Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000933 ( Pmc/Corpus ); précédent : 0009329; suivant : 0009340 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene</title>
<author>
<name sortKey="Wu, Nicholas C" sort="Wu, Nicholas C" uniqKey="Wu N" first="Nicholas C." last="Wu">Nicholas C. Wu</name>
<affiliation>
<nlm:aff id="aff1">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yamayoshi, Seiya" sort="Yamayoshi, Seiya" uniqKey="Yamayoshi S" first="Seiya" last="Yamayoshi">Seiya Yamayoshi</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ito, Mutsumi" sort="Ito, Mutsumi" uniqKey="Ito M" first="Mutsumi" last="Ito">Mutsumi Ito</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uraki, Ryuta" sort="Uraki, Ryuta" uniqKey="Uraki R" first="Ryuta" last="Uraki">Ryuta Uraki</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kawaoka, Yoshihiro" sort="Kawaoka, Yoshihiro" uniqKey="Kawaoka Y" first="Yoshihiro" last="Kawaoka">Yoshihiro Kawaoka</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A." last="Wilson">Ian A. Wilson</name>
<affiliation>
<nlm:aff id="aff1">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30308159</idno>
<idno type="pmc">6327842</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327842</idno>
<idno type="RBID">PMC:6327842</idno>
<idno type="doi">10.1016/j.chom.2018.09.010</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000933</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000933</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene</title>
<author>
<name sortKey="Wu, Nicholas C" sort="Wu, Nicholas C" uniqKey="Wu N" first="Nicholas C." last="Wu">Nicholas C. Wu</name>
<affiliation>
<nlm:aff id="aff1">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yamayoshi, Seiya" sort="Yamayoshi, Seiya" uniqKey="Yamayoshi S" first="Seiya" last="Yamayoshi">Seiya Yamayoshi</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ito, Mutsumi" sort="Ito, Mutsumi" uniqKey="Ito M" first="Mutsumi" last="Ito">Mutsumi Ito</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uraki, Ryuta" sort="Uraki, Ryuta" uniqKey="Uraki R" first="Ryuta" last="Uraki">Ryuta Uraki</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kawaoka, Yoshihiro" sort="Kawaoka, Yoshihiro" uniqKey="Kawaoka Y" first="Yoshihiro" last="Kawaoka">Yoshihiro Kawaoka</name>
<affiliation>
<nlm:aff id="aff2">Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian A" sort="Wilson, Ian A" uniqKey="Wilson I" first="Ian A." last="Wilson">Ian A. Wilson</name>
<affiliation>
<nlm:aff id="aff1">Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Host & Microbe</title>
<idno type="ISSN">1931-3128</idno>
<idno type="eISSN">1934-6069</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<p>Discovery and characterization of broadly neutralizing antibodies (bnAbs) to the influenza hemagglutinin (HA) stem have provided insights for the development of a universal flu vaccine. Identification of signature features common to bnAbs from different individuals will be key to guiding immunogen design. S9-3-37 is a bnAb isolated from a healthy H5N1 vaccinee. Here, structural characterization reveals that the D3-9 gene segment of S9-3-37 contributes most of the interaction surface with the highly conserved stem epitope on HA. Comparison with other influenza bnAb crystal structures indicates that the D3-9 segment provides a general mechanism for targeting HA stem. Interestingly, such bnAbs can approach the HA stem with vastly different angles and orientations. Moreover, D3-9 can be translated in different reading frames in different bnAbs yet still target the same HA stem pocket. Thus, the D3-9 gene segment in the human immune repertoire can provide a robust defense against influenza virus.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Lazikani, B" uniqKey="Al Lazikani B">B. Al-Lazikani</name>
</author>
<author>
<name sortKey="Lesk, A M" uniqKey="Lesk A">A.M. Lesk</name>
</author>
<author>
<name sortKey="Chothia, C" uniqKey="Chothia C">C. Chothia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, C S" uniqKey="Anderson C">C.S. Anderson</name>
</author>
<author>
<name sortKey="Ortega, S" uniqKey="Ortega S">S. Ortega</name>
</author>
<author>
<name sortKey="Chaves, F A" uniqKey="Chaves F">F.A. Chaves</name>
</author>
<author>
<name sortKey="Clark, A M" uniqKey="Clark A">A.M. Clark</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Topham, D J" uniqKey="Topham D">D.J. Topham</name>
</author>
<author>
<name sortKey="Dediego, M L" uniqKey="Dediego M">M.L. DeDiego</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, S F" uniqKey="Andrews S">S.F. Andrews</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Kaur, K" uniqKey="Kaur K">K. Kaur</name>
</author>
<author>
<name sortKey="Popova, L I" uniqKey="Popova L">L.I. Popova</name>
</author>
<author>
<name sortKey="Ho, I Y" uniqKey="Ho I">I.Y. Ho</name>
</author>
<author>
<name sortKey="Pauli, N T" uniqKey="Pauli N">N.T. Pauli</name>
</author>
<author>
<name sortKey="Henry Dunand, C J" uniqKey="Henry Dunand C">C.J. Henry Dunand</name>
</author>
<author>
<name sortKey="Taylor, W M" uniqKey="Taylor W">W.M. Taylor</name>
</author>
<author>
<name sortKey="Lim, S" uniqKey="Lim S">S. Lim</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, S F" uniqKey="Andrews S">S.F. Andrews</name>
</author>
<author>
<name sortKey="Joyce, M G" uniqKey="Joyce M">M.G. Joyce</name>
</author>
<author>
<name sortKey="Chambers, M J" uniqKey="Chambers M">M.J. Chambers</name>
</author>
<author>
<name sortKey="Gillespie, R A" uniqKey="Gillespie R">R.A. Gillespie</name>
</author>
<author>
<name sortKey="Kanekiyo, M" uniqKey="Kanekiyo M">M. Kanekiyo</name>
</author>
<author>
<name sortKey="Leung, K" uniqKey="Leung K">K. Leung</name>
</author>
<author>
<name sortKey="Yang, E S" uniqKey="Yang E">E.S. Yang</name>
</author>
<author>
<name sortKey="Tsybovsky, Y" uniqKey="Tsybovsky Y">Y. Tsybovsky</name>
</author>
<author>
<name sortKey="Wheatley, A K" uniqKey="Wheatley A">A.K. Wheatley</name>
</author>
<author>
<name sortKey="Crank, M C" uniqKey="Crank M">M.C. Crank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Avnir, Y" uniqKey="Avnir Y">Y. Avnir</name>
</author>
<author>
<name sortKey="Tallarico, A S" uniqKey="Tallarico A">A.S. Tallarico</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
<author>
<name sortKey="Bennett, A S" uniqKey="Bennett A">A.S. Bennett</name>
</author>
<author>
<name sortKey="Connelly, G" uniqKey="Connelly G">G. Connelly</name>
</author>
<author>
<name sortKey="Sheehan, J" uniqKey="Sheehan J">J. Sheehan</name>
</author>
<author>
<name sortKey="Sui, J" uniqKey="Sui J">J. Sui</name>
</author>
<author>
<name sortKey="Fahmy, A" uniqKey="Fahmy A">A. Fahmy</name>
</author>
<author>
<name sortKey="Huang, C Y" uniqKey="Huang C">C.Y. Huang</name>
</author>
<author>
<name sortKey="Cadwell, G" uniqKey="Cadwell G">G. Cadwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chai, N" uniqKey="Chai N">N. Chai</name>
</author>
<author>
<name sortKey="Swem, L R" uniqKey="Swem L">L.R. Swem</name>
</author>
<author>
<name sortKey="Reichelt, M" uniqKey="Reichelt M">M. Reichelt</name>
</author>
<author>
<name sortKey="Chen Harris, H" uniqKey="Chen Harris H">H. Chen-Harris</name>
</author>
<author>
<name sortKey="Luis, E" uniqKey="Luis E">E. Luis</name>
</author>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
</author>
<author>
<name sortKey="Fouts, A" uniqKey="Fouts A">A. Fouts</name>
</author>
<author>
<name sortKey="Lupardus, P" uniqKey="Lupardus P">P. Lupardus</name>
</author>
<author>
<name sortKey="Wu, T D" uniqKey="Wu T">T.D. Wu</name>
</author>
<author>
<name sortKey="Li, O" uniqKey="Li O">O. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, V B" uniqKey="Chen V">V.B. Chen</name>
</author>
<author>
<name sortKey="Arendall, W B" uniqKey="Arendall W">W.B. Arendall</name>
</author>
<author>
<name sortKey="Headd, J J" uniqKey="Headd J">J.J. Headd</name>
</author>
<author>
<name sortKey="Keedy, D A" uniqKey="Keedy D">D.A. Keedy</name>
</author>
<author>
<name sortKey="Immormino, R M" uniqKey="Immormino R">R.M. Immormino</name>
</author>
<author>
<name sortKey="Kapral, G J" uniqKey="Kapral G">G.J. Kapral</name>
</author>
<author>
<name sortKey="Murray, L W" uniqKey="Murray L">L.W. Murray</name>
</author>
<author>
<name sortKey="Richardson, J S" uniqKey="Richardson J">J.S. Richardson</name>
</author>
<author>
<name sortKey="Richardson, D C" uniqKey="Richardson D">D.C. Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chevalier, A" uniqKey="Chevalier A">A. Chevalier</name>
</author>
<author>
<name sortKey="Silva, D A" uniqKey="Silva D">D.A. Silva</name>
</author>
<author>
<name sortKey="Rocklin, G J" uniqKey="Rocklin G">G.J. Rocklin</name>
</author>
<author>
<name sortKey="Hicks, D R" uniqKey="Hicks D">D.R. Hicks</name>
</author>
<author>
<name sortKey="Vergara, R" uniqKey="Vergara R">R. Vergara</name>
</author>
<author>
<name sortKey="Murapa, P" uniqKey="Murapa P">P. Murapa</name>
</author>
<author>
<name sortKey="Bernard, S M" uniqKey="Bernard S">S.M. Bernard</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Lam, K H" uniqKey="Lam K">K.H. Lam</name>
</author>
<author>
<name sortKey="Yao, G" uniqKey="Yao G">G. Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corti, D" uniqKey="Corti D">D. Corti</name>
</author>
<author>
<name sortKey="Voss, J" uniqKey="Voss J">J. Voss</name>
</author>
<author>
<name sortKey="Gamblin, S J" uniqKey="Gamblin S">S.J. Gamblin</name>
</author>
<author>
<name sortKey="Codoni, G" uniqKey="Codoni G">G. Codoni</name>
</author>
<author>
<name sortKey="Macagno, A" uniqKey="Macagno A">A. Macagno</name>
</author>
<author>
<name sortKey="Jarrossay, D" uniqKey="Jarrossay D">D. Jarrossay</name>
</author>
<author>
<name sortKey="Vachieri, S G" uniqKey="Vachieri S">S.G. Vachieri</name>
</author>
<author>
<name sortKey="Pinna, D" uniqKey="Pinna D">D. Pinna</name>
</author>
<author>
<name sortKey="Minola, A" uniqKey="Minola A">A. Minola</name>
</author>
<author>
<name sortKey="Vanzetta, F" uniqKey="Vanzetta F">F. Vanzetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crooks, G E" uniqKey="Crooks G">G.E. Crooks</name>
</author>
<author>
<name sortKey="Hon, G" uniqKey="Hon G">G. Hon</name>
</author>
<author>
<name sortKey="Chandonia, J M" uniqKey="Chandonia J">J.M. Chandonia</name>
</author>
<author>
<name sortKey="Brenner, S E" uniqKey="Brenner S">S.E. Brenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dekosky, B J" uniqKey="Dekosky B">B.J. DeKosky</name>
</author>
<author>
<name sortKey="Kojima, T" uniqKey="Kojima T">T. Kojima</name>
</author>
<author>
<name sortKey="Rodin, A" uniqKey="Rodin A">A. Rodin</name>
</author>
<author>
<name sortKey="Charab, W" uniqKey="Charab W">W. Charab</name>
</author>
<author>
<name sortKey="Ippolito, G C" uniqKey="Ippolito G">G.C. Ippolito</name>
</author>
<author>
<name sortKey="Ellington, A D" uniqKey="Ellington A">A.D. Ellington</name>
</author>
<author>
<name sortKey="Georgiou, G" uniqKey="Georgiou G">G. Georgiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doud, M B" uniqKey="Doud M">M.B. Doud</name>
</author>
<author>
<name sortKey="Lee, J M" uniqKey="Lee J">J.M. Lee</name>
</author>
<author>
<name sortKey="Bloom, J D" uniqKey="Bloom J">J.D. Bloom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dreyfus, C" uniqKey="Dreyfus C">C. Dreyfus</name>
</author>
<author>
<name sortKey="Laursen, N S" uniqKey="Laursen N">N.S. Laursen</name>
</author>
<author>
<name sortKey="Kwaks, T" uniqKey="Kwaks T">T. Kwaks</name>
</author>
<author>
<name sortKey="Zuijdgeest, D" uniqKey="Zuijdgeest D">D. Zuijdgeest</name>
</author>
<author>
<name sortKey="Khayat, R" uniqKey="Khayat R">R. Khayat</name>
</author>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J.H. Lee</name>
</author>
<author>
<name sortKey="Metlagel, Z" uniqKey="Metlagel Z">Z. Metlagel</name>
</author>
<author>
<name sortKey="Bujny, M V" uniqKey="Bujny M">M.V. Bujny</name>
</author>
<author>
<name sortKey="Jongeneelen, M" uniqKey="Jongeneelen M">M. Jongeneelen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Bhabha, G" uniqKey="Bhabha G">G. Bhabha</name>
</author>
<author>
<name sortKey="Elsliger, M A" uniqKey="Elsliger M">M.A. Elsliger</name>
</author>
<author>
<name sortKey="Friesen, R H" uniqKey="Friesen R">R.H. Friesen</name>
</author>
<author>
<name sortKey="Jongeneelen, M" uniqKey="Jongeneelen M">M. Jongeneelen</name>
</author>
<author>
<name sortKey="Throsby, M" uniqKey="Throsby M">M. Throsby</name>
</author>
<author>
<name sortKey="Goudsmit, J" uniqKey="Goudsmit J">J. Goudsmit</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Friesen, R H" uniqKey="Friesen R">R.H. Friesen</name>
</author>
<author>
<name sortKey="Bhabha, G" uniqKey="Bhabha G">G. Bhabha</name>
</author>
<author>
<name sortKey="Kwaks, T" uniqKey="Kwaks T">T. Kwaks</name>
</author>
<author>
<name sortKey="Jongeneelen, M" uniqKey="Jongeneelen M">M. Jongeneelen</name>
</author>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W. Yu</name>
</author>
<author>
<name sortKey="Ophorst, C" uniqKey="Ophorst C">C. Ophorst</name>
</author>
<author>
<name sortKey="Cox, F" uniqKey="Cox F">F. Cox</name>
</author>
<author>
<name sortKey="Korse, H J" uniqKey="Korse H">H.J. Korse</name>
</author>
<author>
<name sortKey="Brandenburg, B" uniqKey="Brandenburg B">B. Brandenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Kashyap, A K" uniqKey="Kashyap A">A.K. Kashyap</name>
</author>
<author>
<name sortKey="Steel, J" uniqKey="Steel J">J. Steel</name>
</author>
<author>
<name sortKey="Rubrum, A" uniqKey="Rubrum A">A. Rubrum</name>
</author>
<author>
<name sortKey="Bhabha, G" uniqKey="Bhabha G">G. Bhabha</name>
</author>
<author>
<name sortKey="Khayat, R" uniqKey="Khayat R">R. Khayat</name>
</author>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J.H. Lee</name>
</author>
<author>
<name sortKey="Dillon, M A" uniqKey="Dillon M">M.A. Dillon</name>
</author>
<author>
<name sortKey="O Eil, R E" uniqKey="O Eil R">R.E. O’Neil</name>
</author>
<author>
<name sortKey="Faynboym, A M" uniqKey="Faynboym A">A.M. Faynboym</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emsley, P" uniqKey="Emsley P">P. Emsley</name>
</author>
<author>
<name sortKey="Lohkamp, B" uniqKey="Lohkamp B">B. Lohkamp</name>
</author>
<author>
<name sortKey="Scott, W G" uniqKey="Scott W">W.G. Scott</name>
</author>
<author>
<name sortKey="Cowtan, K" uniqKey="Cowtan K">K. Cowtan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Erbelding, E J" uniqKey="Erbelding E">E.J. Erbelding</name>
</author>
<author>
<name sortKey="Post, D J" uniqKey="Post D">D.J. Post</name>
</author>
<author>
<name sortKey="Stemmy, E J" uniqKey="Stemmy E">E.J. Stemmy</name>
</author>
<author>
<name sortKey="Roberts, P C" uniqKey="Roberts P">P.C. Roberts</name>
</author>
<author>
<name sortKey="Augustine, A D" uniqKey="Augustine A">A.D. Augustine</name>
</author>
<author>
<name sortKey="Ferguson, S" uniqKey="Ferguson S">S. Ferguson</name>
</author>
<author>
<name sortKey="Paules, C I" uniqKey="Paules C">C.I. Paules</name>
</author>
<author>
<name sortKey="Graham, B S" uniqKey="Graham B">B.S. Graham</name>
</author>
<author>
<name sortKey="Fauci, A S" uniqKey="Fauci A">A.S. Fauci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eroshkin, A M" uniqKey="Eroshkin A">A.M. Eroshkin</name>
</author>
<author>
<name sortKey="Leblanc, A" uniqKey="Leblanc A">A. LeBlanc</name>
</author>
<author>
<name sortKey="Weekes, D" uniqKey="Weekes D">D. Weekes</name>
</author>
