Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infectious disease pandemic planning and response: Incorporating decision analysis

Identifieur interne : 000516 ( Pmc/Corpus ); précédent : 000515; suivant : 000517

Infectious disease pandemic planning and response: Incorporating decision analysis

Auteurs : Freya M. Shearer ; Robert Moss ; Jodie Mcvernon ; Joshua V. Ross ; James M. Mccaw

Source :

RBID : PMC:6952100

Abstract

Freya Shearer and co-authors discuss the use of decision analysis in planning for infectious disease pandemics.


Url:
DOI: 10.1371/journal.pmed.1003018
PubMed: 31917786
PubMed Central: 6952100

Links to Exploration step

PMC:6952100

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Infectious disease pandemic planning and response: Incorporating decision analysis</title>
<author>
<name sortKey="Shearer, Freya M" sort="Shearer, Freya M" uniqKey="Shearer F" first="Freya M." last="Shearer">Freya M. Shearer</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moss, Robert" sort="Moss, Robert" uniqKey="Moss R" first="Robert" last="Moss">Robert Moss</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mcvernon, Jodie" sort="Mcvernon, Jodie" uniqKey="Mcvernon J" first="Jodie" last="Mcvernon">Jodie Mcvernon</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ross, Joshua V" sort="Ross, Joshua V" uniqKey="Ross J" first="Joshua V." last="Ross">Joshua V. Ross</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mccaw, James M" sort="Mccaw, James M" uniqKey="Mccaw J" first="James M." last="Mccaw">James M. Mccaw</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff005">
<addr-line>School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31917786</idno>
<idno type="pmc">6952100</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952100</idno>
<idno type="RBID">PMC:6952100</idno>
<idno type="doi">10.1371/journal.pmed.1003018</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000516</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000516</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Infectious disease pandemic planning and response: Incorporating decision analysis</title>
<author>
<name sortKey="Shearer, Freya M" sort="Shearer, Freya M" uniqKey="Shearer F" first="Freya M." last="Shearer">Freya M. Shearer</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moss, Robert" sort="Moss, Robert" uniqKey="Moss R" first="Robert" last="Moss">Robert Moss</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mcvernon, Jodie" sort="Mcvernon, Jodie" uniqKey="Mcvernon J" first="Jodie" last="Mcvernon">Jodie Mcvernon</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ross, Joshua V" sort="Ross, Joshua V" uniqKey="Ross J" first="Joshua V." last="Ross">Joshua V. Ross</name>
<affiliation>
<nlm:aff id="aff004">
<addr-line>School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mccaw, James M" sort="Mccaw, James M" uniqKey="Mccaw J" first="James M." last="Mccaw">James M. Mccaw</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff005">
<addr-line>School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Medicine</title>
<idno type="ISSN">1549-1277</idno>
<idno type="eISSN">1549-1676</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Freya Shearer and co-authors discuss the use of decision analysis in planning for infectious disease pandemics.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Sands, P" uniqKey="Sands P">P Sands</name>
</author>
<author>
<name sortKey="Mundaca Shah, C" uniqKey="Mundaca Shah C">C Mundaca-Shah</name>
</author>
<author>
<name sortKey="Dzau, Vj" uniqKey="Dzau V">VJ Dzau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mills, Ce" uniqKey="Mills C">CE Mills</name>
</author>
<author>
<name sortKey="Robins, Jm" uniqKey="Robins J">JM Robins</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, Ec" uniqKey="Holmes E">EC Holmes</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Andersen, Kg" uniqKey="Andersen K">KG Andersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
<author>
<name sortKey="Mccaw, Ct" uniqKey="Mccaw C">CT McCaw</name>
</author>
<author>
<name sortKey="Mathews, Jd" uniqKey="Mathews J">JD Mathews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerkhove, Mdv" uniqKey="Kerkhove M">MDV Kerkhove</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, Jp" uniqKey="Fox J">JP Fox</name>
