Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reassortment in segmented RNA viruses: mechanisms and outcomes

Identifieur interne : 000813 ( Pmc/Corpus ); précédent : 000812; suivant : 000814

Reassortment in segmented RNA viruses: mechanisms and outcomes

Auteurs : Sarah M. Mcdonald ; Martha I. Nelson ; Paul E. Turner ; John T. Patton

Source :

RBID : PMC:5119462

Abstract

Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families — Cystoviridae, Orthomyxoviridae and Reoviridae — and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.


Url:
DOI: 10.1038/nrmicro.2016.46
PubMed: 27211789
PubMed Central: 5119462

Links to Exploration step

PMC:5119462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reassortment in segmented RNA viruses: mechanisms and outcomes</title>
<author>
<name sortKey="Mcdonald, Sarah M" sort="Mcdonald, Sarah M" uniqKey="Mcdonald S" first="Sarah M." last="Mcdonald">Sarah M. Mcdonald</name>
<affiliation>
<nlm:aff id="A1">Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, Virginia 24016, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, Virginia 24061, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Martha I" sort="Nelson, Martha I" uniqKey="Nelson M" first="Martha I." last="Nelson">Martha I. Nelson</name>
<affiliation>
<nlm:aff id="A3">Fogarty International Center, National Institutes of Health, 31 Center Drive, MSC 2220, Bethesda, Maryland 20892, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Turner, Paul E" sort="Turner, Paul E" uniqKey="Turner P" first="Paul E." last="Turner">Paul E. Turner</name>
<affiliation>
<nlm:aff id="A4">Department of Ecology and Evolutionary Biology, Yale University, Osborn Memorial Labs, 165 Prospect Street, P. O. Box 208106, New Haven, Connecticut 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patton, John T" sort="Patton, John T" uniqKey="Patton J" first="John T." last="Patton">John T. Patton</name>
<affiliation>
<nlm:aff id="A5">Virginia–Maryland College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, Maryland 20742, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27211789</idno>
<idno type="pmc">5119462</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119462</idno>
<idno type="RBID">PMC:5119462</idno>
<idno type="doi">10.1038/nrmicro.2016.46</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000813</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000813</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Reassortment in segmented RNA viruses: mechanisms and outcomes</title>
<author>
<name sortKey="Mcdonald, Sarah M" sort="Mcdonald, Sarah M" uniqKey="Mcdonald S" first="Sarah M." last="Mcdonald">Sarah M. Mcdonald</name>
<affiliation>
<nlm:aff id="A1">Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, Virginia 24016, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, Virginia 24061, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Martha I" sort="Nelson, Martha I" uniqKey="Nelson M" first="Martha I." last="Nelson">Martha I. Nelson</name>
<affiliation>
<nlm:aff id="A3">Fogarty International Center, National Institutes of Health, 31 Center Drive, MSC 2220, Bethesda, Maryland 20892, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Turner, Paul E" sort="Turner, Paul E" uniqKey="Turner P" first="Paul E." last="Turner">Paul E. Turner</name>
<affiliation>
<nlm:aff id="A4">Department of Ecology and Evolutionary Biology, Yale University, Osborn Memorial Labs, 165 Prospect Street, P. O. Box 208106, New Haven, Connecticut 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patton, John T" sort="Patton, John T" uniqKey="Patton J" first="John T." last="Patton">John T. Patton</name>
<affiliation>
<nlm:aff id="A5">Virginia–Maryland College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, Maryland 20742, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature reviews. Microbiology</title>
<idno type="ISSN">1740-1526</idno>
<idno type="eISSN">1740-1534</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families —
<italic>Cystoviridae</italic>
,
<italic>Orthomyxoviridae</italic>
and
<italic>Reoviridae</italic>
— and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101190261</journal-id>
<journal-id journal-id-type="pubmed-jr-id">31733</journal-id>
<journal-id journal-id-type="nlm-ta">Nat Rev Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat. Rev. Microbiol.</journal-id>
<journal-title-group>
<journal-title>Nature reviews. Microbiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1740-1526</issn>
<issn pub-type="epub">1740-1534</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27211789</article-id>
<article-id pub-id-type="pmc">5119462</article-id>
<article-id pub-id-type="doi">10.1038/nrmicro.2016.46</article-id>
<article-id pub-id-type="manuscript">NIHMS829529</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Reassortment in segmented RNA viruses: mechanisms and outcomes</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>McDonald</surname>
<given-names>Sarah M.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nelson</surname>
<given-names>Martha I.</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Turner</surname>
<given-names>Paul E.</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Patton</surname>
<given-names>John T.</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Virginia Tech Carilion School of Medicine and Research Institute, 2 Riverside Circle, Roanoke, Virginia 24016, USA</aff>
<aff id="A2">
<label>2</label>
Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, Virginia 24061, USA</aff>
<aff id="A3">
<label>3</label>
Fogarty International Center, National Institutes of Health, 31 Center Drive, MSC 2220, Bethesda, Maryland 20892, USA</aff>
<aff id="A4">
<label>4</label>
Department of Ecology and Evolutionary Biology, Yale University, Osborn Memorial Labs, 165 Prospect Street, P. O. Box 208106, New Haven, Connecticut 06520, USA</aff>
<aff id="A5">
<label>5</label>
Virginia–Maryland College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, Maryland 20742, USA</aff>
<author-notes>
<corresp id="FN1">Correspondence to S.M.M.
<email>mcdonaldsa@vtc.vt.edu</email>
</corresp>
<fn fn-type="COI-statement" id="FN2">
<p>
<bold>Competing interests statement</bold>
</p>
<p>The authors declare no competing interests.</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>12</day>
<month>11</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>23</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>22</day>
<month>11</month>
<year>2016</year>
</pub-date>
<volume>14</volume>
<issue>7</issue>
<fpage>448</fpage>
<lpage>460</lpage>
<pmc-comment>elocation-id from pubmed: 10.1038/nrmicro.2016.46</pmc-comment>
<abstract>
<p id="P1">Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families —
<italic>Cystoviridae</italic>
,
<italic>Orthomyxoviridae</italic>
and
<italic>Reoviridae</italic>
— and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000813 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000813 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5119462
   |texte=   Reassortment in segmented RNA viruses: mechanisms and outcomes
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27211789" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021