<author>
<name sortKey="Post, K" uniqKey="Post K">K. Post</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Rajput, A" uniqKey="Rajput A">A. Rajput</name>
</author>
<author>
<name sortKey="Butera, S T" uniqKey="Butera S">S.T. Butera</name>
</author>
<author>
<name sortKey="Burton, D R" uniqKey="Burton D">D.R. Burton</name>
</author>
<author>
<name sortKey="Godzik, A" uniqKey="Godzik A">A. Godzik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleishman, S J" uniqKey="Fleishman S">S.J. Fleishman</name>
</author>
<author>
<name sortKey="Whitehead, T A" uniqKey="Whitehead T">T.A. Whitehead</name>
</author>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Dreyfus, C" uniqKey="Dreyfus C">C. Dreyfus</name>
</author>
<author>
<name sortKey="Corn, J E" uniqKey="Corn J">J.E. Corn</name>
</author>
<author>
<name sortKey="Strauch, E M" uniqKey="Strauch E">E.M. Strauch</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
<author>
<name sortKey="Baker, D" uniqKey="Baker D">D. Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friesen, R H" uniqKey="Friesen R">R.H. Friesen</name>
</author>
<author>
<name sortKey="Lee, P S" uniqKey="Lee P">P.S. Lee</name>
</author>
<author>
<name sortKey="Stoop, E J" uniqKey="Stoop E">E.J. Stoop</name>
</author>
<author>
<name sortKey="Hoffman, R M" uniqKey="Hoffman R">R.M. Hoffman</name>
</author>
<author>
<name sortKey="Ekiert, D C" uniqKey="Ekiert D">D.C. Ekiert</name>
</author>
<author>
<name sortKey="Bhabha, G" uniqKey="Bhabha G">G. Bhabha</name>
</author>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W. Yu</name>
</author>
<author>
<name sortKey="Juraszek, J" uniqKey="Juraszek J">J. Juraszek</name>
</author>
<author>
<name sortKey="Koudstaal, W" uniqKey="Koudstaal W">W. Koudstaal</name>
</author>
<author>
<name sortKey="Jongeneelen, M" uniqKey="Jongeneelen M">M. Jongeneelen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galson, J D" uniqKey="Galson J">J.D. Galson</name>
</author>
<author>
<name sortKey="Clutterbuck, E A" uniqKey="Clutterbuck E">E.A. Clutterbuck</name>
</author>
<author>
<name sortKey="Truck, J" uniqKey="Truck J">J. Trück</name>
</author>
<author>
<name sortKey="Ramasamy, M N" uniqKey="Ramasamy M">M.N. Ramasamy</name>
</author>
<author>
<name sortKey="Munz, M" uniqKey="Munz M">M. Münz</name>
</author>
<author>
<name sortKey="Fowler, A" uniqKey="Fowler A">A. Fowler</name>
</author>
<author>
<name sortKey="Cerundolo, V" uniqKey="Cerundolo V">V. Cerundolo</name>
</author>
<author>
<name sortKey="Pollard, A J" uniqKey="Pollard A">A.J. Pollard</name>
</author>
<author>
<name sortKey="Lunter, G" uniqKey="Lunter G">G. Lunter</name>
</author>
<author>
<name sortKey="Kelly, D F" uniqKey="Kelly D">D.F. Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerhard, W" uniqKey="Gerhard W">W. Gerhard</name>
</author>
<author>
<name sortKey="Yewdell, J" uniqKey="Yewdell J">J. Yewdell</name>
</author>
<author>
<name sortKey="Frankel, M E" uniqKey="Frankel M">M.E. Frankel</name>
</author>
<author>
<name sortKey="Webster, R" uniqKey="Webster R">R. Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorny, M K" uniqKey="Gorny M">M.K. Gorny</name>
</author>
<author>
<name sortKey="Pan, R" uniqKey="Pan R">R. Pan</name>
</author>
<author>
<name sortKey="Williams, C" uniqKey="Williams C">C. Williams</name>
</author>
<author>
<name sortKey="Wang, X H" uniqKey="Wang X">X.H. Wang</name>
</author>
<author>
<name sortKey="Volsky, B" uniqKey="Volsky B">B. Volsky</name>
</author>
<author>
<name sortKey="O Eal, T" uniqKey="O Eal T">T. O’Neal</name>
</author>
<author>
<name sortKey="Spurrier, B" uniqKey="Spurrier B">B. Spurrier</name>
</author>
<author>
<name sortKey="Sampson, J M" uniqKey="Sampson J">J.M. Sampson</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Seaman, M S" uniqKey="Seaman M">M.S. Seaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henry Dunand, C J" uniqKey="Henry Dunand C">C.J. Henry Dunand</name>
</author>
<author>
<name sortKey="Leon, P E" uniqKey="Leon P">P.E. Leon</name>
</author>
<author>
<name sortKey="Kaur, K" uniqKey="Kaur K">K. Kaur</name>
</author>
<author>
<name sortKey="Tan, G S" uniqKey="Tan G">G.S. Tan</name>
</author>
<author>
<name sortKey="Zheng, N Y" uniqKey="Zheng N">N.Y. Zheng</name>
</author>
<author>
<name sortKey="Andrews, S" uniqKey="Andrews S">S. Andrews</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M. Huang</name>
</author>
<author>
<name sortKey="Qu, X" uniqKey="Qu X">X. Qu</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Salgado Ferrer, M" uniqKey="Salgado Ferrer M">M. Salgado-Ferrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Kang, B H" uniqKey="Kang B">B.H. Kang</name>
</author>
<author>
<name sortKey="Ishida, E" uniqKey="Ishida E">E. Ishida</name>
</author>
<author>
<name sortKey="Zhou, T" uniqKey="Zhou T">T. Zhou</name>
</author>
<author>
<name sortKey="Griesman, T" uniqKey="Griesman T">T. Griesman</name>
</author>
<author>
<name sortKey="Sheng, Z" uniqKey="Sheng Z">Z. Sheng</name>
</author>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F. Wu</name>
</author>
<author>
<name sortKey="Doria Rose, N A" uniqKey="Doria Rose N">N.A. Doria-Rose</name>
</author>
<author>
<name sortKey="Zhang, B" uniqKey="Zhang B">B. Zhang</name>
</author>
<author>
<name sortKey="Mckee, K" uniqKey="Mckee K">K. McKee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Impagliazzo, A" uniqKey="Impagliazzo A">A. Impagliazzo</name>
</author>
<author>
<name sortKey="Milder, F" uniqKey="Milder F">F. Milder</name>
</author>
<author>
<name sortKey="Kuipers, H" uniqKey="Kuipers H">H. Kuipers</name>
</author>
<author>
<name sortKey="Wagner, M V" uniqKey="Wagner M">M.V. Wagner</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Hoffman, R M" uniqKey="Hoffman R">R.M. Hoffman</name>
</author>
<author>
<name sortKey="Van Meersbergen, R" uniqKey="Van Meersbergen R">R. van Meersbergen</name>
</author>
<author>
<name sortKey="Huizingh, J" uniqKey="Huizingh J">J. Huizingh</name>
</author>
<author>
<name sortKey="Wanningen, P" uniqKey="Wanningen P">P. Wanningen</name>
</author>
<author>
<name sortKey="Verspuij, J" uniqKey="Verspuij J">J. Verspuij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joyce, M G" uniqKey="Joyce M">M.G. Joyce</name>
</author>
<author>
<name sortKey="Wheatley, A K" uniqKey="Wheatley A">A.K. Wheatley</name>
</author>
<author>
<name sortKey="Thomas, P V" uniqKey="Thomas P">P.V. Thomas</name>
</author>
<author>
<name sortKey="Chuang, G Y" uniqKey="Chuang G">G.Y. Chuang</name>
</author>
<author>
<name sortKey="Soto, C" uniqKey="Soto C">C. Soto</name>
</author>
<author>
<name sortKey="Bailer, R T" uniqKey="Bailer R">R.T. Bailer</name>
</author>
<author>
<name sortKey="Druz, A" uniqKey="Druz A">A. Druz</name>
</author>
<author>
<name sortKey="Georgiev, I S" uniqKey="Georgiev I">I.S. Georgiev</name>
</author>
<author>
<name sortKey="Gillespie, R A" uniqKey="Gillespie R">R.A. Gillespie</name>
</author>
<author>
<name sortKey="Kanekiyo, M" uniqKey="Kanekiyo M">M. Kanekiyo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kabsch, W" uniqKey="Kabsch W">W. Kabsch</name>
</author>
<author>
<name sortKey="Sander, C" uniqKey="Sander C">C. Sander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kadam, R U" uniqKey="Kadam R">R.U. Kadam</name>
</author>
<author>
<name sortKey="Juraszek, J" uniqKey="Juraszek J">J. Juraszek</name>
</author>
<author>
<name sortKey="Brandenburg, B" uniqKey="Brandenburg B">B. Brandenburg</name>
</author>
<author>
<name sortKey="Buyck, C" uniqKey="Buyck C">C. Buyck</name>
</author>
<author>
<name sortKey="Schepens, W B G" uniqKey="Schepens W">W.B.G. Schepens</name>
</author>
<author>
<name sortKey="Kesteleyn, B" uniqKey="Kesteleyn B">B. Kesteleyn</name>
</author>
<author>
<name sortKey="Stoops, B" uniqKey="Stoops B">B. Stoops</name>
</author>
<author>
<name sortKey="Vreeken, R J" uniqKey="Vreeken R">R.J. Vreeken</name>
</author>
<author>
<name sortKey="Vermond, J" uniqKey="Vermond J">J. Vermond</name>
</author>
<author>
<name sortKey="Goutier, W" uniqKey="Goutier W">W. Goutier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kashyap, A K" uniqKey="Kashyap A">A.K. Kashyap</name>
</author>
<author>
<name sortKey="Steel, J" uniqKey="Steel J">J. Steel</name>
</author>
<author>
<name sortKey="Oner, A F" uniqKey="Oner A">A.F. Oner</name>
</author>
<author>
<name sortKey="Dillon, M A" uniqKey="Dillon M">M.A. Dillon</name>
</author>
<author>
<name sortKey="Swale, R E" uniqKey="Swale R">R.E. Swale</name>
</author>
<author>
<name sortKey="Wall, K M" uniqKey="Wall K">K.M. Wall</name>
</author>
<author>
<name sortKey="Perry, K J" uniqKey="Perry K">K.J. Perry</name>
</author>
<author>
<name sortKey="Faynboym, A" uniqKey="Faynboym A">A. Faynboym</name>
</author>
<author>
<name sortKey="Ilhan, M" uniqKey="Ilhan M">M. Ilhan</name>
</author>
<author>
<name sortKey="Horowitz, M" uniqKey="Horowitz M">M. Horowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K. Katoh</name>
</author>
<author>
<name sortKey="Standley, D M" uniqKey="Standley D">D.M. Standley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovaltsuk, A" uniqKey="Kovaltsuk A">A. Kovaltsuk</name>
</author>
<author>
<name sortKey="Leem, J" uniqKey="Leem J">J. Leem</name>
</author>
<author>
<name sortKey="Kelm, S" uniqKey="Kelm S">S. Kelm</name>
</author>
<author>
<name sortKey="Snowden, J" uniqKey="Snowden J">J. Snowden</name>
</author>
<author>
<name sortKey="Dean, C M" uniqKey="Dean C">C.M. Dean</name>
</author>
<author>
<name sortKey="Krawczyk, K" uniqKey="Krawczyk K">K. Krawczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lang, S" uniqKey="Lang S">S. Lang</name>
</author>
<author>
<name sortKey="Xie, J" uniqKey="Xie J">J. Xie</name>
</author>
<author>
<name sortKey="Zhu, X" uniqKey="Zhu X">X. Zhu</name>
</author>
<author>
<name sortKey="Wu, N C" uniqKey="Wu N">N.C. Wu</name>
</author>
<author>
<name sortKey="Lerner, R A" uniqKey="Lerner R">R.A. Lerner</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lepore, R" uniqKey="Lepore R">R. Lepore</name>
</author>
<author>
<name sortKey="Olimpieri, P P" uniqKey="Olimpieri P">P.P. Olimpieri</name>
</author>
<author>
<name sortKey="Messih, M A" uniqKey="Messih M">M.A. Messih</name>
</author>
<author>
<name sortKey="Tramontano, A" uniqKey="Tramontano A">A. Tramontano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerner, R A" uniqKey="Lerner R">R.A. Lerner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lerner, R A" uniqKey="Lerner R">R.A. Lerner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luftig, M A" uniqKey="Luftig M">M.A. Luftig</name>
</author>
<author>
<name sortKey="Mattu, M" uniqKey="Mattu M">M. Mattu</name>
</author>
<author>
<name sortKey="Di Giovine, P" uniqKey="Di Giovine P">P. Di Giovine</name>
</author>
<author>
<name sortKey="Geleziunas, R" uniqKey="Geleziunas R">R. Geleziunas</name>
</author>
<author>
<name sortKey="Hrin, R" uniqKey="Hrin R">R. Hrin</name>
</author>
<author>
<name sortKey="Barbato, G" uniqKey="Barbato G">G. Barbato</name>
</author>
<author>
<name sortKey="Bianchi, E" uniqKey="Bianchi E">E. Bianchi</name>
</author>
<author>
<name sortKey="Miller, M D" uniqKey="Miller M">M.D. Miller</name>
</author>
<author>
<name sortKey="Pessi, A" uniqKey="Pessi A">A. Pessi</name>
</author>
<author>
<name sortKey="Carfi, A" uniqKey="Carfi A">A. Carfí</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marasca, R" uniqKey="Marasca R">R. Marasca</name>
</author>
<author>
<name sortKey="Vaccari, P" uniqKey="Vaccari P">P. Vaccari</name>
</author>
<author>
<name sortKey="Luppi, M" uniqKey="Luppi M">M. Luppi</name>
</author>
<author>
<name sortKey="Zucchini, P" uniqKey="Zucchini P">P. Zucchini</name>
</author>
<author>
<name sortKey="Castelli, I" uniqKey="Castelli I">I. Castelli</name>
</author>
<author>
<name sortKey="Barozzi, P" uniqKey="Barozzi P">P. Barozzi</name>
</author>
<author>
<name sortKey="Cuoghi, A" uniqKey="Cuoghi A">A. Cuoghi</name>
</author>
<author>
<name sortKey="Torelli, G" uniqKey="Torelli G">G. Torelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, K R" uniqKey="Mccarthy K">K.R. McCarthy</name>
</author>
<author>
<name sortKey="Watanabe, A" uniqKey="Watanabe A">A. Watanabe</name>
</author>
<author>
<name sortKey="Kuraoka, M" uniqKey="Kuraoka M">M. Kuraoka</name>
</author>
<author>
<name sortKey="Do, K T" uniqKey="Do K">K.T. Do</name>
</author>
<author>
<name sortKey="Mcgee, C E" uniqKey="Mcgee C">C.E. McGee</name>
</author>
<author>
<name sortKey="Sempowski, G D" uniqKey="Sempowski G">G.D. Sempowski</name>
</author>
<author>
<name sortKey="Kepler, T B" uniqKey="Kepler T">T.B. Kepler</name>
</author>
<author>
<name sortKey="Schmidt, A G" uniqKey="Schmidt A">A.G. Schmidt</name>
</author>
<author>
<name sortKey="Kelsoe, G" uniqKey="Kelsoe G">G. Kelsoe</name>
</author>
<author>
<name sortKey="Harrison, S C" uniqKey="Harrison S">S.C. Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccoy, A J" uniqKey="Mccoy A">A.J. McCoy</name>
</author>
<author>
<name sortKey="Grosse Kunstleve, R W" uniqKey="Grosse Kunstleve R">R.W. Grosse-Kunstleve</name>
</author>
<author>
<name sortKey="Adams, P D" uniqKey="Adams P">P.D. Adams</name>
</author>
<author>
<name sortKey="Winn, M D" uniqKey="Winn M">M.D. Winn</name>
</author>
<author>
<name sortKey="Storoni, L C" uniqKey="Storoni L">L.C. Storoni</name>
</author>
<author>
<name sortKey="Read, R J" uniqKey="Read R">R.J. Read</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murshudov, G N" uniqKey="Murshudov G">G.N. Murshudov</name>
</author>
<author>
<name sortKey="Skubak, P" uniqKey="Skubak P">P. Skubák</name>
</author>
<author>
<name sortKey="Lebedev, A A" uniqKey="Lebedev A">A.A. Lebedev</name>
</author>
<author>
<name sortKey="Pannu, N S" uniqKey="Pannu N">N.S. Pannu</name>
</author>
<author>
<name sortKey="Steiner, R A" uniqKey="Steiner R">R.A. Steiner</name>
</author>
<author>
<name sortKey="Nicholls, R A" uniqKey="Nicholls R">R.A. Nicholls</name>
</author>
<author>
<name sortKey="Winn, M D" uniqKey="Winn M">M.D. Winn</name>
</author>
<author>
<name sortKey="Long, F" uniqKey="Long F">F. Long</name>
</author>
<author>
<name sortKey="Vagin, A A" uniqKey="Vagin A">A.A. Vagin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nobusawa, E" uniqKey="Nobusawa E">E. Nobusawa</name>
</author>
<author>
<name sortKey="Aoyama, T" uniqKey="Aoyama T">T. Aoyama</name>
</author>
<author>
<name sortKey="Kato, H" uniqKey="Kato H">H. Kato</name>
</author>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y. Suzuki</name>
</author>
<author>
<name sortKey="Tateno, Y" uniqKey="Tateno Y">Y. Tateno</name>
</author>
<author>
<name sortKey="Nakajima, K" uniqKey="Nakajima K">K. Nakajima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otwinowski, Z" uniqKey="Otwinowski Z">Z. Otwinowski</name>
</author>
<author>
<name sortKey="Minor, W" uniqKey="Minor W">W. Minor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pappas, L" uniqKey="Pappas L">L. Pappas</name>
</author>
<author>
<name sortKey="Foglierini, M" uniqKey="Foglierini M">M. Foglierini</name>
</author>
<author>
<name sortKey="Piccoli, L" uniqKey="Piccoli L">L. Piccoli</name>
</author>
<author>
<name sortKey="Kallewaard, N L" uniqKey="Kallewaard N">N.L. Kallewaard</name>
</author>
<author>
<name sortKey="Turrini, F" uniqKey="Turrini F">F. Turrini</name>
</author>
<author>
<name sortKey="Silacci, C" uniqKey="Silacci C">C. Silacci</name>
</author>
<author>
<name sortKey="Fernandez Rodriguez, B" uniqKey="Fernandez Rodriguez B">B. Fernandez-Rodriguez</name>
</author>
<author>