</author>
<author>
<name sortKey="Kilbourne, Ed" uniqKey="Kilbourne E">ED Kilbourne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elveback, Lr" uniqKey="Elveback L">LR Elveback</name>
</author>
<author>
<name sortKey="Fox, Jp" uniqKey="Fox J">JP Fox</name>
</author>
<author>
<name sortKey="Ackerman, E" uniqKey="Ackerman E">E Ackerman</name>
</author>
<author>
<name sortKey="Langworthy, A" uniqKey="Langworthy A">A Langworthy</name>
</author>
<author>
<name sortKey="Boyd, M" uniqKey="Boyd M">M Boyd</name>
</author>
<author>
<name sortKey="Gatewood, L" uniqKey="Gatewood L">L Gatewood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Hanage, Wp" uniqKey="Hanage W">WP Hanage</name>
</author>
<author>
<name sortKey="Van Kerkhove, Md" uniqKey="Van Kerkhove M">MD Van Kerkhove</name>
</author>
<author>
<name sortKey="Hollingsworth, Td" uniqKey="Hollingsworth T">TD Hollingsworth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Sugimoto, Jd" uniqKey="Sugimoto J">JD Sugimoto</name>
</author>
<author>
<name sortKey="Halloran, Me" uniqKey="Halloran M">ME Halloran</name>
</author>
<author>
<name sortKey="Basta, Ne" uniqKey="Basta N">NE Basta</name>
</author>
<author>
<name sortKey="Chao, Dl" uniqKey="Chao D">DL Chao</name>
</author>
<author>
<name sortKey="Matrajt, L" uniqKey="Matrajt L">L Matrajt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Meeyai, A" uniqKey="Meeyai A">A Meeyai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Nizam, A" uniqKey="Nizam A">A Nizam</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S Xu</name>
</author>
<author>
<name sortKey="Ungchusak, K" uniqKey="Ungchusak K">K Ungchusak</name>
</author>
<author>
<name sortKey="Hanshaoworakul, W" uniqKey="Hanshaoworakul W">W Hanshaoworakul</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Wood, Jg" uniqKey="Wood J">JG Wood</name>
</author>
<author>
<name sortKey="Mccaw, Ct" uniqKey="Mccaw C">CT McCaw</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moss, R" uniqKey="Moss R">R Moss</name>
</author>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moss, R" uniqKey="Moss R">R Moss</name>
</author>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Cheng, Ac" uniqKey="Cheng A">AC Cheng</name>
</author>
<author>
<name sortKey="Hurt, Ac" uniqKey="Hurt A">AC Hurt</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Moss, R" uniqKey="Moss R">R Moss</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauch, C" uniqKey="Bauch C">C Bauch</name>
</author>
<author>
<name sortKey="Lloyd Smith, J" uniqKey="Lloyd Smith J">J Lloyd-Smith</name>
</author>
<author>
<name sortKey="Coffee, M" uniqKey="Coffee M">M Coffee</name>
</author>
<author>
<name sortKey="Galvani, A" uniqKey="Galvani A">A Galvani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chretien, Jp" uniqKey="Chretien J">JP Chretien</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="George, Db" uniqKey="George D">DB George</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicoll, A" uniqKey="Nicoll A">A Nicoll</name>
</author>
<author>
<name sortKey="Brown, C" uniqKey="Brown C">C Brown</name>
</author>
<author>
<name sortKey="Karcher, F" uniqKey="Karcher F">F Karcher</name>
</author>
<author>
<name sortKey="Penttinen, P" uniqKey="Penttinen P">P Penttinen</name>
</author>
<author>
<name sortKey="Hegermann Lindencrone, M" uniqKey="Hegermann Lindencrone M">M Hegermann-Lindencrone</name>
</author>
<author>
<name sortKey="Villanueva, S" uniqKey="Villanueva S">S Villanueva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parada, Lv" uniqKey="Parada L">LV Parada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, B" uniqKey="Bennett B">B Bennett</name>
</author>
<author>
<name sortKey="Carney, T" uniqKey="Carney T">T Carney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="News, Nature" uniqKey="News N">Nature News</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Glass, K" uniqKey="Glass K">K Glass</name>
</author>
<author>
<name sortKey="Mercer, Gn" uniqKey="Mercer G">GN Mercer</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
<author>
<name sortKey="Finelli, L" uniqKey="Finelli L">L Finelli</name>
</author>
<author>
