1918 Spanish flu (H1N1), 1957 Asian flu (H3N2), 1968 Hong Kong flu (H2N2), and most recently H1N1 pandemic 2009. Influenza A (H1N1) was originally referred to as “swine flu” because laboratory testing showed that many of the genes in this new virus were very similar to those found in pigs in North America. Further on, it has been found that this new virus has gene segments from the swine, avian, and human flu virus genes. The scientists call this a “quadruple reassortant” virus and hence this new (novel) virus is christened “influenza-A (H1N1) virus” [
<xref rid="B1" ref-type="bibr">1</xref>
].</p>
<p>A reassorted influenza was first detected in Mexico on March 18, 2009, and rapidly spread to the United States, Canada, and subsequently all regions worldwide including India. The first case of H1N1 was reported in India on May 17, 2009, at Hyderabad Airport in a young boy who travelled from the USA and later it spread throughout the country [
<xref rid="B2" ref-type="bibr">2</xref>
]. According to World Health Organization (WHO) update of November 20, 2009, virus spread across more than 206 countries resulting in 6770 deaths [
<xref rid="B3" ref-type="bibr">3</xref>
]. In June 2009 World Health Organization (WHO) raised the level of pandemic alert phase 5 to phase 6 [
<xref rid="B4" ref-type="bibr">4</xref>
]. According to the Directorate General of Health Services, Government of India, New Delhi, update on November 19, 2009, there have been 16044 laboratories confirming cases recorded in India resulting in 537 deaths [
<xref rid="B5" ref-type="bibr">5</xref>
].</p>
<p>To formulate the valid and reliable estimate of transmissibility and spread of an outbreak we have utilised statistical modelling, which facilitates our understanding of mechanism of disease spread. To access the intensity of an outbreak, transmission potential can be quantified by reproduction number
<italic>R</italic>
<sub>0</sub>
, that is, average number of secondary cases generated by a single primary case in a completely susceptible population [
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
]. The importance of basic reproduction number
<italic>R</italic>
<sub>0</sub>
becomes more apparent when an emerging infectious disease strikes a population which is a key concept in the epidemic theory. If
<italic>R</italic>
<sub>0</sub>
is less than or equal to one, then transmission in the population goes stochastically extinct with probability of one after a small number of infections. If
<italic>R</italic>
<sub>0</sub>
is greater than 1, then there is a positive probability of a large epidemic. Statistical estimation of
<italic>R</italic>
<sub>0</sub>
is used to understand the transmission dynamics and evolution of the infectious disease which facilitate designing the effective public health intervention strategies and mitigation policies [
<xref rid="B8" ref-type="bibr">8</xref>
].</p>
<p>The aim of present study is to quantify the intensity of pandemic influenza A/H1N1 2009 in India. To achieve this goal we have calculated basic reproduction number from time series data set of H1N1 through Bayesian approach to contact patterns. We have estimated basic reproduction number
<italic>R</italic>
<sub>0</sub>
with 95% credible interval.</p>
</sec>
<sec id="sec2">
<title>2. Material and Methods</title>
<sec id="sec2.1">
<title>2.1. Data Sources</title>
<p>Time series data for the 2009 influenza A/H1N1 pandemic in India was obtained from the Ministry of Health and Family Welfare (MoHFW), Government of India [
<xref rid="B9" ref-type="bibr">9</xref>
]. 31,924 infected cases with 1525 deaths were reported during May 17, 2009, to May 17, 2010, with two complete waves of epidemic. We have represented the data of the first wave from May to October 2009 (see
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). For the analysis we have used daily reported cases (incidence) for initial phase of an epidemic from June 11 to August 13, 2009 [
<xref rid="B10" ref-type="bibr">10</xref>
].</p>
</sec>
<sec id="sec2.2">
<title>2.2. Statistical Method</title>
<p>Statistical inference of
<italic>R</italic>
<sub>0</sub>
is still in progress, and it is recognized that the estimate is very sensitive to dispersal of the disease progression [
<xref rid="B11" ref-type="bibr">11</xref>
]. Estimation of
<italic>R</italic>
<sub>0</sub>
can be illustrated by employing time-since-infection model and suggests origin of transmission of infectious diseases which is the counterpart of compartmental models like SI, SIS, and so forth. Both models are originated in the basic paper of Kermack and McKendrick [
<xref rid="B12" ref-type="bibr">12</xref>
], and both the SIR model and the simplest time-since-infection model are known as “the Kermack-McKendrick age structure model.” It is used to identify key epidemiological parameter by using a simple renewal process which adheres to the basic reproduction number
<italic>R</italic>
<sub>0</sub>
.</p>
<p>Let
<italic>j</italic>
(
<italic>t</italic>
) represent the number of new infections or incidence at calendar time
<italic>t</italic>
; that is, each infected individual on an average generates secondary cases at a rate
<italic>A</italic>
(
<italic>τ</italic>
) at time-since-infection
<italic>τ</italic>
which is a specific case of renewal equation of birth process [
<xref rid="B13" ref-type="bibr">13</xref>
<xref rid="B15" ref-type="bibr">15</xref>
]. Consider
<disp-formula id="EEq1">
<label>(1)</label>
<mml:math id="M1">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:mi>A</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo></mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mrow>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Since
<italic>R</italic>
<sub>0</sub>
represents average number of secondary cases that a primary case generates during entire his/her infectious period, the estimate is given by [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
]
<disp-formula id="EEq2">
<label>(2)</label>