<name sortKey="Agatic, G" uniqKey="Agatic G">G. Agatic</name>
</author>
<author>
<name sortKey="Giacchetto Sasselli, I" uniqKey="Giacchetto Sasselli I">I. Giacchetto-Sasselli</name>
</author>
<author>
<name sortKey="Pellicciotta, G" uniqKey="Pellicciotta G">G. Pellicciotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sparrow, E" uniqKey="Sparrow E">E. Sparrow</name>
</author>
<author>
<name sortKey="Friede, M" uniqKey="Friede M">M. Friede</name>
</author>
<author>
<name sortKey="Sheikh, M" uniqKey="Sheikh M">M. Sheikh</name>
</author>
<author>
<name sortKey="Torvaldsen, S" uniqKey="Torvaldsen S">S. Torvaldsen</name>
</author>
<author>
<name sortKey="Newall, A T" uniqKey="Newall A">A.T. Newall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, J" uniqKey="Stevens J">J. Stevens</name>
</author>
<author>
<name sortKey="Blixt, O" uniqKey="Blixt O">O. Blixt</name>
</author>
<author>
<name sortKey="Tumpey, T M" uniqKey="Tumpey T">T.M. Tumpey</name>
</author>
<author>
<name sortKey="Taubenberger, J K" uniqKey="Taubenberger J">J.K. Taubenberger</name>
</author>
<author>
<name sortKey="Paulson, J C" uniqKey="Paulson J">J.C. Paulson</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sui, J" uniqKey="Sui J">J. Sui</name>
</author>
<author>
<name sortKey="Hwang, W C" uniqKey="Hwang W">W.C. Hwang</name>
</author>
<author>
<name sortKey="Perez, S" uniqKey="Perez S">S. Perez</name>
</author>
<author>
<name sortKey="Wei, G" uniqKey="Wei G">G. Wei</name>
</author>
<author>
<name sortKey="Aird, D" uniqKey="Aird D">D. Aird</name>
</author>
<author>
<name sortKey="Chen, L M" uniqKey="Chen L">L.M. Chen</name>
</author>
<author>
<name sortKey="Santelli, E" uniqKey="Santelli E">E. Santelli</name>
</author>
<author>
<name sortKey="Stec, B" uniqKey="Stec B">B. Stec</name>
</author>
<author>
<name sortKey="Cadwell, G" uniqKey="Cadwell G">G. Cadwell</name>
</author>
<author>
<name sortKey="Ali, M" uniqKey="Ali M">M. Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Throsby, M" uniqKey="Throsby M">M. Throsby</name>
</author>
<author>
<name sortKey="Van Den Brink, E" uniqKey="Van Den Brink E">E. van den Brink</name>
</author>
<author>
<name sortKey="Jongeneelen, M" uniqKey="Jongeneelen M">M. Jongeneelen</name>
</author>
<author>
<name sortKey="Poon, L L" uniqKey="Poon L">L.L. Poon</name>
</author>
<author>
<name sortKey="Alard, P" uniqKey="Alard P">P. Alard</name>
</author>
<author>
<name sortKey="Cornelissen, L" uniqKey="Cornelissen L">L. Cornelissen</name>
</author>
<author>
<name sortKey="Bakker, A" uniqKey="Bakker A">A. Bakker</name>
</author>
<author>
<name sortKey="Cox, F" uniqKey="Cox F">F. Cox</name>
</author>
<author>
<name sortKey="Van Deventer, E" uniqKey="Van Deventer E">E. van Deventer</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y. Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitehead, T A" uniqKey="Whitehead T">T.A. Whitehead</name>
</author>
<author>
<name sortKey="Chevalier, A" uniqKey="Chevalier A">A. Chevalier</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y. Song</name>
</author>
<author>
<name sortKey="Dreyfus, C" uniqKey="Dreyfus C">C. Dreyfus</name>
</author>
<author>
<name sortKey="Fleishman, S J" uniqKey="Fleishman S">S.J. Fleishman</name>
</author>
<author>
<name sortKey="De Mattos, C" uniqKey="De Mattos C">C. De Mattos</name>
</author>
<author>
<name sortKey="Myers, C A" uniqKey="Myers C">C.A. Myers</name>
</author>
<author>
<name sortKey="Kamisetty, H" uniqKey="Kamisetty H">H. Kamisetty</name>
</author>
<author>
<name sortKey="Blair, P" uniqKey="Blair P">P. Blair</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
<author>
<name sortKey="Baker, D" uniqKey="Baker D">D. Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiley, D C" uniqKey="Wiley D">D.C. Wiley</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
<author>
<name sortKey="Skehel, J J" uniqKey="Skehel J">J.J. Skehel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, N C" uniqKey="Wu N">N.C. Wu</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, N C" uniqKey="Wu N">N.C. Wu</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wyrzucki, A" uniqKey="Wyrzucki A">A. Wyrzucki</name>
</author>
<author>
<name sortKey="Dreyfus, C" uniqKey="Dreyfus C">C. Dreyfus</name>
</author>
<author>
<name sortKey="Kohler, I" uniqKey="Kohler I">I. Kohler</name>
</author>
<author>
<name sortKey="Steck, M" uniqKey="Steck M">M. Steck</name>
</author>
<author>
<name sortKey="Wilson, I A" uniqKey="Wilson I">I.A. Wilson</name>
</author>
<author>
<name sortKey="Hangartner, L" uniqKey="Hangartner L">L. Hangartner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamayoshi, S" uniqKey="Yamayoshi S">S. Yamayoshi</name>
</author>
<author>
<name sortKey="Ito, M" uniqKey="Ito M">M. Ito</name>
</author>
<author>
<name sortKey="Uraki, R" uniqKey="Uraki R">R. Uraki</name>
</author>
<author>
<name sortKey="Yasuhara, A" uniqKey="Yasuhara A">A. Yasuhara</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y. Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yassine, H M" uniqKey="Yassine H">H.M. Yassine</name>
</author>
<author>
<name sortKey="Boyington, J C" uniqKey="Boyington J">J.C. Boyington</name>
</author>
<author>
<name sortKey="Mctamney, P M" uniqKey="Mctamney P">P.M. McTamney</name>
</author>
<author>
<name sortKey="Wei, C J" uniqKey="Wei C">C.J. Wei</name>
</author>
<author>
<name sortKey="Kanekiyo, M" uniqKey="Kanekiyo M">M. Kanekiyo</name>
</author>
<author>
<name sortKey="Kong, W P" uniqKey="Kong W">W.P. Kong</name>
</author>
<author>
<name sortKey="Gallagher, J R" uniqKey="Gallagher J">J.R. Gallagher</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Joyce, M G" uniqKey="Joyce M">M.G. Joyce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, J" uniqKey="Ye J">J. Ye</name>
</author>
<author>
<name sortKey="Ma, N" uniqKey="Ma N">N. Ma</name>
</author>
<author>
<name sortKey="Madden, T L" uniqKey="Madden T">T.L. Madden</name>
</author>
<author>
<name sortKey="Ostell, J M" uniqKey="Ostell J">J.M. Ostell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Qiao, Y" uniqKey="Qiao Y">Y. Qiao</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Su, Y" uniqKey="Su Y">Y. Su</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Qin, T" uniqKey="Qin T">T. Qin</name>
</author>
<author>
<name sortKey="Peng, D" uniqKey="Peng D">D. Peng</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T. Ying</name>
</author>
<author>
<name sortKey="Prabakaran, P" uniqKey="Prabakaran P">P. Prabakaran</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Dimitrov, D S" uniqKey="Dimitrov D">D.S. Dimitrov</name>
</author>
<author>
<name sortKey="Zhou, T" uniqKey="Zhou T">T. Zhou</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Host Microbe</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Host Microbe</journal-id>
<journal-title-group>
<journal-title>Cell Host & Microbe</journal-title>
</journal-title-group>
<issn pub-type="ppub">1931-3128</issn>
<issn pub-type="epub">1934-6069</issn>
<publisher>
<publisher-name>Elsevier Inc.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30308159</article-id>
<article-id pub-id-type="pmc">6327842</article-id>
<article-id pub-id-type="publisher-id">S1931-3128(18)30494-3</article-id>
<article-id pub-id-type="doi">10.1016/j.chom.2018.09.010</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au1">
<name>
<surname>Wu</surname>
<given-names>Nicholas C.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="au2">
<name>
<surname>Yamayoshi</surname>
<given-names>Seiya</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="au3">
<name>
<surname>Ito</surname>
<given-names>Mutsumi</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="au4">
<name>
<surname>Uraki</surname>
<given-names>Ryuta</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="au5">
<name>
<surname>Kawaoka</surname>
<given-names>Yoshihiro</given-names>
</name>
<email>yoshihiro.kawaoka@wisc.edu</email>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="aff4" ref-type="aff">4</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au6">
<name>
<surname>Wilson</surname>
<given-names>Ian A.</given-names>
</name>
<email>wilson@scripps.edu</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff5" ref-type="aff">5</xref>
<xref rid="fn1" ref-type="fn">6</xref>
<xref rid="cor2" ref-type="corresp">∗∗</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</aff>
<aff id="aff2">
<label>2</label>
Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</aff>
<aff id="aff3">
<label>3</label>
Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA</aff>
<aff id="aff4">
<label>4</label>
Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan</aff>
<aff id="aff5">
<label>5</label>
The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author
<email>yoshihiro.kawaoka@wisc.edu</email>
</corresp>
<corresp id="cor2">
<label>∗∗</label>
Corresponding author
<email>wilson@scripps.edu</email>
</corresp>
<fn id="fn1">
<label>6</label>
<p id="ntpara0010">Lead Contact</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>10</month>
<year>2018</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>10</day>
<month>10</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="epub">
<day>10</day>
<month>10</month>
<year>2018</year>
</pub-date>
<volume>24</volume>
<issue>4</issue>
<fpage>569</fpage>
<lpage>578.e4</lpage>
<history>
<date date-type="received">
<day>4</day>
<month>6</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>16</day>
<month>7</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>8</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© 2018 Elsevier Inc.</copyright-statement>
<copyright-year>2018</copyright-year>
<copyright-holder>Elsevier Inc.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="abs0010">
<title>Summary</title>
<p>Discovery and characterization of broadly neutralizing antibodies (bnAbs) to the influenza hemagglutinin (HA) stem have provided insights for the development of a universal flu vaccine. Identification of signature features common to bnAbs from different individuals will be key to guiding immunogen design. S9-3-37 is a bnAb isolated from a healthy H5N1 vaccinee. Here, structural characterization reveals that the D3-9 gene segment of S9-3-37 contributes most of the interaction surface with the highly conserved stem epitope on HA. Comparison with other influenza bnAb crystal structures indicates that the D3-9 segment provides a general mechanism for targeting HA stem. Interestingly, such bnAbs can approach the HA stem with vastly different angles and orientations. Moreover, D3-9 can be translated in different reading frames in different bnAbs yet still target the same HA stem pocket. Thus, the D3-9 gene segment in the human immune repertoire can provide a robust defense against influenza virus.</p>
</abstract>
<abstract abstract-type="graphical" id="abs0015">
<title>Graphical Abstract</title>
<fig id="undfig1" position="anchor">
<graphic xlink:href="fx1_lrg"></graphic>
</fig>
</abstract>
<abstract abstract-type="author-highlights" id="abs0020">
<title>Highlights</title>
<p>
<list list-type="simple" id="ulist0010">
<list-item id="u0010">
<label></label>
<p id="p0010">Structure of bnAb S9-3-37 bound to influenza hemagglutinin stem was determined</p>
</list-item>
<list-item id="u0015">
<label></label>
<p id="p0015">D3-9-encoded region of S9-3-37 contributes majority of the interaction surface with HA</p>
</list-item>
<list-item id="u0020">
<label></label>
<p id="p0020">D3-9 gene segment of S9-3-37 can engage the HA stem in two different reading frames</p>
</list-item>
<list-item id="u0025">
<label></label>
<p id="p0025">D3-9 gene segment represents a recurring mechanism for antibody targeting of HA stem</p>
</list-item>
</list>
</p>
</abstract>
<abstract abstract-type="teaser" id="abs0025">
<p>Identifying signature features common to broadly neutralizing antibodies (bnAbs) is key to universal flu vaccine design. Wu et al. report that the D3-9 encoded segment of an influenza hemagglutinin stem-targeting bnAb contributes the majority of the interaction surface and is a recurring motif in antibodies that target the hemagglutinin stem.</p>
</abstract>
<kwd-group id="kwrds0010">
<title>Keywords</title>
<kwd>influenza</kwd>
<kwd>broadly neutralizing antibody</kwd>
<kwd>hemagglutinin</kwd>
<kwd>X-ray crystallography</kwd>
<kwd>immune response</kwd>
</kwd-group>
</article-meta>
<notes>
<p id="misc0010">Published: October 10, 2018</p>
</notes>
</front>
<body>
<sec id="sec1">
<title>Introduction</title>
<p id="p0030">Development of a universal influenza vaccine has been of long-term interest for global heath. In the past decade, the discovery and characterization of broadly neutralizing antibodies (bnAbs) to the influenza hemagglutinin (HA) stem have provided invaluable insights for development of a universal influenza vaccine (
<xref rid="bib27" ref-type="bibr">Impagliazzo et al., 2015</xref>
,
<xref rid="bib53" ref-type="bibr">Wu and Wilson, 2018</xref>
,
<xref rid="bib55" ref-type="bibr">Yassine et al., 2015</xref>
). The HA stem domain, unlike the receptor-binding head domain, is highly conserved across influenza strains and subtypes (
<xref rid="bib43" ref-type="bibr">Nobusawa et al., 1991</xref>
). Therefore, antibodies that target the HA stem usually have much greater breadth than those that target the hypervariable head (
<xref rid="bib52" ref-type="bibr">Wu and Wilson, 2017</xref>
), which is the location of the major antigenic sites (
<xref rid="bib23" ref-type="bibr">Gerhard et al., 1981</xref>
,
<xref rid="bib51" ref-type="bibr">Wiley et al., 1981</xref>
). Consequently, elicitation of stem-binding bnAbs has become a major goal for universal influenza vaccine development (
<xref rid="bib18" ref-type="bibr">Erbelding et al., 2018</xref>
).</p>
<p id="p0035">Understanding features that are common to bnAbs isolated from different individuals, whether through natural infection or vaccination, is important for immunogen design in the development of a universal influenza vaccine. As more and more influenza bnAbs are characterized, several multidonor classes of bnAbs have begun to emerge (
<xref rid="bib5" ref-type="bibr">Avnir et al., 2014</xref>
,
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
,
<xref rid="bib52" ref-type="bibr">Wu and Wilson, 2017</xref>
). Stem-binding bnAbs that utilize V
<sub>H</sub>
1-69 germline genes are probably the most well-characterized multidonor class (
<xref rid="bib13" ref-type="bibr">Dreyfus et al., 2012</xref>
,
<xref rid="bib14" ref-type="bibr">Ekiert et al., 2009</xref>
,
<xref rid="bib31" ref-type="bibr">Kashyap et al., 2008</xref>
,
<xref rid="bib34" ref-type="bibr">Lang et al., 2017</xref>
,
<xref rid="bib48" ref-type="bibr">Sui et al., 2009</xref>
,
<xref rid="bib49" ref-type="bibr">Throsby et al., 2008</xref>
), and the alleles used code for a signature motif consisting of Ile53 and Phe54 in complementarity-determining region (CDR) H2 and Tyr98 in CDR H3 (
<xref rid="bib5" ref-type="bibr">Avnir et al., 2014</xref>
,
<xref rid="bib34" ref-type="bibr">Lang et al., 2017</xref>
). Recently, Joyce et al. reported three additional multidonor classes of bnAbs (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
): (1) bnAbs that utilize V
<sub>H</sub>
6-1 and D3-3 germline genes with a signature motif consisting of MIFGI in CDR H3; (2) bnAbs that utilize V
<sub>H</sub>
1-18 and D3-9 with a signature motif of RXXILTG in CDR H3; and (3) bnAbs that utilize V
<sub>H</sub>