<name sortKey="Heffernan, Rt" uniqKey="Heffernan R">RT Heffernan</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
<author>
<name sortKey="Redd, Sc" uniqKey="Redd S">SC Redd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
<author>
<name sortKey="Santillana, M" uniqKey="Santillana M">M Santillana</name>
</author>
<author>
<name sortKey="Inglesby, T" uniqKey="Inglesby T">T Inglesby</name>
</author>
<author>
<name sortKey="Adalja, A" uniqKey="Adalja A">A Adalja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polonsky, Ja" uniqKey="Polonsky J">JA Polonsky</name>
</author>
<author>
<name sortKey="Baidjoe, A" uniqKey="Baidjoe A">A Baidjoe</name>
</author>
<author>
<name sortKey="Kamvar, Zn" uniqKey="Kamvar Z">ZN Kamvar</name>
</author>
<author>
<name sortKey="Cori, A" uniqKey="Cori A">A Cori</name>
</author>
<author>
<name sortKey="Durski, K" uniqKey="Durski K">K Durski</name>
</author>
<author>
<name sortKey="Edmunds, Wjw" uniqKey="Edmunds W">WJW Edmunds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Black, Aj" uniqKey="Black A">AJ Black</name>
</author>
<author>
<name sortKey="Geard, N" uniqKey="Geard N">N Geard</name>
</author>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
<author>
<name sortKey="Ross, Jv" uniqKey="Ross J">JV Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, Jn" uniqKey="Walker J">JN Walker</name>
</author>
<author>
<name sortKey="Ross, Jv" uniqKey="Ross J">JV Ross</name>
</author>
<author>
<name sortKey="Black, Aj" uniqKey="Black A">AJ Black</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moss, R" uniqKey="Moss R">R Moss</name>
</author>
<author>
<name sortKey="Fielding, Je" uniqKey="Fielding J">JE Fielding</name>
</author>
<author>
<name sortKey="Franklin, Lj" uniqKey="Franklin L">LJ Franklin</name>
</author>
<author>
<name sortKey="Stephens, N" uniqKey="Stephens N">N Stephens</name>
</author>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
<author>
<name sortKey="Dawson, P" uniqKey="Dawson P">P Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doms, C" uniqKey="Doms C">C Doms</name>
</author>
<author>
<name sortKey="Kramer, Sc" uniqKey="Kramer S">SC Kramer</name>
</author>
<author>
<name sortKey="Shaman, J" uniqKey="Shaman J">J Shaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamana, Tk" uniqKey="Yamana T">TK Yamana</name>
</author>
<author>
<name sortKey="Kandula, S" uniqKey="Kandula S">S Kandula</name>
</author>
<author>
<name sortKey="Shaman, J" uniqKey="Shaman J">J Shaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biggerstaff, M" uniqKey="Biggerstaff M">M Biggerstaff</name>
</author>
<author>
<name sortKey="Johansson, M" uniqKey="Johansson M">M Johansson</name>
</author>
<author>
<name sortKey="Alper, D" uniqKey="Alper D">D Alper</name>
</author>
<author>
<name sortKey="Brooks, Lc" uniqKey="Brooks L">LC Brooks</name>
</author>
<author>
<name sortKey="Chakraborty, P" uniqKey="Chakraborty P">P Chakraborty</name>
</author>
<author>
<name sortKey="Farrow, Dc" uniqKey="Farrow D">DC Farrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
<author>
<name sortKey="Sun, K" uniqKey="Sun K">K Sun</name>
</author>
<author>
<name sortKey="Gaffey, R" uniqKey="Gaffey R">R Gaffey</name>
</author>
<author>
<name sortKey="Ajelli, M" uniqKey="Ajelli M">M Ajelli</name>
</author>
<author>
<name sortKey="Fumanelli, L" uniqKey="Fumanelli L">L Fumanelli</name>
</author>
<author>
<name sortKey="Merler, S" uniqKey="Merler S">S Merler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Cajka, Jc" uniqKey="Cajka J">JC Cajka</name>
</author>
<author>
<name sortKey="Cooley, Pc" uniqKey="Cooley P">PC Cooley</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araz, Om" uniqKey="Araz O">OM Araz</name>
</author>
<author>
<name sortKey="Damien, P" uniqKey="Damien P">P Damien</name>
</author>
<author>
<name sortKey="Paltiel, Da" uniqKey="Paltiel D">DA Paltiel</name>
</author>
<author>
<name sortKey="Burke, S" uniqKey="Burke S">S Burke</name>
</author>
<author>
<name sortKey="Van De Geijn, B" uniqKey="Van De Geijn B">B Van De Geijn</name>
</author>
<author>
<name sortKey="Galvani, A" uniqKey="Galvani A">A Galvani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khazeni, N" uniqKey="Khazeni N">N Khazeni</name>
</author>
<author>