<mml:math id="M2">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:mi>A</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Under Kermack and McKendrick assumption “single infection causes an independent process of infection with host” which allows an age representation for the state of infection, that is, infectivity of an individual. The time elapsed since infection is called the infection age or time since infection, whereas
<italic>A</italic>
(
<italic>τ</italic>
) is expected infectivity of an individual with time-since-infection
<italic>τ</italic>
whereas
<italic>A</italic>
(
<italic>τ</italic>
) becomes the rate of secondary transmission per single primary case at time-since-infection
<italic>τ</italic>
[
<xref rid="B18" ref-type="bibr">18</xref>
]:
<disp-formula id="EEq3">
<label>(3)</label>
<mml:math id="M3">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>A</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where
<italic>β</italic>
(
<italic>τ</italic>
) is the transmission rate which depends on frequency of contact and infectiousness at infection age
<italic>τ</italic>
and Γ(
<italic>τ</italic>
) is the probability of being infectious at infection age
<italic>τ</italic>
. Substituting
<italic>A</italic>
(
<italic>τ</italic>
) into (
<xref ref-type="disp-formula" rid="EEq1">1</xref>
) we get
<disp-formula id="EEq4">
<label>(4)</label>
<mml:math id="M4">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo></mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Further, we consider a probability density of the generation time where generation time is defined as time from infection of an individual to the infection of a secondary case by that individual, denoted by
<italic>g</italic>
(
<italic>τ</italic>
) through normalized density of secondary transmission [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
]. We have
<disp-formula id="EEq5">
<label>(5)</label>
<mml:math id="M5">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>g</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal">Γ</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Using (
<xref ref-type="disp-formula" rid="EEq5">5</xref>
) in (
<xref ref-type="disp-formula" rid="EEq4">4</xref>
) we get
<disp-formula id="eq6">
<label>(6)</label>
<mml:math id="M6">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mi>g</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo></mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Then, the basic reproduction number
<italic>R</italic>
<sub>0</sub>
is as in
<disp-formula id="EEq6">
<label>(7)</label>
<mml:math id="M7">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mi>g</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>j</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo></mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>d</mml:mi>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
In reality, the case incidences are rather in discrete form as daily/weekly reports. The discretized analogy of (
<xref ref-type="disp-formula" rid="EEq6">7</xref>
) can be derived as
<disp-formula id="EEq7">
<label>(8)</label>
<mml:math id="M8">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
By taking the inverse of both sides of (
<xref ref-type="disp-formula" rid="EEq7">8</xref>
) we get
<disp-formula id="EEq8">
<label>(9)</label>
<mml:math id="M9">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where
<italic>s</italic>
is the discretized form of time since infection (usually in days),
<italic>i</italic>
is discretized calendar time (usually in days/weeks), and
<italic>w</italic>
<sub>
<italic>s</italic>
</sub>
is the generation time distribution for an infectious disease which is the probability distribution function for the time from infection of an individual to the infection of a secondary case by that individual [
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B20" ref-type="bibr">20</xref>
].</p>
<p>From
<xref ref-type="fig" rid="fig2">Figure 2</xref>
the concept of
<italic>R</italic>
<sub>0</sub>
through contact patterns has been illustrated here before taking up the Bayesian method of estimation. From
<xref ref-type="fig" rid="fig2">Figure 2(a)</xref>
, the transmission tree with
<italic>R</italic>
<sub>0</sub>
= 2 represents who infected whom, where each primary case on an average generates “2” secondary cases. Secondary transmissions from primary to secondary cases are given by the basic reproduction number
<italic>R</italic>
<sub>0</sub>
= 2. From
<xref ref-type="fig" rid="fig2">Figure 2(b)</xref>
restructuring the transmission tree, given that all the potential contacts made by primary cases with the probability of each possible contact resulted in a secondary transmission, is 1/
<italic>R</italic>
<sub>0</sub>
. This type of transmission tree represents who infected whom which is unobservable in nature unless rigorous contact tracing is implemented [
<xref rid="B21" ref-type="bibr">21</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
].</p>
<p>The numerator of the right hand side of (
<xref ref-type="disp-formula" rid="EEq8">9</xref>
) represents the total number of effective contacts made by a possible primary case in day/weeks which have an equal probability of resulting in the secondary transmission; that is, the probability that a secondary case is linked to an effective contact made by a single primary case at time
<italic>i</italic>
is given by 1/
<italic>R</italic>
<sub>0</sub>
. Effective contacts lead to potential secondary cases with equal chance of getting the infection from the primary cases at time
<italic>i</italic>
. It has been seen that every contact does not lead to successful transmission of infection; that is, the effective contacts are uncertain which is defined as the contact that is sufficient to lead to the transmission of infection between infectious and susceptible population. The total number of effective contacts made by a potential primary case at time
<italic>i</italic>
is the sum of the product of incidence cases and generation time distribution during the generation interval of length
<italic>m</italic>
. This indicates a simple binomial law of uncertainty in effective contacts [
<xref rid="B22" ref-type="bibr">22</xref>
].</p>
<p>Total number of effective contacts become
<italic>c</italic>
<sub>