1-18 and a QXXV motif in CDR H3. It is likely that more multidonor classes of bnAbs have yet to be discovered.</p>
<p id="p0040">We describe here the structure of bnAb S9-3-37, which targets the HA stem mainly using a relatively long CDR H3 of 21 residues. Interestingly, CDR H3 of S9-3-37 has a very similar conformation as that of a pan-influenza A bnAb FI6v3 (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
), despite the huge disparity in their overall orientations with respect to the HA stem. Both S9-3-37 and FI6v3 utilize the D3-9 gene segment and encode an LXYFXWL motif in CDR H3 that is critical for targeting the most conserved part of the stem epitope. We further performed a structural comparison between S9-3-37 and 31.b.09 (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), which also utilizes the D3-9 gene segment. Our analysis reveals that the D3-9 gene segments of S9-3-37 and 31.b.09 are translated in different reading frames. Nonetheless, Phe in the D-3-9-encoded LXYFXWL motif of S9-3-37 and Leu in the D3-9-encoded ILTG motif of 31.b.09 targets the same pocket in the HA stem. Moreover, both reading frames of the D3-9 gene segment are utilized by influenza bnAbs from multiple vaccinated individuals (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
) and can be found in the B cell repertoires of healthy donors (
<xref rid="bib11" ref-type="bibr">DeKosky et al., 2015</xref>
). Overall, this study reveals that the D3-9 gene segment offers a recurrent and robust strategy for targeting the HA stem in which at least two different binding poses can be utilized depending on the reading frame.</p>
</sec>
<sec id="sec2">
<title>Results</title>
<sec id="sec2.1">
<title>Structural Characterization of S9-3-37</title>
<p id="p0045">S9-3-37 is a group 1-specific bnAb that was isolated from healthy volunteers who were vaccinated with the H5N1 pre-pandemic vaccine (
<xref rid="bib54" ref-type="bibr">Yamayoshi et al., 2018</xref>
). S9-3-37 uses the V
<sub>H</sub>
1-18 and V
<sub>κ</sub>
2-24 heavy- and light-chain V genes, respectively (Figure S1A-B), and binds to group 1 HAs with high affinity, but with no detectable binding to group 2 HAs (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). Here, we determined the crystal structure of S9-3-37 Fab in complex with the HA from an H5N1 strain A/Vietnam/1203/2004 (Viet04) to 2.9 Å resolution (
<xref rid="mmc1" ref-type="supplementary-material">Table S1</xref>
;
<xref rid="mmc1" ref-type="supplementary-material">Figure S2</xref>
). S9-3-7 binds to the HA stem region (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
A), and one structural feature that immediately stands out is the extensive contact of CDR H3 with the stem region (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
B). The overall conformation of CDR H3 of S9-3-37 at the HA-Fab interface is remarkably similar to that of CDR H3 of FI6v3 (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
). Moreover, the molecular interactions attributable to the D gene segment are almost identical between S9-3-37 and FI6v3. While S9-3-37 and FI6v3 utilize different V
<sub>H</sub>
and J gene segments, they both utilize the D3-9 gene segment and have a relatively long CDR H3 (
<xref rid="mmc1" ref-type="supplementary-material">Figure S1</xref>
C). CDR H3 of FI6v3 is 20 residues, whereas that of S9-3-37 is 21 residues (Kabat numbering). Interestingly, despite the similarity in the conformation of CDR H3, the overall orientations of S9-3-37 and FI6v3 are very different (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
A). When bound to HA, S9-3-37 adopts an ∼180° rotation relative to FI6v3, such that the positions of the heavy chain and light chain are swapped compared to FI6v3 with respect to their interaction with the HA stem epitope. To understand the difference in the HA binding orientation of S9-3-37 and FI6v3, structural alignments between their variable domains of heavy chains (V
<sub>H</sub>
) were performed. When their D gene-encoded regions are superimposed, the base of their CDR H3s twist with respect to each other (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
C). When their V
<sub>H</sub>
framework regions are aligned, the CDR H3 loops of S9-3-37 and FI6v3 point in opposite directions (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
D). Together, our structural analysis reveals that the S9-3-37 and FI6v3 antibodies engage the HA stem surface in very different overall orientations and angles of approach, but nevertheless still have very similar CDR H3 conformations, especially for the residues that are important for engaging the conserved HA stem epitope.
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Binding Affinity of S9-3-37 against Hemagglutinins from Different Influenza Strains</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>HA Group</th>
<th>Subtype</th>
<th>Strain</th>
<th>S9-3-37 Fab (K
<sub>d</sub>
)</th>
<th>S9-3-37 IgG (K
<sub>d</sub>
)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/New York/1/1918</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/WSN/1933</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/duck/Alberta/60/1976</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/Beijing/262/1995</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/Solomon Islands/3/2006</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H1N1</td>
<td>A/California/04/2009</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H2N2</td>
<td>A/Adachi/2/1957</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>1</td>
<td>H5N1</td>
<td>A/Vietnam/1203/2004</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H5N1</td>
<td>A/lndonesia/05/2005</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>1</td>
<td>H9N2</td>
<td>A/turkey/Wisconsin/1/1966</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>H3N2</td>
<td>A/Hong Kong/1/1968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H3N2</td>
<td>A/Panama/2007/1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H3N2</td>
<td>A/Perth/16/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H4N6</td>
<td>A/duck/Czechoslovakia/1956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H7N7</td>
<td>A/Netherlands/219/2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H7N9</td>
<td>A/Shanghai/2/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H10N7</td>
<td>A/chicken/Germany/N/1949</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H14N5</td>
<td>A/mallard/Astrakhan/263/1982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H15N8</td>
<td>A/shearw./W. Australia/2576/1979</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>++++, K
<sub>d</sub>
<1 nM; +++, K
<sub>d</sub>
 = 1–10 nM; ++, K
<sub>d</sub>
 = 10–100 nM; +, K
<sub>d</sub>
 = 100–1,000 nM; and –, no binding.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Comparison of the Structures of S9-3-37 and FI6v3</p>
<p>(A) Comparison between structures of S9-3-37 in complex with H5 HA and FI6v3 in complex with H3 HA (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:3ZTJ" id="intref0075">3ZTJ</ext-link>
) (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
). HA1 is in wheat, HA2 in white, V
<sub>H</sub>
in pink, and V
<sub>L</sub>
in cyan. For clarity, only one Fab is shown per trimer, and the two HA protomers without their corresponding Fab are in gray.</p>
<p>(B) Comparison of the CDR H3 loops of S9-3-37 and FI6v3. The region corresponding to the D gene is in purple. Of note, despite occupying the same space, Leu100b in S9-3-37 is encoded by the D gene, whereas Leu100a in FI6v3 is encoded by N-region addition (
<xref rid="mmc1" ref-type="supplementary-material">Figure S1</xref>
). Similarly, Glu100i in S9-3-37 is encoded by N-region addition, whereas Ser100h in FI6v3 is encoded by the D gene.</p>
<p>(C and D) Structural comparison between S9-3-37 and FI6v3 reveals a twist in the base of CDR H3 with respect to each other. Only heavy-chain variable domains of S9-3-37 and FI6v3 are shown. Heavy-chain constant domains and light chains are not shown for clarity. Regions corresponding to CDR H3 are highlighted. Alignments are based on (C) D gene encoded-region or (D) the entire heavy-chain variable domain.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.2">
<title>Paratope Analysis Reveals the Importance of D3-9 in Binding</title>
<p id="p0050">Next, we compared the paratopes of S9-3-37 and FI6v3 and computed the buried surface areas (BSAs) in the S9-3-37-HA complex and FI6v3-HA complex (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:3TZN" id="intref0010">3TZN</ext-link>
) (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
) (see
<xref rid="sec4" ref-type="sec">STAR Methods</xref>
). The paratope of S9-3-37 is dominated by CDR H3, similar to FI6v3 (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
A and 2B) (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
), and only one framework residue interacts with the HA (V
<sub>L</sub>
Asp1 hydrogen bonds with HA1 Asn289 glycan;
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
A). The total BSA on S9-3-37 is 910 Å
<sup>2</sup>
(868 Å
<sup>2</sup>
from the heavy chain and 42 Å
<sup>2</sup>
from the light chain), with 83% (756 Å
<sup>2</sup>
) attributable to CDR H3. In comparison, the total BSA on FI6v3 is 903 Å
<sup>2</sup>
(714 Å
<sup>2</sup>
from the heavy chain and 189 Å
<sup>2</sup>
from the light chain), with 71% (638 Å
<sup>2</sup>
) from CDR H3. Similarly, the BSA on the HA is comparable in the S9-3-37-HA complex (832 Å
<sup>2</sup>
) and FI6v3-HA complex (817 Å
<sup>2</sup>
). Thus, binding of S9-3-37 to the HA is dominated by the relatively long CDR H3, which is similar to that of FI6v3. In CDR H3 of S9-3-37, the D3-9 gene encodes for seven residues
<sup>100b</sup>
LGYFDWL
<sup>100h</sup>
(
<xref rid="fig2" ref-type="fig">Figures 2</xref>
C and
<xref rid="mmc1" ref-type="supplementary-material">S1</xref>
C). With the exception of Gly100c and Asp100f, the other five hydrophobic residues (Leu100b, Tyr100d, Phe100e, Trp100g, and Leu100h) all interact with the HA stem. Of note, all of these five contacting residues are encoded by the germline D3-9, and therefore, none arise from somatic mutations. The buried surface area of this D3-9-encoded region is 495 Å
<sup>2</sup>
(
<xref rid="fig2" ref-type="fig">Figure 2</xref>
D), which accounts for 54% of the total BSA of S9-3-37. This observation further highlights the importance of the D3-9 gene segment in binding to the HA stem.
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Comparison between the Paratopes of FI6v3 and S9-3-37</p>
<p>(A and B) Buried surface area (BSA) upon binding for each residue in (A) S9-3-37 Fab and (B) FI6v3 Fab is plotted along the residue position in the sequence. The regions corresponding to the CDRs (based on Kabat numbering) are shaded in gray. The slight misalignment of the CDRs in the light chains is due to a two-residue deletion in the sequence of CDR L1 of FI6v3. Of note, those contacting residues that flank the N-terminal region of CDR H1 of FI6v3 are classified as part of CDR H1 according to the Chothia CDR structural definition (
<xref rid="bib1" ref-type="bibr">Al-Lazikani et al., 1997</xref>
), but not in the Kabat CDR sequence definition.</p>
<p>(C) Side chains of D3-9-encoded residues in S9-3-37 are shown in stick representation. HA is shown in a white surface.</p>
<p>(D) The BSA for each residue in the D3-9-encoded region in S9-3-37 is indicated.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.3">
<title>Role of Somatic Mutations in CDR H2</title>
<p id="p0055">Our structural analysis does, however, reveal a functional role for somatic mutations in CDR H2 of S9-3-37. Among the 17 residues in CDR H2, eight are somatically mutated from the inferred germline gene (
<xref rid="mmc1" ref-type="supplementary-material">Figure S1</xref>
A). N54D and N56K in CDR H2 engage in electrostatic interactions with HA1 Lys32 and HA2 Asp57, respectively (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
B). N56K, along with N58K, also hydrogen bonds with Gln99 in CDR H3 (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
C). These observations suggest that somatic mutations in CDR H2 not only facilitate interactions with HA but also help stabilize the base of CDR H3. Therefore, somatic mutations in CDR H2 are likely to play a critical role during affinity maturation of S9-3-37.</p>
</sec>
<sec id="sec2.4">
<title>Epitope Analysis Explains the Group 1 Specificity of S9-3-37</title>
<p id="p0060">Many HA residues are targeted by both S9-3-37 and FI6v3 (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
A), namely HA1 residue 289, and HA2 residues 18, 19, 20, 21, 38, 41, 42, 45, 46, 48, 49, 52, 53, 56, and 57 (H3 numbering is used throughout, unless indicated otherwise). In contrast, some HA residues (HA1 18, 38, 39, 40, 291, 292, and 318; and HA2 36, 50, and 54) are only targeted by S9-3-7, but not FI6v3, and vice versa (HA1 residues 8, 28, 29, 30, 287, 290, and 316; and HA2 residues 39 and 43). Those shared epitope residues, which are targeted by CDR H3 (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
A), are more conserved than those epitope residues that are unique to either S9-3-37 or FI6v3 (
<xref rid="fig3" ref-type="fig">Figures 3</xref>
B and
<xref rid="mmc1" ref-type="supplementary-material">S4</xref>
). In contrast to FI6v3, which bind to both groups 1 and 2 HAs, S9-3-37 only binds to group 1 HAs. Natural amino acid variants in HA1 residue 38 and HA2 residue 50, both of which are epitope residues unique to S9-3-37, may explain the narrower breadth in S9-3-37 as compared to FI6v3. Most group 1 HAs carry an Asn at HA2 residue 50, whereas HA2 residue 50 is highly conserved as Gly among group 2 HAs (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
D). In our crystal structure, HA2 Asn50 forms an H-bond with Arg97 of S9-3-37 V
<sub>H</sub>
(
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
E). When Gly is present at HA2 residue 50, this H-bond interaction would be abolished, which can partially explain lack of binding of S9-3-37 to group 2 HAs. In HA1 residue 38, an N-glycosylation site is present in most group 2 HAs, but not in group 1 HAs, and can provide steric hindrance to the HA stem epitope (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
F). CDR L1 of S9-3-37 is spatially proximal to HA1 residue 38 (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
G), and a glycan at HA1 residue 38 in group 2 HAs would likely clash with CDR L1 of S9-3-37. In comparison, although CDR H2 of FI6v3 occupies a similar space (
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
G), it is more distant from HA1 residue 38, which allows it to accommodate a glycan at HA1 residue 38. In fact, the N-glycosylation site at HA1 Asn38 has limited the ability of several stem-binding bnAbs to neutralize group 2 influenza subtypes (
<xref rid="bib52" ref-type="bibr">Wu and Wilson, 2017</xref>
). Subsequently, these analyses show that while both S9-3-37 and FI6v3 utilize a long CDR H3 to target the most conserved part of the epitope, other epitope residues that are unique to each antibody are less conserved and play a critical role in determining their breadth. The different angles of approach may also be critical for the difference in breadth between S9-3-37 and FI6v3, as shown for V
<sub>H</sub>
1-69-encoded bnAbs (
<xref rid="bib34" ref-type="bibr">Lang et al., 2017</xref>
).