<name sortKey="Hutton, Dw" uniqKey="Hutton D">DW Hutton</name>
</author>
<author>
<name sortKey="Garber, Am" uniqKey="Garber A">AM Garber</name>
</author>
<author>
<name sortKey="Owens, Dk" uniqKey="Owens D">DK Owens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgan, O" uniqKey="Morgan O">O Morgan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivers, C" uniqKey="Rivers C">C Rivers</name>
</author>
<author>
<name sortKey="Chretien, Jp" uniqKey="Chretien J">JP Chretien</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Pavlin, Ja" uniqKey="Pavlin J">JA Pavlin</name>
</author>
<author>
<name sortKey="Woodward, A" uniqKey="Woodward A">A Woodward</name>
</author>
<author>
<name sortKey="Brett Major, D" uniqKey="Brett Major D">D Brett-Major</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boneh, T" uniqKey="Boneh T">T Boneh</name>
</author>
<author>
<name sortKey="Weymouth, Pn" uniqKey="Weymouth P">PN Weymouth</name>
</author>
<author>
<name sortKey="Potts, R" uniqKey="Potts R">R Potts</name>
</author>
<author>
<name sortKey="Bally, J" uniqKey="Bally J">J Bally</name>
</author>
<author>
<name sortKey="Nicholson, Ae" uniqKey="Nicholson A">AE Nicholson</name>
</author>
<author>
<name sortKey="Korb, Kb" uniqKey="Korb K">KB Korb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S" uniqKey="Wu S">S Wu</name>
</author>
<author>
<name sortKey="Cheng, Mh" uniqKey="Cheng M">MH Cheng</name>
</author>
<author>
<name sortKey="Beck, Jl" uniqKey="Beck J">JL Beck</name>
</author>
<author>
<name sortKey="Heaton, Th" uniqKey="Heaton T">TH Heaton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, Cj" uniqKey="Dunn C">CJ Dunn</name>
</author>
<author>
<name sortKey="Thompson, Mp" uniqKey="Thompson M">MP Thompson</name>
</author>
<author>
<name sortKey="Calkin, De" uniqKey="Calkin D">DE Calkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, L" uniqKey="Ge L">L Ge</name>
</author>
<author>
<name sortKey="Mourits, Mcm" uniqKey="Mourits M">MCM Mourits</name>
</author>
<author>
<name sortKey="Kristensen, Ar" uniqKey="Kristensen A">AR Kristensen</name>
</author>
<author>
<name sortKey="Huirne, Rbm" uniqKey="Huirne R">RBM Huirne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shea, K" uniqKey="Shea K">K Shea</name>
</author>
<author>
<name sortKey="Tildesley, Mj" uniqKey="Tildesley M">MJ Tildesley</name>
</author>
<author>
<name sortKey="Runge, Mc" uniqKey="Runge M">MC Runge</name>
</author>
<author>
<name sortKey="Fonnesbeck, Cj" uniqKey="Fonnesbeck C">CJ Fonnesbeck</name>
</author>
<author>
<name sortKey="Ferrari, Mj" uniqKey="Ferrari M">MJ Ferrari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Probert, Wjm" uniqKey="Probert W">WJM Probert</name>
</author>
<author>
<name sortKey="Shea, K" uniqKey="Shea K">K Shea</name>
</author>
<author>
<name sortKey="Fonnesbeck, Cj" uniqKey="Fonnesbeck C">CJ Fonnesbeck</name>
</author>
<author>
<name sortKey="Runge, Mc" uniqKey="Runge M">MC Runge</name>
</author>
<author>
<name sortKey="Carpenter, Te" uniqKey="Carpenter T">TE Carpenter</name>
</author>
<author>
<name sortKey="Durr, S" uniqKey="Durr S">S Dürr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, Ct" uniqKey="Webb C">CT Webb</name>
</author>
<author>
<name sortKey="Ferrari, M" uniqKey="Ferrari M">M Ferrari</name>
</author>
<author>
<name sortKey="Lindstrom, T" uniqKey="Lindstrom T">T Lindström</name>
</author>
<author>
<name sortKey="Carpenter, T" uniqKey="Carpenter T">T Carpenter</name>
</author>
<author>
<name sortKey="Durr, S" uniqKey="Durr S">S Dürr</name>
</author>
<author>
<name sortKey="Garner, G" uniqKey="Garner G">G Garner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yaesoubi, R" uniqKey="Yaesoubi R">R Yaesoubi</name>
</author>
<author>
<name sortKey="Cohen, T" uniqKey="Cohen T">T Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
<author>
<name sortKey="Nolan, Tm" uniqKey="Nolan T">TM Nolan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibuka, Y" uniqKey="Ibuka Y">Y Ibuka</name>
</author>
<author>
<name sortKey="Chapman, Gb" uniqKey="Chapman G">GB Chapman</name>
</author>
<author>
<name sortKey="Meyers, La" uniqKey="Meyers L">LA Meyers</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Galvani, Ap" uniqKey="Galvani A">AP Galvani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, Mdm" uniqKey="Davis M">MDM Davis</name>