<italic>i</italic>
</sub>
= ∑
<sub>
<italic>s</italic>
=0</sub>
<sup>
<italic>m</italic>
</sup>
<italic>w</italic>
<sub>
<italic>s</italic>
</sub>
<italic>j</italic>
<sub>
<italic>i</italic>
<italic>s</italic>
</sub>
, during the
<italic>i</italic>
th day, that is,
<italic>c</italic>
<sub>
<italic>i</italic>
</sub>
~ Bin(
<italic>j</italic>
<sub>
<italic>i</italic>
</sub>
, 1/
<italic>R</italic>
<sub>0</sub>
), ∀
<italic>i</italic>
= 1, 2,…,
<italic>n</italic>
, where 1/
<italic>R</italic>
<sub>0</sub>
is the probability of effective contacts. Let
<italic>j</italic>
<sub>
<italic>i</italic>
</sub>
denote incidence or new cases at calendar time
<italic>i</italic>
and
<italic>w</italic>
<sub>
<italic>s</italic>
</sub>
denotes generation time distribution at time-since-infection
<italic>s</italic>
. Then the probability mass function of effective contacts becomes
<disp-formula id="EEq9">
<label>(10)</label>
<mml:math id="M10">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:msub>
<mml:mrow>
<mml:mi>P</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msub>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo></mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msup>
<mml:mo>,</mml:mo>
<mml:malignmark></mml:malignmark>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn mathvariant="normal">1,2</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mo>,</mml:mo>
<mml:mi>n</mml:mi>
<mml:mo>;</mml:mo>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mo><</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo><</mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo>.</mml:mo>
<mml:mo></mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
The likelihood function of 1/
<italic>R</italic>
<sub>0</sub>
is as follows:
<disp-formula id="EEq10">
<label>(11)</label>
<mml:math id="M11">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>L</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mtd>
<mml:mtd>
<mml:mo></mml:mo>
</mml:mtd>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo></mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:mi>L</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mfenced open="[" close="]" separators="|">
<mml:mrow>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:malignmark></mml:malignmark>
<mml:mo></mml:mo>
<mml:mo>·</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Here, Bayesian inferential approach is used to estimate parameter
<italic>R</italic>
<sub>0</sub>
which provides us with different but related estimate by combining prior belief and the evidence observed. As more evidence is gathered the prior distribution is modified into the posterior distribution that represents the uncertainty over the parameter values. Posterior distribution is derived from the Bayes formula [
<xref rid="B23" ref-type="bibr">23</xref>
]
<disp-formula id="EEq12">
<label>(12)</label>
<mml:math id="M12">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mi>π</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>θ</mml:mi>
<mml:mo>/</mml:mo>
<mml:mi>x</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>f</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo>/</mml:mo>
<mml:mi>θ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>π</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>θ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi mathvariant="normal">Θ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>·</mml:mo>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mi>f</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo>/</mml:mo>
<mml:mi>θ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mi>π</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>θ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mi>d</mml:mi>
<mml:mi>θ</mml:mi>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
where ∫
<sub>Θ</sub>
<sup>·</sup>
<italic>f</italic>
(
<italic>x</italic>
/
<italic>θ</italic>
)
<italic>π</italic>
(
<italic>θ</italic>
)
<italic></italic>
is a normalization constant,
<italic>x</italic>
indicated data,
<italic>θ</italic>
is the unknown quantity,
<italic>π</italic>
(
<italic>θ</italic>
) is the prior distribution,
<italic>f</italic>
(
<italic>x</italic>
/
<italic>θ</italic>
) is the likelihood function, and posterior distribution
<italic>π</italic>
(
<italic>θ</italic>
/
<italic>x</italic>
) completely describes the uncertainty. There are two key advantages of Bayesian theory: (i) once the uncertainty in the posterior distribution is expressed via probability distribution then the statistical inference can be automated and (ii) available prior information is reasonably incorporated into the statistical model. Now, the posterior estimate of parameter
<italic>R</italic>
<sub>0</sub>
is derived using its prior information, where likelihood function follows binomial distribution with conjugate prior as beta distribution of first kind [
<xref rid="B24" ref-type="bibr">24</xref>
]. That is, 1/
<italic>R</italic>
<sub>0</sub>
~ Beta(
<italic>a</italic>
,
<italic>b</italic>
), with realistic choice of parameters (
<italic>a</italic>
,
<italic>b</italic>
):
<disp-formula id="EEq13">
<label>(13)</label>
<mml:math id="M13">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:mi>π</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>a</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>b</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo></mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>b</mml:mi>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:malignmark></mml:malignmark>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mo><</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn mathvariant="normal">0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfrac>
<mml:mo><</mml:mo>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mi>a</mml:mi>
<mml:mo>></mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mi>b</mml:mi>
<mml:mo>></mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mo>.</mml:mo>
<mml:mo></mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
Now posterior distribution of 1/
<italic>R</italic>
<sub>0</sub>
is proportional to the likelihood times prior. Therefore,