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>Comparison between the Epitopes of FI6v3 and S9-3-37</p>
<p>(A) Residues that are common in the epitopes of FI6v3 and S9-3-37 are in blue. Residues that are unique to the FI6v3 epitope are in orange. Residues that are unique to the S9-3-37 epitope are in yellow. CDR H2, H3, and L1 of S9-3-37 are shown in tube representation.</p>
<p>(B) Sequence conservation of each epitope residue was quantified by sequence entropy, which was calculated based on the alignment of 20 representative strains from different types and subtypes shown in
<xref rid="mmc1" ref-type="supplementary-material">Figure S4</xref>
. “Both,” residues that are common between the epitopes of FI6v3 and S9-3-37. “FI6v3,” residues that are unique to the FI6v3 epitope. “S9-3-37,” residues that are unique to the S9-3-37 epitope.</p>
</caption>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.5">
<title>D3-9 Engages the HA Stem via Multiple Binding Modes</title>
<p id="p0065">Recently, Joyce et al. isolated a number of heterosubtypic cross-reactive B cells from six individuals (subjects 1, 16, 31, 36, 54, and 56) enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
). Their study discovered a number of bnAbs, including one called 31.b.09, that utilized V
<sub>H</sub>
1-18 and D3-9 (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), which is the same as in S9-3-37. Nonetheless, when we compared the sequence of S9-3-37 to that of 31.b.09, we noticed that their D3-9 gene segments were translated in different reading frames (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
A). In other words, despite the usage of the same D gene segment, the corresponding amino acid sequences in the D gene-encoded regions of S9-3-37 and 31.b.09 are totally different. The D3-9 gene segment in S9-3-37 encodes for amino acids LGYFDWL, whereas the D3-9 gene segment in 31.b.09 encodes for amino acids ILTG. When we compared the structure of S9-3-37-HA complex with that of 31.b.09-HA complex (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:5K9O" id="intref0015">5K9O</ext-link>
) (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), we found that the Phe within the LGYFDWL motif in S9-3-37 and Leu within the ILTG motif in 31.b.09 occupy the same pocket in the HA stem region. This observation demonstrates that the D3-9 gene segment can engage the HA stem with two different reading frames. Unlike the two reading frames outlined above, the third reading frame of D3-9 gene segment contains a stop codon in the middle of the translated protein sequence, making it unlikely to be utilized (
<xref rid="mmc1" ref-type="supplementary-material">Figure S5</xref>
A).
<fig id="fig4">
<label>Figure 4</label>
<caption>
<p>Roles of the D3-9 Gene Segment in HA Binding</p>
<p>(A) Phe and Leu of CDR H3 of S9-3-37 and 31.b.09 (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:5K9O" id="intref0080">5K9O</ext-link>
) (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), respectively, both occupy the same pocket in the HA stem region. On the top, the germline line sequence of D3-9 is aligned with the CDR H3 D gene segment of S9-3-37 and 31.b.09. The Phe and Leu that are shown on the structure are highlighted in red on the primary sequence. Somatic mutations are underlined. Nucleotides from N-regions are shown in lowercase.</p>
<p>(B–D) Analyses were performed on the CDR H3 sequences from a total of 645 H3/H5 cross-reactive B cells reported in Joyce et al., which were obtained from six vaccinated subjects (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
). Most of the antibodies recovered from these B cells were able to neutralize both group 1 and 2 viruses, but some only neutralized group 1 viruses, and some were non-neutralizing (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
). (B) The frequencies of D3-9 gene segment usage among all cross-reactive isolated memory B cell clones in each subject are shown. The numbers in the parentheses represents (number of sequenced B cell clones with D3-9)/(total number of sequenced B cell clones). (C) The CDR H3 of each cross-reactive antibody that used D3-9 gene segment was further categorized into 31.b.09-like, S9-3-37-like and other. The proportion of each category of CDR H3 that used D3-9 gene segment in each subject is shown. (D) The CDR H3 sequences of the four antibodies with S9-3-37-like CDR H3 are shown. Of note, the CDR H3 sequences of clones 56.ND.12 and 56.h.01 are the same. The LXYFXWL motif is highlighted in blue.</p>
</caption>
<graphic xlink:href="gr4_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.6">
<title>Involvement of D3-9 in Anti-influenza Immunity</title>
<p id="p0070">Five of the six subjects studied by Joyce et al. utilized the D3-9 gene segment in their cross-reactive B cells (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), with varying frequency (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
B). Based on a motif searching approach (see
<xref rid="sec4" ref-type="sec">STAR Methods</xref>
), we classified the CDR H3 sequence of each B cell clone that utilized the D3-9 gene segment into S9-3-37-like or 31.b.09-like. Briefly, those D3-9-encoded CDR H3 sequences that contained an LXYFXWL motif, where X represents any amino acid, were classified as S9-3-37-like. Those D3-9-encoded CDR H3 sequences that contained an ILTG motif, with one mismatch allowed at position 1, 3, or 4 (i.e., no variation was allowed for Leu at the second position), were classified as 31.b.09-like. S9-3-37-like CDR H3 could be observed in four heterosubtypic cross-reactive B cells from subjects 31, 54, and 56, whereas 31.b.09-like CDR H3 could be observed in 78 heterosubtypic cross-reactive B cells from subjects 1, 16, and 31 (
<xref rid="fig4" ref-type="fig">Figures 4</xref>
C and 4D;
<xref rid="mmc1" ref-type="supplementary-material">Table S2</xref>
). The four S9-3-37-like CDR H3 sequences identified in this analysis are relatively long (19–26 residues,
<xref rid="fig4" ref-type="fig">Figure 4</xref>
D), as also seen in S9-3-37 (21 amino acid) and FI6v3 (20 amino acid), suggesting that they may bind to HA stem in a similar manner to S9-3-37 and FI6v3. Joyce et al. indeed showed that antibodies from three of those four B cell clones (31.d.01, 54.e.01, and 56.h.01) could neutralize multiple influenza subtypes (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
). Of note, both 31.d.01 and 56.h.01 are group 1-specific bnAbs, whereas 54.e.01 can neutralize viruses from both group 1 and group 2.</p>
<p id="p0075">In addition, we analyzed four additional datasets to examine the frequency of D3-9 usage in heterosubtypic cross-reactive B cells. These include 306 H1/H3/H7 cross-reactive B cells (
<xref rid="bib4" ref-type="bibr">Andrews et al., 2017</xref>
), 55 H1/H3 cross-reactive B cells (
<xref rid="bib40" ref-type="bibr">McCarthy et al., 2018</xref>
), 42 HA stem-specific B cells (
<xref rid="bib3" ref-type="bibr">Andrews et al., 2015</xref>
), and 198 HA stem-specific B cells (
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
,
<xref rid="bib45" ref-type="bibr">Pappas et al., 2014</xref>
). Similar to the dataset from Joyce et al. (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
), all four additional datasets contain B cells that utilize the D3-9 gene segment (
<xref rid="mmc1" ref-type="supplementary-material">Figures S5</xref>
B–S5E): 22% (140 out of 645) in
<xref rid="bib28" ref-type="bibr">Joyce et al. (2016)</xref>
, 7% (20 out of 306) in
<xref rid="bib4" ref-type="bibr">Andrews et al. (2017)</xref>
, 4% (2 out of 55) in
<xref rid="bib40" ref-type="bibr">McCarthy et al. (2018)</xref>
, 7% (3 out of 42) in
<xref rid="bib3" ref-type="bibr">Andrews et al. (2015)</xref>
, and 17% (33 out of 198) in
<xref rid="bib9" ref-type="bibr">Corti et al. (2011)</xref>
and
<xref rid="bib45" ref-type="bibr">Pappas et al. (2014)</xref>
. Overall, 16% (198 out of 1,246) heterosubtypic cross-reactive B cells utilized the D3-9 gene segment across all analyzed datasets. These findings demonstrate preferences in the use of the D3-9 gene segment in HA heterosubtypic cross-reactive B cells.</p>
<p id="p0080">We further performed a structural comparison between S9-3-37 and a representative bnAb reported in
<xref rid="bib4" ref-type="bibr">Andrews et al. (2017)</xref>
, namely 27-1C08 (V
<sub>H</sub>
1-2+D3-9) that contains the LXYFXWL motif. Despite the vast difference in the overall conformations of the CDR H3 loops in 27-1C08 (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:5WCA" id="intref0020">5WCA</ext-link>
) (
<xref rid="bib4" ref-type="bibr">Andrews et al., 2017</xref>
) and S9-3-37, the conformations of their D3-9-encoded regions are highly similar (
<xref rid="mmc1" ref-type="supplementary-material">Figure S6</xref>
A). While the structure of 27-1C08 in complex with HA is not available, our observations suggest that the D3-9-encoded regions from 27-1C08 would bind to the same stem pocket as S9-3-37. These results also support the notion that the D3-9 gene segment provides a recurring strategy to target the HA stem.</p>
</sec>
<sec id="sec2.7">
<title>S9-3-37-like CDR H3s in B Cell Repertoires of Healthy Donors</title>
<p id="p0085">We further aimed to analyze the D3-9-encoded CDR H3s in the B cell repertoires of healthy donors. We utilized a dataset from DeKosky et al., which contained a total of 134,345 unique CDR H3 sequences from three healthy donors that were derived from next-generation sequencing data (
<xref rid="bib11" ref-type="bibr">DeKosky et al., 2015</xref>
). Both 31.b.09-like and S9-3-37-like CDR H3 sequences could be found (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
A), although the frequency of 31.b.09-like CDR H3 sequences (∼1%) was much higher than S9-3-37-like CDR H3 sequences (∼0.01% to ∼0.1%). S9-3-37-like CDR H3s with at least 20 amino acids long could be observed in two of the three healthy donors (
<xref rid="fig5" ref-type="fig">Figure 5</xref>
B). This analysis shows that B cells that utilize S9-3-37-like CDR H3, despite being less common than 31.b.09-like CDR H3, are prevalent in the B cell repertoires of healthy donors.
<fig id="fig5">
<label>Figure 5</label>
<caption>
<p>Existence of S9-3-37-like CDR H3s in the Antibody Repertoires of Healthy Donors</p>
<p>A dataset from DeKosky et al., which reported the CDR H3 sequences from three healthy donors that were reconstructed from next-generation sequencing data (
<xref rid="bib11" ref-type="bibr">DeKosky et al., 2015</xref>
), was analyzed.</p>
<p>(A) The total occurrence frequencies of 31.b.09-like CDR H3 and S9-3-37-like CDR H3 in different donors are shown.</p>
<p>(B) The length of each S9-3-37-like CDR H3 in each donor is shown. The size of each data point is proportional to the occurrence frequency of each clone.</p>
</caption>
<graphic xlink:href="gr5_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec2.8">
<title>S9-3-37-like CDR H3s Are Uncommon in Non-HA-Targeting B Cells</title>
<p id="p0090">To assess the relative prevalence of 31.b.09-like (ILTG motif) and S9-3-37-like (LXYFXWL motif) CDR H3s in targeting non-HA antigens, we analyzed two published datasets. The first dataset describes the memory B cell repertoires from four donors after administration of two meningococcal vaccines (
<xref rid="bib22" ref-type="bibr">Galson et al., 2015</xref>
). The second dataset describes the memory B cell repertoire from three time points that are 1–2 years apart in an HIV-infected patient (
<xref rid="bib26" ref-type="bibr">Huang et al., 2016</xref>
). As compared to the 1,246 HA cross-reactive antibodies that were analyzed above (
<xref rid="fig4" ref-type="fig">Figures 4</xref>
B, 4C, and
<xref rid="mmc1" ref-type="supplementary-material">S5</xref>
B–S5E), the S9-3-37-like CDR H3 is rare in the memory B cell repertoires of the four meningococcal-vaccinated individuals and the HIV-infected patient (
<xref rid="fig6" ref-type="fig">Figure 6</xref>
). Among HA cross-reactive antibodies, the frequency of S9-3-37-like CDR H3 (2.2%, 27 out of 1,246) is ∼3-fold lower than that of 31.b.09-like CDR H3 (6.7%, 84 out of 1,246). In contrast, in the memory B cell repertoires of meningococcal-vaccinated individuals and the HIV-infected patient, an S9-3-37-like CDR H3 is either undetectable or >100-fold less prevalent than the 31.b.09-like CDR H3. This analysis suggests that, while 31.b.09-like CDR H3 may be involved at very low frequencies in targeting other non-HA antigens, S9-3-37-like CDR H3 is much more specific for targeting the HA stem region.