</author>
<author>
<name sortKey="Stephenson, N" uniqKey="Stephenson N">N Stephenson</name>
</author>
<author>
<name sortKey="Lohm, D" uniqKey="Lohm D">D Lohm</name>
</author>
<author>
<name sortKey="Waller, E" uniqKey="Waller E">E Waller</name>
</author>
<author>
<name sortKey="Flowers, P" uniqKey="Flowers P">P Flowers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funk, S" uniqKey="Funk S">S Funk</name>
</author>
<author>
<name sortKey="Bansal, S" uniqKey="Bansal S">S Bansal</name>
</author>
<author>
<name sortKey="Bauch, Ct" uniqKey="Bauch C">CT Bauch</name>
</author>
<author>
<name sortKey="Eames, Ktd" uniqKey="Eames K">KTD Eames</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
<author>
<name sortKey="Galvani, Ap" uniqKey="Galvani A">AP Galvani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcvernon, J" uniqKey="Mcvernon J">J McVernon</name>
</author>
<author>
<name sortKey="Mason, K" uniqKey="Mason K">K Mason</name>
</author>
<author>
<name sortKey="Petrony, S" uniqKey="Petrony S">S Petrony</name>
</author>
<author>
<name sortKey="Nathan, P" uniqKey="Nathan P">P Nathan</name>
</author>
<author>
<name sortKey="Lamontagne, Ad" uniqKey="Lamontagne A">AD LaMontagne</name>
</author>
<author>
<name sortKey="Bentley, R" uniqKey="Bentley R">R Bentley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debruin, D" uniqKey="Debruin D">D DeBruin</name>
</author>
<author>
<name sortKey="Liaschenko, J" uniqKey="Liaschenko J">J Liaschenko</name>
</author>
<author>
<name sortKey="Marshall, Mf" uniqKey="Marshall M">MF Marshall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gregory, R" uniqKey="Gregory R">R Gregory</name>
</author>
<author>
<name sortKey="Failing, L" uniqKey="Failing L">L Failing</name>
</author>
<author>
<name sortKey="Harstone, G" uniqKey="Harstone G">G Harstone</name>
</author>
<author>
<name sortKey="Long, T" uniqKey="Long T">T Long</name>
</author>
<author>
<name sortKey="Mcdaniels, T" uniqKey="Mcdaniels T">T McDaniels</name>
</author>
<author>
<name sortKey="Ohlson, D" uniqKey="Ohlson D">D Ohlson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klein, Cj" uniqKey="Klein C">CJ Klein</name>
</author>
<author>
<name sortKey="Jupiter, Sd" uniqKey="Jupiter S">SD Jupiter</name>
</author>
<author>
<name sortKey="Possingham, Hp" uniqKey="Possingham H">HP Possingham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcot, Bg" uniqKey="Marcot B">BG Marcot</name>
</author>
<author>
<name sortKey="Thompson, Mp" uniqKey="Thompson M">MP Thompson</name>
</author>
<author>
<name sortKey="Runge, Mc" uniqKey="Runge M">MC Runge</name>
</author>
<author>
<name sortKey="Thompson, Fr" uniqKey="Thompson F">FR Thompson</name>
</author>
<author>
<name sortKey="Mcnulty, S" uniqKey="Mcnulty S">S McNulty</name>
</author>
<author>
<name sortKey="Cleaves, D" uniqKey="Cleaves D">D Cleaves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moss, R" uniqKey="Moss R">R Moss</name>
</author>
<author>
<name sortKey="Zarebski, Ae" uniqKey="Zarebski A">AE Zarebski</name>
</author>
<author>
<name sortKey="Dawson, P" uniqKey="Dawson P">P Dawson</name>
</author>
<author>
<name sortKey="Franklin, Lj" uniqKey="Franklin L">LJ Franklin</name>
</author>
<author>
<name sortKey="Birrell, Fa" uniqKey="Birrell F">FA Birrell</name>
</author>
<author>
<name sortKey="Mccaw, Jm" uniqKey="Mccaw J">JM McCaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Fenimore, Pw" uniqKey="Fenimore P">PW Fenimore</name>
</author>
<author>
<name sortKey="Castillo Garsow, Ma" uniqKey="Castillo Garsow M">MA Castillo-Garsow</name>
</author>
<author>
<name sortKey="Castillo Chavez, C" uniqKey="Castillo Chavez C">C Castillo-chavez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gumel, Ab" uniqKey="Gumel A">AB Gumel</name>
</author>
<author>
<name sortKey="Ruan, S" uniqKey="Ruan S">S Ruan</name>
</author>
<author>
<name sortKey="Day, T" uniqKey="Day T">T Day</name>
</author>
<author>
<name sortKey="Watmough, J" uniqKey="Watmough J">J Watmough</name>
</author>
<author>
<name sortKey="Brauer, F" uniqKey="Brauer F">F Brauer</name>
</author>
<author>
<name sortKey="Van Den Driessche, P" uniqKey="Van Den Driessche P">P Van Den Driessche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Day, T" uniqKey="Day T">T Day</name>