<disp-formula id="EEq14">
<label>(14)</label>
<mml:math id="M14">
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:mtext>Posterior</mml:mtext>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mtext>likeliHood</mml:mtext>
<mml:mi></mml:mi>
<mml:mtext>prior</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mtext>normalization</mml:mtext>
<mml:mi>  </mml:mi>
<mml:mtext>constatnt</mml:mtext>
</mml:mrow>
</mml:mfrac>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mfenced open="[" close="]" separators="|">
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:msup>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>b</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>b</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mo>·</mml:mo>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mfenced open="[" close="]" separators="|">
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:msup>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:mi>β</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>b</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mi>b</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mi>d</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mi>b</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:msup>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:msubsup>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mi>b</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:msup>
<mml:mi>d</mml:mi>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>/</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mfrac>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:maligngroup></mml:maligngroup>
<mml:malignmark></mml:malignmark>
<mml:mo>=</mml:mo>
<mml:mtext>Beta</mml:mtext>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>a</mml:mi>
<mml:mo>,</mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:munderover>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi>n</mml:mi>
</mml:mrow>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>c</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>b</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>.</mml:mo>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
We are interested in estimating
<italic>R</italic>
<sub>0</sub>
with its 95% credible interval (CrI) which has been derived by considering the sampling transformation of 1/
<italic>R</italic>
<sub>0</sub>
through simulation from the above posterior distribution with different choices of priors for beta distribution. Theoretically, it is hard to find the posterior distribution of
<italic>R</italic>
<sub>0</sub>
where 1/
<italic>R</italic>
<sub>0</sub>
is a beta variable. Through simulation we have generated 10000 samples from beta posterior distribution and also estimated 95% CrI. We have considered beta distribution with several combinations of mean (ranges from 0.4 to 0.8) and accordingly we chose different values of (
<italic>a</italic>
,
<italic>b</italic>
). The second and fourth column of
<xref ref-type="table" rid="tab1">Table 1</xref>
represent our estimates of
<italic>R</italic>
<sub>0</sub>
which are posterior means along with 95% CrI.
<xref ref-type="fig" rid="fig3"> Figure 3</xref>
displays the posterior distribution of
<italic>R</italic>
<sub>0</sub>
with different prior choices.</p>
<p>Generation time is another most important characteristic in infectious disease epidemiology, since
<italic>R</italic>
<sub>0</sub>
indicates only the average number of secondary infections one primary infection produces in one disease generation. When we consider disease transmission in real time scale such as days or weeks, it matters a lot how long one disease generation lasts. Generation time is the average time taken for secondary infections produced by a primary infection [
<xref rid="B25" ref-type="bibr">25</xref>
]. Generation interval or generation time distribution is assumed to be known as Weibull distribution which is a biologically plausible choice [
<xref rid="B20" ref-type="bibr">20</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
<xref rid="B28" ref-type="bibr">28</xref>
] with a mean of 1.78 and 2.48 days and a standard deviation (SD) of 0.66 and 1.06 days for
<italic>s</italic>
= 7 and 10 days [
<xref rid="B29" ref-type="bibr">29</xref>
,
<xref rid="B30" ref-type="bibr">30</xref>
] (Tables S1 and S2 in Supplementary Material available online at
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1155/2015/256319">http://dx.doi.org/10.1155/2015/256319</ext-link>
). All the sensitivity analysis was done by using MATLAB (Supplementary Material, Algorithm).</p>
</sec>
<sec id="sec2.3">
<title>2.3. Sensitivity Analysis</title>
<p>Sensitivity analysis is a statistical technique which provides insight into how uncertainty in input variables affects the model outputs and which input variable tends to derive variation in the outputs [
<xref rid="B31" ref-type="bibr">31</xref>
]. We performed sensitivity analysis to quantify the effect of changes on
<italic>R</italic>
<sub>0</sub>
. It has been used to determine how sensitive an estimate of the parameter is. It is usually performed as series of tests in which one can use different set of hyperparameter values to see the change in the estimate. Our analysis is based on the pandemic influenza A/H1N1 in India 2009 through the Bayesian estimates of basic reproduction number; we used the daily reported cases to calculate effective contacts. We have calculated posterior distribution of
<italic>R</italic>
<sub>0</sub>
using prior as beta distribution with different values of parameter choices. From
<xref ref-type="fig" rid="fig1">Figure 1</xref>
we have seen that as prior choice changes the shape of the posterior distribution also changes.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results and Discussion</title>
<p>The estimates of
<italic>R</italic>
<sub>0</sub>
for the 2009 H1N1 influenza pandemic were mainly reported based on the data obtained in the first few months of pandemic or based on whole first wave data. Most of these
<italic>R</italic>
<sub>0</sub>
estimates ranges from 1.1 to 2 [
<xref rid="B32" ref-type="bibr">32</xref>