<fig id="fig6">
<label>Figure 6</label>
<caption>
<p>S9-3-37-like CDR H3s Are Uncommon in Non-HA-Targeting Memory B Cells</p>
<p>The frequencies of 31.b.09-like and S9-3-37-like in influenza HA cross-reactive antibodies (“HA cross-reactive Ab”), in the IgG
<sup>+</sup>
memory B cell repertoire after administration of two Meningococcal vaccines (
<xref rid="bib22" ref-type="bibr">Galson et al., 2015</xref>
), and in the IgG
<sup>+</sup>
memory B cell repertoire from an HIV-infected patient (
<xref rid="bib26" ref-type="bibr">Huang et al., 2016</xref>
), are shown. The dataset of influenza HA cross-reactive antibodies contains 1,246 HA cross-reactive antibodies that are described in
<xref rid="fig4" ref-type="fig">Figures 4</xref>
B and 4C (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
) and
<xref rid="mmc1" ref-type="supplementary-material">Figures S5</xref>
B–S5E (
<xref rid="bib3" ref-type="bibr">Andrews et al., 2015</xref>
,
<xref rid="bib4" ref-type="bibr">Andrews et al., 2017</xref>
,
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
,
<xref rid="bib40" ref-type="bibr">McCarthy et al., 2018</xref>
,
<xref rid="bib45" ref-type="bibr">Pappas et al., 2014</xref>
). Four subjects were analyzed in the Meningococcal vaccine dataset (
<xref rid="bib22" ref-type="bibr">Galson et al., 2015</xref>
). Three time points that were 1–2 years apart were analyzed in the HIV dataset (
<xref rid="bib26" ref-type="bibr">Huang et al., 2016</xref>
). The number of CDR H3 sequences being analyzed (n) in each sample is indicated. Data points are plotted on the x axis if their occurrence frequency equals zero.</p>
</caption>
<graphic xlink:href="gr6_lrg"></graphic>
</fig>
</p>
<p id="p0095">We also analyzed the germline usage of 53 HIV bnAbs from different clonotypes (
<xref rid="bib19" ref-type="bibr">Eroshkin et al., 2014</xref>
), in which two of them (PGT136 and VRC-PG04b) utilized the D3-9 gene segment (
<xref rid="mmc1" ref-type="supplementary-material">Figure S7</xref>
A). Nonetheless, in these two HIV bnAbs, the D3-9 gene segment only encodes for two to three amino acids (
<xref rid="mmc1" ref-type="supplementary-material">Figures S7</xref>
B and S7C). Therefore, D3-9 gene segment in these two HIV bnAbs is unlikely to be as critical for engaging the epitope. Consistent with the analysis of memory B cell repertoires (
<xref rid="fig6" ref-type="fig">Figure 6</xref>
), the result here implies that the D3-9 gene segment has a specific role in bnAbs that target influenza HA, but not in other microbial antigens analyzed to date.</p>
</sec>
</sec>
<sec id="sec3">
<title>Discussion</title>
<p id="p0100">From the X-ray structure of group 1 influenza bnAb S9-3-37, we uncovered an important role of the D3-9 gene segment in targeting the HA stem region. In particular, the binding of the D3-9-encoded CDR H3 region to the HA stem is resilient to different reading (translation) frames and has minimum dependency on the V
<sub>H</sub>
and J
<sub>H</sub>
gene segments. Importantly, the D3-9 gene segment is utilized by HA stem-binding bnAbs from multiple donors (
<xref rid="bib4" ref-type="bibr">Andrews et al., 2017</xref>
,
<xref rid="bib9" ref-type="bibr">Corti et al., 2011</xref>
,
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
,
<xref rid="bib59" ref-type="bibr">Wyrzucki et al., 2014</xref>
).</p>
<p id="p0105">An “SOS component” of the antibody repertoire has been used to describe a germline response that is immediately available upon microbial infection with minimum somatic mutations (
<xref rid="bib36" ref-type="bibr">Lerner, 2011</xref>
,
<xref rid="bib37" ref-type="bibr">Lerner, 2016</xref>
). V
<sub>H</sub>
1-69 is perhaps the most well-known “SOS component” of the antibody repertoire (
<xref rid="bib13" ref-type="bibr">Dreyfus et al., 2012</xref>
,
<xref rid="bib14" ref-type="bibr">Ekiert et al., 2009</xref>
,
<xref rid="bib31" ref-type="bibr">Kashyap et al., 2008</xref>
,
<xref rid="bib34" ref-type="bibr">Lang et al., 2017</xref>
,
<xref rid="bib36" ref-type="bibr">Lerner, 2011</xref>
,
<xref rid="bib37" ref-type="bibr">Lerner, 2016</xref>
,
<xref rid="bib48" ref-type="bibr">Sui et al., 2009</xref>
,
<xref rid="bib49" ref-type="bibr">Throsby et al., 2008</xref>
). Our results suggest that the D3-9 gene segment is another “SOS component” of the antibody repertoire. However, it seems the response from D3-9 gene segment is not as general as V
<sub>H</sub>
1-69. V
<sub>H</sub>
1-69 is frequently observed in immune response against pathogens other than influenza virus, such as hepatitis C virus (
<xref rid="bib39" ref-type="bibr">Marasca et al., 2001</xref>
), HIV (
<xref rid="bib24" ref-type="bibr">Gorny et al., 2012</xref>
,
<xref rid="bib38" ref-type="bibr">Luftig et al., 2006</xref>
), and middle east respiratory syndrome coronavirus (
<xref rid="bib58" ref-type="bibr">Ying et al., 2015</xref>
). In contrast, our analysis indicates that D3-9 gene segment, especially the reading frame that encodes the motif LXYFXWL (S9-3-37-like CDR H3), is more specific to influenza virus (
<xref rid="fig6" ref-type="fig">Figures 6</xref>
and
<xref rid="mmc1" ref-type="supplementary-material">S7</xref>
). To date, most large-scale analyses on germline usage have focused on V
<sub>H</sub>
gene segments. Future analysis should investigate whether other D gene segments and even J
<sub>H</sub>
gene segments contribute to the “SOS component” of the antibody repertoire.</p>
<p id="p0110">Structural characterization of multidonor class bnAbs has been highly valuable for development of the universal influenza vaccine using a reverse-engineering approach. For example, two different headless HA immunogens (
<xref rid="bib27" ref-type="bibr">Impagliazzo et al., 2015</xref>
,
<xref rid="bib55" ref-type="bibr">Yassine et al., 2015</xref>
) were designed based on the binding modes of CR9114 (
<xref rid="bib13" ref-type="bibr">Dreyfus et al., 2012</xref>
) and CR6261 (
<xref rid="bib14" ref-type="bibr">Ekiert et al., 2009</xref>
,
<xref rid="bib49" ref-type="bibr">Throsby et al., 2008</xref>
), which are both V
<sub>H</sub>
1-69-encoded bnAbs. Structural characterization of such bnAbs also provides templates for antiviral development (
<xref rid="bib53" ref-type="bibr">Wu and Wilson, 2018</xref>
). These HA stem-binding bnAbs have also inspired the design of small proteins and peptides that display antiviral activities (
<xref rid="bib8" ref-type="bibr">Chevalier et al., 2017</xref>
,
<xref rid="bib20" ref-type="bibr">Fleishman et al., 2011</xref>
,
<xref rid="bib30" ref-type="bibr">Kadam et al., 2017</xref>
,
<xref rid="bib50" ref-type="bibr">Whitehead et al., 2012</xref>
). In fact, a small neutralizing peptide that binds to the HA stem was designed primarily based on CDR H3 of bnAb FI6v3 containing the D3-9-encoded LXYFXWL motif (
<xref rid="bib30" ref-type="bibr">Kadam et al., 2017</xref>
) (PDB
<ext-link ext-link-type="uri" xlink:href="pdb:5W6T" id="intref0025">5W6T</ext-link>
;
<xref rid="mmc1" ref-type="supplementary-material">Figure S6</xref>
B). We anticipate that future discovery and characterization of multidonor class bnAbs will continue to provide insight into antiviral and vaccine design against influenza virus.</p>
<p id="p0115">As several HA stem-binding bnAbs are currently being tested in clinical trials for both prophylactic and therapeutic usage (
<xref rid="bib46" ref-type="bibr">Sparrow et al., 2016</xref>
), it is equally important to understand the potential for bnAb escape. Although it is generally more difficult for influenza virus to escape from stem antibodies compared to head antibodies (
<xref rid="bib2" ref-type="bibr">Anderson et al., 2017</xref>
,
<xref rid="bib6" ref-type="bibr">Chai et al., 2016</xref>
,
<xref rid="bib12" ref-type="bibr">Doud et al., 2018</xref>
,
<xref rid="bib14" ref-type="bibr">Ekiert et al., 2009</xref>
,
<xref rid="bib48" ref-type="bibr">Sui et al., 2009</xref>
,
<xref rid="bib49" ref-type="bibr">Throsby et al., 2008</xref>
,
<xref rid="bib54" ref-type="bibr">Yamayoshi et al., 2018</xref>
), strong escape mutations have been identified for several HA stem-binding bnAbs (
<xref rid="bib2" ref-type="bibr">Anderson et al., 2017</xref>
,
<xref rid="bib6" ref-type="bibr">Chai et al., 2016</xref>
,
<xref rid="bib15" ref-type="bibr">Ekiert et al., 2011</xref>
,
<xref rid="bib21" ref-type="bibr">Friesen et al., 2014</xref>
,
<xref rid="bib25" ref-type="bibr">Henry Dunand et al., 2015</xref>
,
<xref rid="bib54" ref-type="bibr">Yamayoshi et al., 2018</xref>
). Most of the escape mutations dramatically decrease the binding affinity to bnAbs. Nonetheless, increasing the membrane fusion pH of the HA can also contribute to HA stem-binding bnAb escape (
<xref rid="bib6" ref-type="bibr">Chai et al., 2016</xref>
). A previous study by some of the authors here has shown that HA1 N21S/Y (residue 11 in H1 numbering), which eliminates the highly conserved N-glycosylation site at HA1 Asn21, abolished the neutralization activity of several HA stem-binding bnAbs, including S9-3-37 (
<xref rid="bib54" ref-type="bibr">Yamayoshi et al., 2018</xref>
). Interestingly, Asn21 is not part of the S9-3-37 epitope (
<xref rid="mmc1" ref-type="supplementary-material">Figures S6</xref>
C and S6D), suggesting that the escape mechanism of N21S/Y is not due to a loss of a direct interaction that could decrease binding to S9-3-37. Rather, such S9-3-37 escape could be due to an increase in the membrane fusion pH, since removal of the N-glycosylation site at Asn21 has been suggested to decrease the pH stability of the virus and, hence, make it more fusion sensitive at higher pH (
<xref rid="bib57" ref-type="bibr">Yin et al., 2017</xref>
). While the HA stem is a promising target for antiviral and vaccine design, future studies of potential escape mechanisms will be critical for the development of a robust anti-influenza strategy.</p>
</sec>
<sec id="sec4">
<title>STAR★Methods</title>
<sec id="sec4.1">
<title>Key Resources Table</title>
<p id="p0120">
<table-wrap position="float" id="undtbl1">
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3">
<bold>Antibodies</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>ExpiCHO Expression System Kit</td>
<td>Thermo Fisher Scientific</td>
<td>A29133</td>
</tr>
<tr>
<td>HyClone insect cell culture medium</td>
<td>GE Healthcare</td>
<td>SH30280.03</td>
</tr>
<tr>
<td>Phosphate-buffered saline (PBS)</td>
<td>Thermo Fisher Scientific</td>
<td>14040133</td>
</tr>
<tr>
<td>Ni-NTA Superflow</td>
<td>QIAGEN</td>
<td>30450</td>
</tr>
<tr>
<td>HA protein sequences</td>
<td>GISAID;
<ext-link ext-link-type="uri" xlink:href="https://gisaid.org/" id="intref0030">https://gisaid.org/</ext-link>
</td>
<td>N/A</td>
</tr>
<tr>
<td>S9-3-37 antibody</td>
<td>
<xref rid="bib54" ref-type="bibr">Yamayoshi et al., 2018</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>DH10Bac competent cells</td>
<td>Thermo Fisher Scientific</td>
<td>10361012</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Biological Samples</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>ExpiCHO cells</td>
<td>Thermo Fisher Scientific</td>
<td>A29127</td>
</tr>
<tr>
<td>Sf9 cells</td>
<td>ATCC</td>
<td>CRL-1711</td>
</tr>
<tr>
<td>High Five cells</td>
<td>Thermo Fisher Scientific</td>
<td>B85502</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Chemicals, Peptides, and Recombinant Proteins</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>DpnI</td>
<td>New England Biolabs</td>
<td>R0176L</td>
</tr>
<tr>
<td>Trypsin</td>
<td>New England Biolabs</td>
<td>P8101S</td>
</tr>
<tr>
<td>Sodium chloride (NaCl)</td>
<td>Sigma-Aldrich</td>
<td>S9888</td>
</tr>
<tr>
<td>Tris Base</td>
<td>Sigma-Aldrich</td>
<td>11814273001</td>
</tr>
<tr>
<td>Concentrated hydrochloric acid (HCl)</td>
<td>Sigma-Aldrich</td>
<td>H1758</td>
</tr>
<tr>
<td>Sodium azide (NaN
<sub>3</sub>
)</td>
<td>Sigma-Aldrich</td>
<td>S2002</td>
</tr>
<tr>
<td>Bovine Serum Albumin (BSA)</td>
<td>Sigma-Aldrich</td>
<td>A9418</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Fisher Scientific</td>
<td>BP337-500</td>
</tr>
<tr>
<td>Chemicals for protein crystallization</td>
<td>Hampton Research</td>
<td>N/A</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Critical Commercial Assays</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>In-Fusion HD Cloning Kit</td>
<td>Takara</td>
<td>639647</td>
</tr>
<tr>
<td>KOD Hot Start DNA Polymerase</td>
<td>EMD Millipore</td>
<td>71086-3</td>
</tr>
<tr>
<td>PCR Clean-Up and Gel Extraction Kit</td>
<td>Clontech Laboratories</td>
<td>740609.250</td>
</tr>
<tr>
<td>QIAprep Spin Miniprep Kit</td>
<td>QIAGEN</td>
<td>27106</td>
</tr>
<tr>
<td>NucleoBond Xtra Maxi</td>
<td>Clontech Laboratories</td>
<td>740414.100</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Deposited Data</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>X-ray coordinates and structure factors</td>
<td>This study</td>
<td>PDB:
<ext-link ext-link-type="uri" xlink:href="pdb:6E3H" id="intref0035">6E3H</ext-link>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Oligonucleotides</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>Primers for cloning</td>
<td>Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Recombinant DNA</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>phCMV3-S9-3-37 Fab heavy chain</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>phCMV3-S9-3-37 light chain</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/New York/1/1918 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/WSN/1933 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/duck/Alberta/60/1976 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Beijing/262/1995 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Solomon Islands/3/2006 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/California/04/2009 (H1 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Adachi/2/1957 (H2 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Vietnam/1203/2004 (H5 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/lndonesia/05/2005 (H5 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/turkey/Wisconsin/1/1966 (H9 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Hong Kong/1/1968 (H3 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Panama/2007/1999 (H3 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Perth/16/2009 (H3 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/duck/Czechoslovakia/1956 (H4 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Netherlands/219/2003 (H7 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/Shanghai/2/2013 (H7 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/chicken/Germany/N/1949 (H10 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/mallard/Astrakhan/263/1982 (H14 HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>pFast-A/shearw./W.Australia/2576/1979 (H15HA)</td>
<td>
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td colspan="3">
<bold>Software and Algorithms</bold>
</td>
</tr>
<tr>
<td colspan="3">
<hr></hr>
</td>
</tr>
<tr>
<td>R</td>
<td>
<ext-link ext-link-type="uri" xlink:href="https://www.r-project.org" id="intref0040">https://www.r-project.org</ext-link>
</td>
<td>N/A</td>
</tr>
<tr>
<td>Python</td>
<td>
<ext-link ext-link-type="uri" xlink:href="https://www.python.org" id="intref0045">https://www.python.org</ext-link>
</td>
<td>N/A</td>
</tr>
<tr>
<td>MAFFT version 7.157b</td>
<td>
<xref rid="bib32" ref-type="bibr">Katoh and Standley, 2013</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>WebLogo</td>
<td>
<xref rid="bib10" ref-type="bibr">Crooks et al., 2004</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>IgBlast</td>
<td>
<xref rid="bib56" ref-type="bibr">Ye et al., 2013</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>HKL2000</td>
<td>
<xref rid="bib44" ref-type="bibr">Otwinowski and Minor, 1997</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>Phaser</td>
<td>
<xref rid="bib41" ref-type="bibr">McCoy et al., 2007</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>Coot</td>
<td>
<xref rid="bib17" ref-type="bibr">Emsley et al., 2010</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>Refmac5</td>
<td>
<xref rid="bib42" ref-type="bibr">Murshudov et al., 2011</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>MolProbity</td>
<td>
<xref rid="bib7" ref-type="bibr">Chen et al., 2010</xref>
</td>
<td>N/A</td>
</tr>
<tr>
<td>Custom scripts</td>
<td>This study</td>
<td>N/A</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="sec4.2">
<title>Contact for Reagent and Resource Sharing</title>
<p id="p0125">Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ian A. Wilson (
<ext-link ext-link-type="uri" xlink:href="mailto:wilson@scripps.edu" id="intref0050">wilson@scripps.edu</ext-link>
).</p>
</sec>
<sec id="sec4.3">
<title>Experimental Model and Subject Details</title>
<sec id="sec4.3.1">
<title>Cell cultures</title>
<p id="p0130">ExpiCHO cells were maintained according to the manufacturer’s instructions (Thermo Fisher Scientific). Sf9 cells and High Five cells were maintained in HyClone insect cell culture medium (GE Healthcare).</p>
</sec>
</sec>
<sec id="sec4.4">
<title>Method Details</title>
<sec id="sec4.4.1">
<title>Expression and purification of S9-3-37 Fab</title>
<p id="p0135">The heavy and light chains of S9-3-37 Fab were cloned into phCMV3 vector with an N-terminal secretion signal METDTLLLWVLLLWVPGSTG. The phCMV3-S9-3-37 heavy chain and phCMV3-S9-3-37 light chain were produced in the ExpiCHO expression system (Thermo Fisher Scientific) according to the Max Titer Protocol as described in the manufacturer’s instructions. S9-3-37 Fab was purified by the 5 mL HiTrap Protein G HP antibody purification columns and buffer exchanged into 1x PBS.</p>
</sec>
<sec id="sec4.4.2">
<title>Expression, purification and biotinylation of influenza hemagglutinin</title>
<p id="p0140">Influenza hemagglutinin (HA) was prepared for binding studies as previously described (
<xref rid="bib15" ref-type="bibr">Ekiert et al., 2011</xref>
). Briefly, the HA ectodomain, which corresponds to 11–329 (HA1) and 1–176 (HA2) based on H3 numbering, was fused with an N-terminal gp67 signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site, trimerization domain, and a His
<sub>6</sub>
tag, and then cloned into a customized baculovirus transfer vector (
<xref rid="bib15" ref-type="bibr">Ekiert et al., 2011</xref>
). Recombinant bacmid DNA was generated using the Bac-to-Bac system (Life Technologies). Baculovirus was generated by transfecting purified bacmid DNA into Sf9 cells using FuGene HD (Promega). HA was expressed by infecting suspension cultures of High Five cells (Life Technologies) with baculovirus at an MOI of 5 to 10 and incubating at 28°C shaking at 110 rpm for 72 hours. The supernatant was concentrated. HA0 was purified by Ni-NTA and buffer exchanged into 20 mM Tris-HCl pH 8.0 and 150 mM NaCl. For binding experiments, HA0 was biotinylated as described (
<xref rid="bib16" ref-type="bibr">Ekiert et al., 2012</xref>
) and purified by size exclusion chromatography on a Hiload 16/90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM NaCl, and 0.02% NaN
<sub>3</sub>
. For crystallization, Viet04 HA0 was treated with trypsin (New England Biolabs) to remove the C-terminal tag (BirA biotinylation site, thrombin cleavage site, trimerization domain, and the His
<sub>6</sub>
tag) and to produce the cleaved mature HA (HA1/HA2). The trypsin-digested Viet04 HA was then purified by size exclusion chromatography on a Hiload 16/90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM NaCl, and 0.02% NaN
<sub>3</sub>
.</p>
</sec>
<sec id="sec4.4.3">
<title>Biolayer interferometry binding assay</title>
<p id="p0145">The binding assay was performed by biolayer interferometry (BLI) using an Octet Red instrument (ForteBio, Menlo Park, CA). Biotinylated HA0 at ∼10–50  μg mL
<sup>-1</sup>
in 1x kinetics buffer (1x PBS with 0.01% BSA and 0.002% Tween 20) was loaded onto streptavidin biosensors and incubated with supernatant from transfected cells or with the indicated concentration of Fab. Streptavidin biosensors that were not loaded were used as a reference for subtracting background binding from signals. Briefly, the assay consisted of five steps: 1) baseline: 60 s with 1x kinetics buffer; 2) loading: 120 s with biotinylated HA0; 3) baseline: 60 s with 1x kinetics buffer; 4) association: 120 s with samples (supernatant from transfected cells or purified Fab); and 5) dissociation: 120 s with 1x kinetics buffer. For estimating the K
<sub>d</sub>
, a 1:1 binding model was used.</p>
</sec>
<sec id="sec4.4.4">
<title>Crystallization and structural determination</title>
<p id="p0150">S9-3-37 Fab was incubated with the purified Viet04 HA trimer in a molar ratio of 4.5:1 overnight at 4 °C. The S9-3-37 Fab-Viet04 HA complex was purified by size exclusion chromatography on a Hiload 16/90 Superdex 200 column (GE Healthcare) in 20 mM Tris pH 8.0, 150 mM NaCl, and 0.02% NaN
<sub>3</sub>
and concentrated to 9 mg mL
<sup>-1</sup>
in 10 mM Tris pH 8.0, 50 mM NaCl, and 0.02% NaN
<sub>3</sub>
. Crystal screening was carried out using our high-throughput, robotic CrystalMation system (Rigaku) at TSRI. The initial crystal screening was based on sitting drop vapor diffusion method with 35 μL reservoir solution and each drop consisting 0.1 μL protein + 0.1 μL precipitant. Diffraction-quality crystals were obtained with a reservoir solution containing 20% PEG 6000, 0.1 M HEPES pH 7.0 at 20°C.</p>
<p id="p0155">Diffraction data were collected at Stanford Synchrotron Radiation Lightsource beamline 12-2. The data were indexed, integrated and scaled using HKL2000 (HKL Research) (
<xref rid="bib44" ref-type="bibr">Otwinowski and Minor, 1997</xref>
). The structure was solved by molecular replacement using Phaser (
<xref rid="bib41" ref-type="bibr">McCoy et al., 2007</xref>
), modeled using Coot (
<xref rid="bib17" ref-type="bibr">Emsley et al., 2010</xref>
), and refined using Refmac5 (
<xref rid="bib42" ref-type="bibr">Murshudov et al., 2011</xref>
). For molecular replacement, PDB
<ext-link ext-link-type="uri" xlink:href="pdb:2FK0" id="intref0055">2FK0</ext-link>
(
<xref rid="bib47" ref-type="bibr">Stevens et al., 2006</xref>
) was used as the model for Viet04 HA, and a homology model generated by PIGSPro (
<xref rid="bib35" ref-type="bibr">Lepore et al., 2017</xref>
) was used for S9-3-37. Ramachandran statistics were calculated using MolProbity (
<xref rid="bib7" ref-type="bibr">Chen et al., 2010</xref>
). IgBLAST (
<xref rid="bib56" ref-type="bibr">Ye et al., 2013</xref>
) was employed to identify the CDRs on S9-3-37 Fab. The Kabat numbering scheme was used.</p>
</sec>
<sec id="sec4.4.5">
<title>Buried surface area calculation</title>