</author>
<author>
<name sortKey="Park, A" uniqKey="Park A">A Park</name>
</author>
<author>
<name sortKey="Madras, N" uniqKey="Madras N">N Madras</name>
</author>
<author>
<name sortKey="Gumel, A" uniqKey="Gumel A">A Gumel</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong Parodi, G" uniqKey="Wong Parodi G">G Wong-Parodi</name>
</author>
<author>
<name sortKey="Krishnamurti, T" uniqKey="Krishnamurti T">T Krishnamurti</name>
</author>
<author>
<name sortKey="Davis, A" uniqKey="Davis A">A Davis</name>
</author>
<author>
<name sortKey="Schwartz, D" uniqKey="Schwartz D">D Schwartz</name>
</author>
<author>
<name sortKey="Fischhoff, B" uniqKey="Fischhoff B">B Fischhoff</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="other">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Med</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Med</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosmed</journal-id>
<journal-title-group>
<journal-title>PLoS Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1549-1277</issn>
<issn pub-type="epub">1549-1676</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31917786</article-id>
<article-id pub-id-type="pmc">6952100</article-id>
<article-id pub-id-type="doi">10.1371/journal.pmed.1003018</article-id>
<article-id pub-id-type="publisher-id">PMEDICINE-D-19-00577</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Policy Forum</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Pharmacology</subject>
<subj-group>
<subject>Drugs</subject>
<subj-group>
<subject>Antimicrobials</subject>
<subj-group>
<subject>Antivirals</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Microbial Control</subject>
<subj-group>
<subject>Antimicrobials</subject>
<subj-group>
<subject>Antivirals</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Virology</subject>
<subj-group>
<subject>Antivirals</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Viral Diseases</subject>
<subj-group>
<subject>Influenza</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Neuroscience</subject>
<subj-group>
<subject>Cognitive Science</subject>
<subj-group>
<subject>Cognitive Psychology</subject>
<subj-group>
<subject>Decision Making</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Psychology</subject>
<subj-group>
<subject>Cognitive Psychology</subject>
<subj-group>
<subject>Decision Making</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Social Sciences</subject>
<subj-group>
<subject>Psychology</subject>
<subj-group>
<subject>Cognitive Psychology</subject>
<subj-group>
<subject>Decision Making</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Neuroscience</subject>
<subj-group>
<subject>Cognitive Science</subject>
<subj-group>
<subject>Cognition</subject>
<subj-group>
<subject>Decision Making</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Infectious Diseases</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Epidemiology</subject>
<subj-group>
<subject>Disease Surveillance</subject>
<subj-group>
<subject>Infectious Disease Surveillance</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Infectious Disease Control</subject>
<subj-group>
<subject>Infectious Disease Surveillance</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Health Care</subject>
<subj-group>
<subject>Health Education and Awareness</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Pathology and Laboratory Medicine</subject>
<subj-group>
<subject>Pathogens</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Mathematical and Statistical Techniques</subject>
<subj-group>
<subject>Statistical Methods</subject>
<subj-group>
<subject>Forecasting</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Mathematics</subject>
<subj-group>
<subject>Statistics</subject>
<subj-group>
<subject>Statistical Methods</subject>
<subj-group>
<subject>Forecasting</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Infectious disease pandemic planning and response: Incorporating decision analysis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Shearer</surname>
<given-names>Freya M.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4568-2012</contrib-id>
<name>
<surname>Moss</surname>