<xref rid="B37" ref-type="bibr">37</xref>
]. Our estimated value of the basic reproduction number indicates the milder intensity of disease transmission in India. Interestingly, this estimated
<italic>R</italic>
<sub>0</sub>
with 95% credible interval is consistent with several other studies on the same strain [
<xref rid="B35" ref-type="bibr">35</xref>
], along with many European countries [
<xref rid="B28" ref-type="bibr">28</xref>
]. Notably, it has a smaller credible length which is more reliable estimate; see
<xref ref-type="table" rid="tab1">Table 1</xref>
. Statistical inference of
<italic>R</italic>
<sub>0</sub>
is based on incidence (reported cases) and known generation time distribution. Some differences among these estimates are due to the choice of generation time distribution because
<italic>R</italic>
<sub>0</sub>
estimation relies much on the assumptions of the generation time distribution [
<xref rid="B38" ref-type="bibr">38</xref>
]. In general, shorter mean generation time may lead to smaller
<italic>R</italic>
<sub>0</sub>
estimates. Since, the estimate of
<italic>R</italic>
<sub>0</sub>
crucially depends on generation time distribution. From
<xref ref-type="table" rid="tab1">Table 1</xref>
, we conclude that generation time or infectiousness of an individual affects the basic reproduction number. This method does not require exponential growth assumption. Still our estimate is greater than one so one has to make effort in controlling the disease through control strategies, which are typically targeted to bring this number below one and maintain it, as this will lead to eventual extinction of the epidemic.</p>
<sec id="sec3.1">
<title>3.1. Limitations</title>
<p>This method is applied only for initial stage of the epidemic (exponential phase) when there is no intervention like quarantine, isolation vaccination, and so forth. If basic reproduction number is
<italic>R</italic>
<sub>0</sub>
< 1, then the probability 1/
<italic>R</italic>
<sub>0</sub>
terminates because it exceeds the law of probability.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="supplementary-material-sec">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="f1">
<caption>
<p>We have calculated mean and standard deviation (SD) of the generation time distribution with different values of shape and scale parameters (See table S1), similarly we have evaluated mean of the prior distribution with different choice of hyper parameters whose mean ranges from 0.4 to 0.8 for 7 days and 10 days.(see table S2). Estimation of basic reproduction number R
<sub>0</sub>
as well as sensitivity analysis was done through simulation using MATLAB. (Tables S1 and S2 in Supplementary Material available online at ).</p>
</caption>
<media xlink:href="256319.f1.pdf" mimetype="application" mime-subtype="pdf" orientation="portrait" id="d35e3047" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors thank the University Grants Commission (UGC) through Research Fellowship in Science for Meritorious Students (RFSMS) and DST (Science & Engineering Research Board) Project (no. SR/S4/MS: 396/10) New Delhi, India, for research funding support. They are thankful to Sheikh Taslim Ali for his motivation and suggestions.</p>
</ack>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="other">
<comment>Factsheet influenza,
<ext-link ext-link-type="uri" xlink:href="http://www.pib.nic.in/h1n1/factsheet.pdf">http://www.pib.nic.in/h1n1/factsheet.pdf</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="other">
<comment>Pandemic Influenza: A H1N1 Clinical Management Protocol and Infection Control, Guidelines,
<ext-link ext-link-type="uri" xlink:href="http://www.mohfw-h1n1.nic.in/guidelines.html">http://www.mohfw-h1n1.nic.in/guidelines.html</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="other">
<collab>WHO</collab>
<article-title>pandemic H1N1 2009-update</article-title>
<comment>2009,
<ext-link ext-link-type="uri" xlink:href="http://who.int/csr/don/2009/enindex.html">http://who.int/csr/don/2009/enindex.html</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="book">
<collab>World Health Organization</collab>
<source>
<italic>Pandemic (H1N1) 2009—Update 99</italic>
</source>
<year>2010</year>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2010_05_07/en/index.html">http://www.who.int/csr/don/2010_05_07/en/index.html</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="book">
<collab>Ministry of Health and Family Welfare and Government of India</collab>
<source>
<italic>Pandemic Influenza A/H1N1</italic>
</source>
<year>2009</year>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://mohfw-h1n1.nic.in">http://mohfw-h1n1.nic.in</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diekmann</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Heesterbeek</surname>
<given-names>J. A. P.</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>J. A. J.</given-names>
</name>
</person-group>
<article-title>On the definition and the computation of the basic reproduction ratio
<italic>R</italic>
<sub>0</sub>
in models for infectious diseases in heterogeneous populations</article-title>
<source>
<italic>Journal of Mathematical Biology</italic>
</source>
<year>1990</year>
<volume>28</volume>
<issue>4</issue>
<fpage>365</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="doi">10.1007/bf00178324</pub-id>
<pub-id pub-id-type="other">MR1057044</pub-id>
<pub-id pub-id-type="pmid">2117040</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>May</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
<source>
<italic>Infectious Diseases of Humans: Dynamics and Control</italic>
</source>
<year>1991</year>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>The estimation of the basic reproduction number for infectious diseases</article-title>
<source>
<italic>Statistical Methods in Medical Research</italic>
</source>
<year>1993</year>
<volume>2</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1177/096228029300200103</pub-id>
<pub-id pub-id-type="other">2-s2.0-0027736832</pub-id>
<pub-id pub-id-type="pmid">8261248</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="other">