<p id="p0160">Solvent accessibility was computed by DSSP (
<xref rid="bib29" ref-type="bibr">Kabsch and Sander, 1983</xref>
). Buried surface area (BSA) was calculated by subtracting the solvent accessibility of the bound form from that of the apo form. HA residues that had a non-zero BSA were identified as epitope residues.</p>
</sec>
<sec id="sec4.4.6">
<title>Analysis of natural HA variants</title>
<p id="p0165">A total of 103,301 full-length HA protein sequences from different subtypes were downloaded from the Global Initiative for Sharing Avian Influenza Data (GISAID;
<ext-link ext-link-type="uri" xlink:href="https://gisaid.org" id="intref0060">https://gisaid.org</ext-link>
). To avoid temporal sampling bias, we sampled at most 20 sequences per year per subtype, which resulted in a total of 6,984 HA sequences. Multiple sequence alignment of those 6,984 HA sequences was performed by MAFFT version 7.157b (
<xref rid="bib32" ref-type="bibr">Katoh and Standley, 2013</xref>
). Sequence logos were generated by WebLogo (
<xref rid="bib10" ref-type="bibr">Crooks et al., 2004</xref>
).</p>
<p id="p0170">Sequence entropy was calculated by:
<disp-formula id="ufd1">
<mml:math id="M1" altimg="si1.gif" overflow="scroll">
<mml:mrow>
<mml:mi>E</mml:mi>
<mml:mi>n</mml:mi>
<mml:mi>t</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>o</mml:mi>
<mml:mi>p</mml:mi>
<mml:mi>y</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo></mml:mo>
<mml:munderover>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mi>M</mml:mi>
</mml:munderover>
<mml:mrow>
<mml:msub>
<mml:mi>P</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mi>l</mml:mi>
<mml:mi>o</mml:mi>
<mml:msub>
<mml:mi>g</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>P</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
where P
<sub>i</sub>
is the fraction of residues of amino acid type i, and M is the number of amino acid types (i.e., 20). In
<xref rid="fig2" ref-type="fig">Figure 2</xref>
B, sequence entropy was calculated based on the alignment of 20 representative strains from different types and subtypes shown in
<xref rid="mmc1" ref-type="supplementary-material">Figure S4</xref>
.</p>
</sec>
<sec id="sec4.4.7">
<title>Analysis of published antibody sequences</title>
<p id="p0175">CDR H3 sequences recovered from H3 and H5 cross-reactive memory B cells of six H5N1 DNA/MIV-prime-boost influenza vaccinated subjects were retrieved from Table S3 in Joyce et al. (
<xref rid="bib28" ref-type="bibr">Joyce et al., 2016</xref>
). Germline usage of H1/H3/H7 cross-reactive B cells from six H7N9 DNA/MIV-prime-boost influenza vaccine subjects was retrieved from Table S7 in Andrews et al. (
<xref rid="bib4" ref-type="bibr">Andrews et al., 2017</xref>
). Germline usage of H1 and H3 cross-reactive memory B cells from six subjects immunized with trivalent influenza vaccine was retrieved from Figure S4 in McCarthy et al. (
<xref rid="bib40" ref-type="bibr">McCarthy et al., 2018</xref>
). Germline usage of HA stem-specific memory B cells from subjects immunized with trivalent influenza vaccine was retrieved from Tables S3 and S4 in Andrews et al. (
<xref rid="bib3" ref-type="bibr">Andrews et al., 2015</xref>
). Germline usage of HA stem-specific memory B cells from a single subject immunized with seasonal influenza vaccine was retrieved from Figure S1 in Pappas et al. (
<xref rid="bib45" ref-type="bibr">Pappas et al., 2014</xref>
). CDR H3 sequences from memory B cells of three healthy donors and their occurrence frequency information were retrieved from Supplemental Dataset 1 in DeKosky et al. (
<xref rid="bib11" ref-type="bibr">DeKosky et al., 2015</xref>
). CDR H3 sequences from the IgG
<sup>+</sup>
memory B cell repertoires from four donors after administration of two Meningococcal vaccines (
<xref rid="bib22" ref-type="bibr">Galson et al., 2015</xref>
), and the IgG
<sup>+</sup>
memory B cell repertoire from three time points that were one to two years apart in an HIV-infected patient (
<xref rid="bib26" ref-type="bibr">Huang et al., 2016</xref>
), were downloaded from the Observed Antibody Space database (
<xref rid="bib33" ref-type="bibr">Kovaltsuk et al., 2018</xref>
). Nucleotide sequences of HIV bnAbs were retrieved from bNAber database (
<xref rid="bib19" ref-type="bibr">Eroshkin et al., 2014</xref>
). Germline usages were identified using IgBlast (
<xref rid="bib56" ref-type="bibr">Ye et al., 2013</xref>
). S9-3-37-like CDR H3s were defined as those CDR H3s that utilized the D3-9 gene segment and encoded a LXYFXWL motif, where X represents any amino acid. 31.b.09-like CDR H3s were defined as those CDR H3s that utilized the D3-9 gene segment and encoded an I
<underline>L</underline>
TG motif with one mismatch in the non-underlined residue (i.e., no variation was allowed for the Leu at second position of the ILTG motif).</p>
</sec>
</sec>
<sec id="sec4.5">
<title>Quantification and Statistical Analysis</title>
<p id="p0180">Statistical analysis was not performed in this study.</p>
</sec>
<sec sec-type="data-availability" id="sec4.6">
<title>Data and Software Availability</title>
<p id="p0185">The X-ray coordinates and structure factors of S9-3-37 in complex with H5 HA have been deposited in the RCSB Protein Data Bank under accession code 6E3H. Custom python scripts for sequence analyses have been deposited to
<ext-link ext-link-type="uri" xlink:href="https://github.com/wchnicholas/S9-3-37" id="intref0065">https://github.com/wchnicholas/S9-3-37</ext-link>
.</p>
</sec>
</sec>
</body>
<back>
<ref-list id="cebib0010">
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Al-Lazikani</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lesk</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Chothia</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Standard conformations for the canonical structures of immunoglobulins</article-title>
<source>J. Mol. Biol.</source>
<volume>273</volume>
<year>1997</year>
<fpage>927</fpage>
<lpage>948</lpage>
<pub-id pub-id-type="pmid">9367782</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chaves</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Topham</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>DeDiego</surname>
<given-names>M.L.</given-names>
</name>
</person-group>
<article-title>Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain</article-title>
<source>Sci. Rep.</source>
<volume>7</volume>
<year>2017</year>
<fpage>14614</fpage>
<pub-id pub-id-type="pmid">29097696</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Andrews</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Popova</surname>
<given-names>L.I.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>I.Y.</given-names>
</name>
<name>
<surname>Pauli</surname>
<given-names>N.T.</given-names>
</name>
<name>
<surname>Henry Dunand</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>W.M.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Immune history profoundly affects broadly protective B cell responses to influenza</article-title>
<source>Sci. Transl. Med.</source>
<volume>7</volume>
<year>2015</year>
<fpage>316ra192</fpage>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Andrews</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Joyce</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Kanekiyo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Tsybovsky</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wheatley</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Crank</surname>
<given-names>M.C.</given-names>
</name>
</person-group>
<article-title>Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans</article-title>
<source>Sci. Immunol.</source>
<volume>2</volume>
<year>2017</year>
<fpage>eaan2676</fpage>
<pub-id pub-id-type="pmid">28783708</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Avnir</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tallarico</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Connelly</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sheehan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fahmy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Cadwell</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses</article-title>
<source>PLoS Pathog.</source>
<volume>10</volume>
<year>2014</year>
<fpage>e1004103</fpage>
<pub-id pub-id-type="pmid">24788925</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Chai</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Swem</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Reichelt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen-Harris</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Luis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fouts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lupardus</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Two escape mechanisms of influenza A virus to a broadly neutralizing stalk-binding antibody</article-title>
<source>PLoS Pathog.</source>
<volume>12</volume>
<year>2016</year>
<fpage>e1005702</fpage>
<pub-id pub-id-type="pmid">27351973</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>V.B.</given-names>
</name>
<name>
<surname>Arendall</surname>
<given-names>W.B.</given-names>
<suffix>3rd</suffix>
</name>
<name>
<surname>Headd</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Keedy</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Immormino</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Kapral</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>D.C.</given-names>
</name>
</person-group>
<article-title>MolProbity: all-atom structure validation for macromolecular crystallography</article-title>
<source>Acta Crystallogr. D Biol. Crystallogr.</source>
<volume>66</volume>
<year>2010</year>
<fpage>12</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">20057044</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Chevalier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Rocklin</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Vergara</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Murapa</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Massively parallel de novo protein design for targeted therapeutics</article-title>
<source>Nature</source>
<volume>550</volume>
<year>2017</year>
<fpage>74</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="pmid">28953867</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Corti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Voss</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gamblin</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Codoni</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Macagno</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jarrossay</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vachieri</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Pinna</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Minola</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vanzetta</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins</article-title>
<source>Science</source>
<volume>333</volume>
<year>2011</year>
<fpage>850</fpage>
<lpage>856</lpage>
<pub-id pub-id-type="pmid">21798894</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal" id="sref10">
<person-group person-group-type="author">
<name>
<surname>Crooks</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Hon</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chandonia</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>WebLogo: a sequence logo generator</article-title>
<source>Genome Res.</source>
<volume>14</volume>
<year>2004</year>
<fpage>1188</fpage>
<lpage>1190</lpage>
<pub-id pub-id-type="pmid">15173120</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>DeKosky</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Kojima</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rodin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Charab</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ippolito</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Ellington</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Georgiou</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire</article-title>
<source>Nat. Med.</source>
<volume>21</volume>
<year>2015</year>
<fpage>86</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">25501908</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Doud</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Bloom</surname>
<given-names>J.D.</given-names>
</name>
</person-group>
<article-title>How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin</article-title>
<source>Nat. Commun.</source>
<volume>9</volume>
<year>2018</year>
<fpage>1386</fpage>
<pub-id pub-id-type="pmid">29643370</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal" id="sref13">
<person-group person-group-type="author">
<name>
<surname>Dreyfus</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Laursen</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>Kwaks</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zuijdgeest</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Khayat</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Metlagel</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bujny</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Jongeneelen</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Highly conserved protective epitopes on influenza B viruses</article-title>
<source>Science</source>
<volume>337</volume>
<year>2012</year>
<fpage>1343</fpage>
<lpage>1348</lpage>
<pub-id pub-id-type="pmid">22878502</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal" id="sref14">
<person-group person-group-type="author">
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Bhabha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Elsliger</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Friesen</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Jongeneelen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Throsby</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Goudsmit</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>Antibody recognition of a highly conserved influenza virus epitope</article-title>
<source>Science</source>
<volume>324</volume>
<year>2009</year>
<fpage>246</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">19251591</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Friesen</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Bhabha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kwaks</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jongeneelen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Ophorst</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Korse</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Brandenburg</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>A highly conserved neutralizing epitope on group 2 influenza A viruses</article-title>
<source>Science</source>
<volume>333</volume>
<year>2011</year>
<fpage>843</fpage>
<lpage>850</lpage>
<pub-id pub-id-type="pmid">21737702</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Kashyap</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Steel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rubrum</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bhabha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Khayat</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>O’Neil</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Faynboym</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>Cross-neutralization of influenza A viruses mediated by a single antibody loop</article-title>
<source>Nature</source>
<volume>489</volume>
<year>2012</year>
<fpage>526</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">22982990</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal" id="sref17">
<person-group person-group-type="author">
<name>
<surname>Emsley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lohkamp</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Cowtan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Features and development of Coot</article-title>
<source>Acta Crystallogr. D Biol. Crystallogr.</source>
<volume>66</volume>
<year>2010</year>
<fpage>486</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="pmid">20383002</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal" id="sref18">
<person-group person-group-type="author">
<name>
<surname>Erbelding</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Post</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Stemmy</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Augustine</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Paules</surname>
<given-names>C.I.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Fauci</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>A universal influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases</article-title>
<source>J. Infect. Dis.</source>
<volume>218</volume>
<year>2018</year>
<fpage>347</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="pmid">29506129</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal" id="sref19">
<person-group person-group-type="author">
<name>
<surname>Eroshkin</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>LeBlanc</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Weekes</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Post</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Rajput</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Butera</surname>
<given-names>S.T.</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Godzik</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>bNAber: database of broadly neutralizing HIV antibodies</article-title>
<source>Nucleic Acids Res.</source>
<volume>42</volume>
<year>2014</year>
<fpage>D1133</fpage>
<lpage>D1139</lpage>
<pub-id pub-id-type="pmid">24214957</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Fleishman</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Whitehead</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Dreyfus</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Corn</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Strauch</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Computational design of proteins targeting the conserved stem region of influenza hemagglutinin</article-title>
<source>Science</source>
<volume>332</volume>
<year>2011</year>
<fpage>816</fpage>
<lpage>821</lpage>
<pub-id pub-id-type="pmid">21566186</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Friesen</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>P.S.</given-names>
</name>
<name>
<surname>Stoop</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Ekiert</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Bhabha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Juraszek</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Koudstaal</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jongeneelen</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>A common solution to group 2 influenza virus neutralization</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>111</volume>
<year>2014</year>
<fpage>445</fpage>
<lpage>450</lpage>
<pub-id pub-id-type="pmid">24335589</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Galson</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Clutterbuck</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Trück</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ramasamy</surname>
<given-names>M.N.</given-names>
</name>
<name>
<surname>Münz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fowler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cerundolo</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Pollard</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Lunter</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>D.F.</given-names>
</name>
</person-group>
<article-title>BCR repertoire sequencing: different patterns of B-cell activation after two Meningococcal vaccines</article-title>
<source>Immunol. Cell Biol.</source>
<volume>93</volume>
<year>2015</year>
<fpage>885</fpage>
<lpage>895</lpage>
<pub-id pub-id-type="pmid">25976772</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Gerhard</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yewdell</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Frankel</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies</article-title>
<source>Nature</source>
<volume>290</volume>
<year>1981</year>
<fpage>713</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">6163993</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Gorny</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.H.</given-names>
</name>
<name>
<surname>Volsky</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>O’Neal</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Spurrier</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sampson</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Seaman</surname>
<given-names>M.S.</given-names>
</name>
</person-group>
<article-title>Functional and immunochemical cross-reactivity of V2-specific monoclonal antibodies from HIV-1-infected individuals</article-title>
<source>Virology</source>
<volume>427</volume>
<year>2012</year>
<fpage>198</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="pmid">22402248</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Henry Dunand</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Leon</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>G.S.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>N.Y.</given-names>
</name>
<name>
<surname>Andrews</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Salgado-Ferrer</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Preexisting human antibodies neutralize recently emerged H7N9 influenza strains</article-title>
<source>J. Clin. Invest.</source>
<volume>125</volume>
<year>2015</year>
<fpage>1255</fpage>
<lpage>1268</lpage>
<pub-id pub-id-type="pmid">25689254</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Griesman</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sheng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Doria-Rose</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>McKee</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth</article-title>
<source>Immunity</source>
<volume>45</volume>
<year>2016</year>
<fpage>1108</fpage>
<lpage>1121</lpage>
<pub-id pub-id-type="pmid">27851912</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Impagliazzo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Milder</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kuipers</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>van Meersbergen</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Huizingh</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wanningen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Verspuij</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen</article-title>
<source>Science</source>
<volume>349</volume>
<year>2015</year>
<fpage>1301</fpage>
<lpage>1306</lpage>
<pub-id pub-id-type="pmid">26303961</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>Joyce</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Wheatley</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>P.V.</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>G.Y.</given-names>
</name>
<name>
<surname>Soto</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bailer</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Druz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Georgiev</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Kanekiyo</surname>
<given-names>M.</given-names>
</name>
<collab>NISC Comparative Sequencing Program</collab>
</person-group>
<article-title>Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses</article-title>
<source>Cell</source>
<volume>166</volume>
<year>2016</year>
<fpage>609</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="pmid">27453470</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>Kabsch</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sander</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features</article-title>
<source>Biopolymers</source>
<volume>22</volume>
<year>1983</year>
<fpage>2577</fpage>
<lpage>2637</lpage>
<pub-id pub-id-type="pmid">6667333</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>Kadam</surname>
<given-names>R.U.</given-names>
</name>
<name>
<surname>Juraszek</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brandenburg</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Buyck</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Schepens</surname>
<given-names>W.B.G.</given-names>
</name>
<name>
<surname>Kesteleyn</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Stoops</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Vreeken</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Vermond</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Goutier</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Potent peptidic fusion inhibitors of influenza virus</article-title>
<source>Science</source>
<volume>358</volume>
<year>2017</year>
<fpage>496</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">28971971</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>Kashyap</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Steel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Oner</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Swale</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Faynboym</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ilhan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Horowitz</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>105</volume>
<year>2008</year>
<fpage>5986</fpage>
<lpage>5991</lpage>
<pub-id pub-id-type="pmid">18413603</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Katoh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Standley</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<article-title>MAFFT multiple sequence alignment software version 7: improvements in performance and usability</article-title>
<source>Mol. Biol. Evol.</source>
<volume>30</volume>
<year>2013</year>
<fpage>772</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="pmid">23329690</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Kovaltsuk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Leem</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kelm</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Snowden</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Dean</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Krawczyk</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Observed Antibody Space: a resource for data mining next generation sequencing of antibody repertoires</article-title>
<source>J. Immunol.</source>
<year>2018</year>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal" id="sref34">
<person-group person-group-type="author">
<name>
<surname>Lang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Lerner</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in V
<sub>H</sub>
1-69 antibody orientation on the HA stem</article-title>
<source>Cell Rep.</source>
<volume>20</volume>
<year>2017</year>
<fpage>2935</fpage>
<lpage>2943</lpage>
<pub-id pub-id-type="pmid">28930686</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal" id="sref35">
<person-group person-group-type="author">
<name>
<surname>Lepore</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Olimpieri</surname>
<given-names>P.P.</given-names>
</name>
<name>
<surname>Messih</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Tramontano</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>PIGSPro: prediction of immunoGlobulin structures v2</article-title>
<source>Nucleic Acids Res.</source>
<volume>45</volume>
<issue>W1</issue>
<year>2017</year>
<fpage>W17</fpage>
<lpage>W23</lpage>
<pub-id pub-id-type="pmid">28472367</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal" id="sref36">
<person-group person-group-type="author">
<name>
<surname>Lerner</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Rare antibodies from combinatorial libraries suggests an S.O.S. component of the human immunological repertoire</article-title>
<source>Mol. Biosyst.</source>
<volume>7</volume>
<year>2011</year>
<fpage>1004</fpage>
<lpage>1012</lpage>
<pub-id pub-id-type="pmid">21298133</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal" id="sref37">
<person-group person-group-type="author">
<name>
<surname>Lerner</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Combinatorial antibody libraries: new advances, new immunological insights</article-title>
<source>Nat. Rev. Immunol.</source>
<volume>16</volume>
<year>2016</year>
<fpage>498</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="pmid">27374636</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal" id="sref38">
<person-group person-group-type="author">
<name>
<surname>Luftig</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Mattu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Di Giovine</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Geleziunas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hrin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Barbato</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bianchi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Pessi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carfí</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody</article-title>
<source>Nat. Struct. Mol. Biol.</source>
<volume>13</volume>
<year>2006</year>
<fpage>740</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="pmid">16862157</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal" id="sref39">
<person-group person-group-type="author">
<name>
<surname>Marasca</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vaccari</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Luppi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zucchini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Castelli</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Barozzi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cuoghi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Torelli</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Immunoglobulin gene mutations and frequent use of V
<sub>H</sub>
1-69 and V
<sub>H</sub>
4-34 segments in hepatitis C virus-positive and hepatitis C virus-negative nodal marginal zone B-cell lymphoma</article-title>
<source>Am. J. Pathol.</source>
<volume>159</volume>
<year>2001</year>
<fpage>253</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="pmid">11438472</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal" id="sref40">
<person-group person-group-type="author">
<name>
<surname>McCarthy</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kuraoka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>K.T.</given-names>
</name>
<name>
<surname>McGee</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Sempowski</surname>
<given-names>G.D.</given-names>
</name>
<name>
<surname>Kepler</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Kelsoe</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Memory B cells that cross-react with group 1 and group 2 influenza A viruses are abundant in adult human repertoires</article-title>
<source>Immunity</source>
<volume>48</volume>
<year>2018</year>
<fpage>174</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">29343437</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal" id="sref41">
<person-group person-group-type="author">
<name>
<surname>McCoy</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Grosse-Kunstleve</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>P.D.</given-names>
</name>
<name>
<surname>Winn</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Storoni</surname>
<given-names>L.C.</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Phaser crystallographic software</article-title>
<source>J. Appl. Cryst.</source>
<volume>40</volume>
<year>2007</year>
<fpage>658</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="pmid">19461840</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal" id="sref42">
<person-group person-group-type="author">
<name>
<surname>Murshudov</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Skubák</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lebedev</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Pannu</surname>
<given-names>N.S.</given-names>
</name>
<name>
<surname>Steiner</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Winn</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Vagin</surname>
<given-names>A.A.</given-names>
</name>
</person-group>
<article-title>REFMAC5 for the refinement of macromolecular crystal structures</article-title>
<source>Acta Crystallogr. D Biol. Crystallogr.</source>
<volume>67</volume>
<year>2011</year>
<fpage>355</fpage>
<lpage>367</lpage>
<pub-id pub-id-type="pmid">21460454</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal" id="sref43">
<person-group person-group-type="author">
<name>
<surname>Nobusawa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Aoyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tateno</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakajima</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses</article-title>
<source>Virology</source>
<volume>182</volume>
<year>1991</year>
<fpage>475</fpage>
<lpage>485</lpage>
<pub-id pub-id-type="pmid">2024485</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal" id="sref44">
<person-group person-group-type="author">
<name>
<surname>Otwinowski</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Minor</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Processing of X-ray diffraction data collected in oscillation mode</article-title>
<source>Methods Enzymol.</source>
<volume>276</volume>
<year>1997</year>
<fpage>307</fpage>
<lpage>326</lpage>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal" id="sref45">
<person-group person-group-type="author">
<name>
<surname>Pappas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Foglierini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Piccoli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kallewaard</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Turrini</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Silacci</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernandez-Rodriguez</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Agatic</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Giacchetto-Sasselli</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Pellicciotta</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Rapid development of broadly influenza neutralizing antibodies through redundant mutations</article-title>
<source>Nature</source>
<volume>516</volume>
<year>2014</year>
<fpage>418</fpage>
<lpage>422</lpage>
<pub-id pub-id-type="pmid">25296253</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal" id="sref46">
<person-group person-group-type="author">
<name>
<surname>Sparrow</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Friede</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sheikh</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Torvaldsen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Newall</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>Passive immunization for influenza through antibody therapies, a review of the pipeline, challenges and potential applications</article-title>
<source>Vaccine</source>
<volume>34</volume>
<year>2016</year>
<fpage>5442</fpage>
<lpage>5448</lpage>
<pub-id pub-id-type="pmid">27622299</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal" id="sref47">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Blixt</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Taubenberger</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Paulson</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus</article-title>
<source>Science</source>
<volume>312</volume>
<year>2006</year>
<fpage>404</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">16543414</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal" id="sref48">
<person-group person-group-type="author">
<name>
<surname>Sui</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Aird</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Santelli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Stec</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cadwell</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ali</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses</article-title>
<source>Nat. Struct. Mol. Biol.</source>
<volume>16</volume>
<year>2009</year>
<fpage>265</fpage>
<lpage>273</lpage>
<pub-id pub-id-type="pmid">19234466</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal" id="sref49">
<person-group person-group-type="author">
<name>
<surname>Throsby</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van den Brink</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jongeneelen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Alard</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cornelissen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bakker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>van Deventer</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM
<sup>+</sup>
memory B cells</article-title>
<source>PLoS One</source>
<volume>3</volume>
<year>2008</year>
<fpage>e3942</fpage>
<pub-id pub-id-type="pmid">19079604</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal" id="sref50">
<person-group person-group-type="author">
<name>
<surname>Whitehead</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Chevalier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dreyfus</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fleishman</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>De Mattos</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Kamisetty</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Blair</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing</article-title>
<source>Nat. Biotechnol.</source>
<volume>30</volume>
<year>2012</year>
<fpage>543</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="pmid">22634563</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal" id="sref51">
<person-group person-group-type="author">
<name>
<surname>Wiley</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Skehel</surname>
<given-names>J.J.</given-names>
</name>
</person-group>
<article-title>Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation</article-title>
<source>Nature</source>
<volume>289</volume>
<year>1981</year>
<fpage>373</fpage>
<lpage>378</lpage>
<pub-id pub-id-type="pmid">6162101</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal" id="sref52">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>A perspective on the structural and functional constraints for immune evasion: insights from influenza virus</article-title>
<source>J. Mol. Biol.</source>
<volume>429</volume>
<year>2017</year>
<fpage>2694</fpage>
<lpage>2709</lpage>
<pub-id pub-id-type="pmid">28648617</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal" id="sref53">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
</person-group>
<article-title>Structural insights into the design of novel anti-influenza therapies</article-title>
<source>Nat. Struct. Mol. Biol.</source>
<volume>25</volume>
<year>2018</year>
<fpage>115</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="pmid">29396418</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal" id="sref59">
<person-group person-group-type="author">
<name>
<surname>Wyrzucki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dreyfus</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Steck</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Hangartner</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Alternative recognition of the conserved stem epitope in influenza A virus hemagglutinin by a V
<sub>H</sub>
3-30-encoded heterosubtypic antibody</article-title>
<source>J. Virol.</source>
<volume>88</volume>
<year>2014</year>
<fpage>7083</fpage>
<lpage>7092</lpage>
<pub-id pub-id-type="pmid">24719426</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal" id="sref54">
<person-group person-group-type="author">
<name>
<surname>Yamayoshi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Uraki</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yasuhara</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kawaoka</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Differences in the ease with which mutant viruses escape from human monoclonal antibodies against the HA stem of influenza A virus</article-title>
<source>J. Clin. Virol.</source>
<volume>108</volume>
<year>2018</year>
<fpage>105</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">30292135</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal" id="sref55">
<person-group person-group-type="author">
<name>
<surname>Yassine</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Boyington</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>McTamney</surname>
<given-names>P.M.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Kanekiyo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>W.P.</given-names>
</name>
<name>
<surname>Gallagher</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Joyce</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection</article-title>
<source>Nat. Med.</source>
<volume>21</volume>
<year>2015</year>
<fpage>1065</fpage>
<lpage>1070</lpage>
<pub-id pub-id-type="pmid">26301691</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal" id="sref56">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Madden</surname>
<given-names>T.L.</given-names>
</name>
<name>
<surname>Ostell</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>IgBLAST: an immunoglobulin variable domain sequence analysis tool</article-title>
<source>Nucleic Acids Res.</source>
<volume>41</volume>
<year>2013</year>
<fpage>W34</fpage>
<lpage>W40</lpage>
<pub-id pub-id-type="pmid">23671333</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal" id="sref57">
<person-group person-group-type="author">
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Glycosylation at 11Asn on hemagglutinin of H5N1 influenza virus contributes to its biological characteristics</article-title>
<source>Vet. Res. (Faisalabad)</source>
<volume>48</volume>
<year>2017</year>
<fpage>81</fpage>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal" id="sref58">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Prabakaran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dimitrov</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody</article-title>
<source>Nat. Commun.</source>
<volume>6</volume>
<year>2015</year>
<fpage>8223</fpage>
<pub-id pub-id-type="pmid">26370782</pub-id>
</element-citation>
</ref>
</ref-list>
<sec id="app2" sec-type="supplementary-material">
<title>Supplemental Information</title>
<p id="p0210">
<supplementary-material content-type="local-data" id="mmc1">
<caption>
<title>Document S1. Tables S1 and S2 and Figures S1–S7</title>
</caption>
<media xlink:href="mmc1.pdf"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="mmc2">
<caption>
<title>Document S2. Article plus Supplemental Information</title>
</caption>
<media xlink:href="mmc2.pdf"></media>
</supplementary-material>
</p>
</sec>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>This work is supported by
<funding-source id="gs1">National Institutes of Health</funding-source>
(NIH) R56 AI127371;
<funding-source id="gs2">Centers for Research on Influenza Pathogenesis</funding-source>
(CRIP) HHSN272201400008C; Leading Advanced Projects for Medical Innovation (LEAP) from the
<funding-source id="gs3">Japan Agency for Medical Research and Development</funding-source>
(AMED) (JP17am001007); a Grant-in-Aid for Scientific Research on Innovative Areas from the
<funding-source id="gs4">Ministry of Education, Culture, Science, Sports, and Technology</funding-source>
(MEXT) of Japan (No. 16H06429, 16K21723, and 16H06434); and the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from the MEXT of Japan.</p>
<sec id="sec5">
<title>Author Contributions</title>
<p id="p0195">N.C.W., Y.K., and I.A.W. conceived and designed the experiments. S.Y., M.I., and R.U. discovered and prepared the S9-3-37 antibody; N.C.W. performed the binding kinetic assays, X-ray data collection, structure determination, refinement, structural analysis, and sequence analysis; N.C.W. and I.A.W. wrote the paper, and all authors reviewed and edited the paper.</p>
</sec>
<sec sec-type="COI-statement" id="sec6">
<title>Declaration of Interests</title>
<p id="p0200">Y.K. has received speaker’s honoraria from Toyama Chemical and grant support from Chugai Pharmaceuticals, Daiichi Sankyo Pharmaceutical, Toyama Chemical, Tauns Laboratories, Inc., Tsumura and Co, and Denka Seiken Co., Ltd. Y.K. is a co-founder of FluGen.</p>
</sec>
</ack>
<fn-group>
<fn id="app1" fn-type="supplementary-material">
<p id="p0205">Supplemental Information includes two tables and seven figures and can be found with this article at
<ext-link ext-link-type="doi" xlink:href="10.1016/j.chom.2018.09.010" id="intref0070">https://doi.org/10.1016/j.chom.2018.09.010</ext-link>
.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000933  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000933  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021