<comment>Ministry of Health and Family Welfare, Government of India, May 2010,
<ext-link ext-link-type="uri" xlink:href="http://www.mohfw-h1n1.nic.in/">http://www.mohfw-h1n1.nic.in/</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gani</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>S. T.</given-names>
</name>
<name>
<surname>Kadi</surname>
<given-names>A. S.</given-names>
</name>
</person-group>
<article-title>The transmission dynamics of pandemic influenza A/H1N1 2009-2010 in India</article-title>
<source>
<italic>Current Science</italic>
</source>
<year>2011</year>
<volume>101</volume>
<issue>8</issue>
<pub-id pub-id-type="other">2-s2.0-80755169897</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heffernan</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Wahl</surname>
<given-names>L. M.</given-names>
</name>
</person-group>
<article-title>Improving estimates of the basic reproductive ratio: using both the mean and the dispersal of transition times</article-title>
<source>
<italic>Theoretical Population Biology</italic>
</source>
<year>2006</year>
<volume>70</volume>
<issue>2</issue>
<fpage>135</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1016/j.tpb.2006.03.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-33746563616</pub-id>
<pub-id pub-id-type="pmid">16712889</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kermack</surname>
<given-names>W. O.</given-names>
</name>
<name>
<surname>McKendrick</surname>
<given-names>A. G.</given-names>
</name>
</person-group>
<article-title>A contribution to the mathematical theory of epidemics</article-title>
<source>
<italic>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</italic>
</source>
<year>1927</year>
<volume>115</volume>
<issue>772</issue>
<fpage>700</fpage>
<lpage>721</lpage>
<pub-id pub-id-type="doi">10.1098/rspa.1927.0118</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feller</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>On the integral equation of renewal theory</article-title>
<source>
<italic>Annals of Mathematical Statistics</italic>
</source>
<year>1941</year>
<volume>12</volume>
<fpage>243</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.1214/aoms/1177731708</pub-id>
<pub-id pub-id-type="other">MR0005419</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levin</surname>
<given-names>B. R.</given-names>
</name>
<name>
<surname>Bull</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>F. M.</given-names>
</name>
</person-group>
<article-title>The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications</article-title>
<source>
<italic>Mathematical Biosciences</italic>
</source>
<year>1996</year>
<volume>132</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/0025-5564(95)00053-4</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029667343</pub-id>
<pub-id pub-id-type="pmid">8924722</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heesterbeek</surname>
<given-names>J. A. P.</given-names>
</name>
<name>
<surname>Dietz</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>The concept of
<italic>R</italic>
<sub>0</sub>
in the epidemic theory</article-title>
<source>
<italic>Statistica Neerlandica</italic>
</source>
<year>1996</year>
<volume>50</volume>
<issue>1</issue>
<fpage>89</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1111/j.1467-9574.1996.tb01482.x</pub-id>
<pub-id pub-id-type="other">MR1381210</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Metz</surname>
<given-names>J. A. J.</given-names>
</name>
<name>
<surname>Diekmann</surname>
<given-names>O.</given-names>
</name>
</person-group>
<source>
<italic>The Dynamics of Physiologically Structured Populations</italic>
</source>
<year>1986</year>
<publisher-loc>Berlin, Germany</publisher-loc>
<publisher-name>Springer</publisher-name>
<pub-id pub-id-type="doi">10.1007/978-3-662-13159-6</pub-id>
<pub-id pub-id-type="other">MR860959</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallinga</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lipsitch</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>How generation intervals shape the relationship between growth rates and reproductive numbers</article-title>
<source>
<italic>Proceedings of the Royal Society B</italic>
</source>
<year>2007</year>
<volume>274</volume>
<issue>1609</issue>
<fpage>599</fpage>
<lpage>604</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.2006.3754</pub-id>
<pub-id pub-id-type="other">2-s2.0-34447316466</pub-id>
<pub-id pub-id-type="pmid">17476782</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowell</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nishiura</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Quantifying the transmission potential of pandemic influenza</article-title>
<source>
<italic>Physics of Life Reviews</italic>
</source>
<year>2008</year>
<volume>5</volume>
<issue>1</issue>
<fpage>50</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="doi">10.1016/j.plrev.2007.12.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-39049160050</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Svensson</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A note on generation times in epidemic models</article-title>
<source>
<italic>Mathematical Biosciences</italic>
</source>
<year>2007</year>
<volume>208</volume>
<issue>1</issue>
<fpage>300</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="doi">10.1016/j.mbs.2006.10.010</pub-id>
<pub-id pub-id-type="other">MR2330945</pub-id>
<pub-id pub-id-type="other">2-s2.0-34249287652</pub-id>
<pub-id pub-id-type="pmid">17174352</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallinga</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Teunis</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures</article-title>
<source>
<italic>The American Journal of Epidemiology</italic>
</source>
<year>2004</year>
<volume>160</volume>
<issue>6</issue>
<fpage>509</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="doi">10.1093/aje/kwh255</pub-id>
<pub-id pub-id-type="other">2-s2.0-4544318829</pub-id>
<pub-id pub-id-type="pmid">15353409</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haydon</surname>
<given-names>D. T.</given-names>
</name>
<name>
<surname>Chase-Topping</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>D. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak</article-title>
<source>
<italic>Proceedings of the Royal Society of London B: Biological Sciences</italic>
</source>
<year>2003</year>
<volume>270</volume>
<issue>1511</issue>
<fpage>121</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="other">2-s2.0-0037460207</pub-id>
<pub-id pub-id-type="doi">10.1098/rspb.2002.2191</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishiura</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data</article-title>
<source>
<italic>International Journal of Environmental Research and Public Health</italic>
</source>
<year>2010</year>
<volume>7</volume>
<issue>1</issue>
<fpage>291</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.3390/ijerph7010291</pub-id>
<pub-id pub-id-type="other">2-s2.0-75449118270</pub-id>
<pub-id pub-id-type="pmid">20195446</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Robert</surname>
<given-names>C. P.</given-names>
</name>
<name>
<surname>Casella</surname>
<given-names>G.</given-names>
</name>
</person-group>
<source>
<italic>Monte Carlo Statistical Methods</italic>
</source>
<year>2004</year>
<publisher-loc>New York, NY, USA</publisher-loc>
<publisher-name>Springer</publisher-name>
<series>Springer Texts in Statistics</series>
<pub-id pub-id-type="doi">10.1007/978-1-4757-4145-2</pub-id>
<pub-id pub-id-type="other">MR2080278</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anscombe</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Bayes</surname>
<given-names>T.</given-names>
</name>
</person-group>
<source>
<italic>Bayesian Statistics</italic>
</source>
<year>1992</year>
<series>Academic Class Notes</series>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ghani</surname>
<given-names>A. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic</article-title>
<source>
<italic>Philosophical Transactions of the Royal Society B: Biological Sciences</italic>
</source>
<year>2004</year>
<volume>359</volume>
<issue>1447</issue>
<fpage>1091</fpage>
<lpage>1105</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2004.1490</pub-id>
<pub-id pub-id-type="other">2-s2.0-3242732261</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="gov">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>L. F.</given-names>
</name>
<name>
<surname>Pagano</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A likelihood based method for real time estimation of the serial interval and reproductive number of an epidemic</article-title>
<source>
<italic>Harvard University Biostatistics Working Paper Series</italic>
</source>
<year>2006</year>
<issue>50</issue>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garske</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ghani</surname>
<given-names>A. C.</given-names>
</name>
</person-group>
<article-title>The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<year>2007</year>
<volume>2</volume>
<issue>4, article e349</issue>
<pub-id pub-id-type="other">2-s2.0-55849110822</pub-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000349</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>B. J.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>V. J.</given-names>
</name>
<name>
<surname>Riley</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>J. S. M.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
<article-title>Estimation of the serial interval of influenza</article-title>
<source>
<italic>Epidemiology</italic>
</source>
<year>2009</year>
<volume>20</volume>
<issue>3</issue>
<fpage>344</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1097/ede.0b013e31819d1092</pub-id>
<pub-id pub-id-type="other">2-s2.0-67651083503</pub-id>
<pub-id pub-id-type="pmid">19279492</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cauchemez</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States</article-title>
<source>
<italic>The New England Journal of Medicine</italic>
</source>
<year>2009</year>
<volume>361</volume>
<issue>27</issue>
<fpage>2619</fpage>
<lpage>2627</lpage>
<pub-id pub-id-type="doi">10.1056/nejmoa0905498</pub-id>
<pub-id pub-id-type="other">2-s2.0-74049109693</pub-id>
<pub-id pub-id-type="pmid">20042753</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>N. M.</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D. A. T.</given-names>
</name>
<name>
<surname>Cauchemez</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strategies for containing an emerging influenza pandemic in Southeast Asia</article-title>
<source>
<italic>Nature</italic>
</source>
<year>2005</year>
<volume>437</volume>
<issue>7056</issue>
<fpage>209</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1038/nature04017</pub-id>
<pub-id pub-id-type="other">2-s2.0-23844436610</pub-id>
<pub-id pub-id-type="pmid">16079797</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samsuzzoha</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lucy</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza</article-title>
<source>
<italic>Applied Mathematical Modelling</italic>
</source>
<year>2013</year>
<volume>37</volume>
<issue>3</issue>
<fpage>903</fpage>
<lpage>915</lpage>
<pub-id pub-id-type="doi">10.1016/j.apm.2012.03.029</pub-id>
<pub-id pub-id-type="other">MR3002196</pub-id>
<pub-id pub-id-type="other">2-s2.0-84870239692</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sugimoto</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Elizabeth Halloran</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The transmissibility and control of pandemic influenza a (H1N1) virus</article-title>
<source>
<italic>Science</italic>
</source>
<year>2009</year>
<volume>326</volume>
<issue>5953</issue>
<fpage>729</fpage>
<lpage>733</lpage>
<pub-id pub-id-type="doi">10.1126/science.1177373</pub-id>
<pub-id pub-id-type="other">2-s2.0-70350610314</pub-id>
<pub-id pub-id-type="pmid">19745114</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Baguelin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The early transmission dynamics of H1N1pdm influenza in the United Kingdom</article-title>
<source>
<italic>PLoS Currents</italic>
</source>
<year>2010</year>
<pub-id pub-id-type="publisher-id">RRN1130</pub-id>
<pub-id pub-id-type="doi">10.1371/currents.rrn1130</pub-id>
<pub-id pub-id-type="other">2-s2.0-84873363663</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pourbohloul</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ahued</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Davoudi</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America</article-title>
<source>
<italic>Influenza and Other Respiratory Viruses</italic>
</source>
<year>2009</year>
<volume>3</volume>
<issue>5</issue>
<fpage>215</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1111/j.1750-2659.2009.00100.x</pub-id>
<pub-id pub-id-type="pmid">19702583</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baguelin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hoek</surname>
<given-names>A. J. V.</given-names>
</name>
<name>
<surname>Jit</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Flasche</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Edmunds</surname>
<given-names>W. J.</given-names>
</name>
</person-group>
<article-title>Vaccination against pandemic influenza A/H1N1v in England: a real-time economic evaluation</article-title>
<source>
<italic>Vaccine</italic>
</source>
<year>2010</year>
<volume>28</volume>
<issue>12</issue>
<fpage>2370</fpage>
<lpage>2384</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2010.01.002</pub-id>
<pub-id pub-id-type="other">2-s2.0-77249123297</pub-id>
<pub-id pub-id-type="pmid">20096762</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>E. S. K.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C. K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong</article-title>
<source>
<italic>Clinical Infectious Diseases</italic>
</source>
<year>2010</year>
<volume>51</volume>
<issue>10</issue>
<fpage>1184</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="other">2-s2.0-78349253122</pub-id>
<pub-id pub-id-type="doi">10.1086/656740</pub-id>
<pub-id pub-id-type="pmid">20964521</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birrell</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Ketsetzis</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gay</surname>
<given-names>N. J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London</article-title>
<source>
<italic>Proceedings of the National Academy of Sciences of the United States of America</italic>
</source>
<year>2011</year>
<volume>108</volume>
<issue>45</issue>
<fpage>18238</fpage>
<lpage>18243</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1103002108</pub-id>
<pub-id pub-id-type="other">2-s2.0-81055130178</pub-id>
<pub-id pub-id-type="pmid">22042838</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishiura</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19</article-title>
<source>
<italic>Theoretical Biology and Medical Modelling</italic>
</source>
<year>2007</year>
<volume>4, article 20</volume>
<pub-id pub-id-type="doi">10.1186/1742-4682-4-20</pub-id>
<pub-id pub-id-type="other">2-s2.0-34250371355</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Daily reported cases of influenza A/H1N1 2009 of India.</p>
</caption>
<graphic xlink:href="CMMM2015-256319.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Transmission tree for contact patterns.</p>
</caption>
<graphic xlink:href="CMMM2015-256319.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Histogram of posterior distribution of
<italic>R</italic>
<sub>0</sub>
by using different values of prior choices for beta distribution.</p>
</caption>
<graphic xlink:href="CMMM2015-256319.003"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Sensitivity analysis of basic reproduction number R
<sub>0</sub>
is depending on generation time distribution as Weibull distribution for time since infection
<italic>s</italic>
for 7 days as well as 10 days.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Prior distribution
<break></break>
for
<italic>s</italic>
= 7 days</th>
<th align="center" rowspan="1" colspan="1">Basic reproduction number R
<sub>0</sub>
<break></break>
(with 95% CrI)</th>
<th align="center" rowspan="1" colspan="1">Prior distribution
<break></break>
for
<italic>s</italic>
= 10 days</th>
<th align="center" rowspan="1" colspan="1">Basic reproduction number R
<sub>0</sub>
<break></break>
(with 95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Beta(1,1)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.2548</bold>
<break></break>
(1.2223, 1.2923)</td>
<td align="center" rowspan="1" colspan="1">Bata(2,1)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.3392</bold>
<break></break>
(1.3128, 1.3938)</td>
</tr>
<tr>
<td align="center" colspan="4" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beta(4,2)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.2543</bold>
<break></break>
(1.2250, 1.2850)</td>
<td align="center" rowspan="1" colspan="1">Beta(3.46,5.2)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.3323</bold>
<break></break>
(1.2962, 1.3762)</td>
</tr>
<tr>
<td align="center" colspan="4" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beta(3.46,5.2)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.2578</bold>
<break></break>
(1.2309, 1.2909)</td>
<td align="center" rowspan="1" colspan="1">Beta(4.4,2.2)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.3296</bold>
<break></break>
(1.2895, 1.3695)</td>
</tr>
<tr>
<td align="center" colspan="4" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beta(1.75,3.5)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.2569</bold>
<break></break>
(1.2279, 1.2879)</td>
<td align="center" rowspan="1" colspan="1">Beta(7,3.5)</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.3303</bold>
<break></break>
(1.2969, 1.3669)</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000943 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000943 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4345055
   |texte=   A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25784956" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021