<given-names>Robert</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-9774-1961</contrib-id>
<name>
<surname>McVernon</surname>
<given-names>Jodie</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ross</surname>
<given-names>Joshua V.</given-names>
</name>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-2452-3098</contrib-id>
<name>
<surname>McCaw</surname>
<given-names>James M.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Modelling and Simulation Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Australia</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>jamesm@unimelb.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>9</day>
<month>1</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<month>1</month>
<year>2020</year>
</pub-date>
<volume>17</volume>
<issue>1</issue>
<elocation-id>e1003018</elocation-id>
<permissions>
<copyright-statement>© 2020 Shearer et al</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Shearer et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="pmed.1003018.pdf"></self-uri>
<abstract abstract-type="toc">
<p>Freya Shearer and co-authors discuss the use of decision analysis in planning for infectious disease pandemics.</p>
</abstract>
<funding-group>
<funding-statement>This material is based upon work supported by the US Army International Technology Center Pacific (ITC-PAC) under Contract No. W90GQZ-70660019, which supports FMS. JMcV is supported by a NHMRC Principal Research Fellowship (GNT1117140). RM is supported by an Australian Defence Science Technology Group research agreement (ID 8720). This work was also supported in part by PRISM2, a NHMRC Centre of Research Excellence (GNT1078068). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="0"></table-count>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<boxed-text id="pmed.1003018.box001" position="anchor" orientation="portrait">
<sec id="sec001">
<title>Summary points</title>
<list list-type="bullet">
<list-item>
<p>Planning is critical to mitigating the sudden and potentially catastrophic impact of an infectious disease pandemic on society. National pandemic policy documents cover a wide variety of control options, often with nonspecific recommendations for action.</p>
</list-item>
<list-item>
<p>Despite advances in analytical methods for gaining early situational awareness (i.e., of a disease’s transmissibility and severity) and for predicting the likely effectiveness of interventions, a major gap exists globally in terms of integrating these outputs with the advice contained in policy documents.</p>
</list-item>
<list-item>
<p>Decision models (and decision science as a field, more broadly) provide an approach to defining and evaluating alternative policy options under complex and changing conditions.</p>
</list-item>
<list-item>
<p>A decision model for infectious disease pandemics is an appropriate method for integrating evidence from situational and intervention analysis tools, along with the information in policy documents, to provide robust advice on possible response options (including uncertainty).</p>
</list-item>
<list-item>
<p>A decision model for pandemic response cannot capture all of the social, political, and ethical considerations that impact decision-making. Such a model should therefore be embedded in a decision support system that emphasizes this broader context.</p>
</list-item>
</list>
</sec>
</boxed-text>
<sec sec-type="intro" id="sec002">
<title>Introduction</title>
<p>Planning is critical to mitigating the sudden and potentially catastrophic impact of an infectious disease pandemic on society, but it is far from straightforward [
<xref rid="pmed.1003018.ref001" ref-type="bibr">1</xref>
]. During a pandemic, decisions will be made under rapidly changing, uncertain conditions, with limited (if any) prior experience.</p>
<p>The 1918 H1N1 pandemic was estimated to have caused the death of tens of millions of people worldwide. It is encouraging that antivirals and vaccines available to us today would help to reduce the impact of a similar pandemic event, yet with cities and countries increasingly connected by air travel, we will likely be faced with a pathogen capable of spreading rapidly across the globe. The 2009 pandemic H1N1 (A(H1N1)pdm09), a virus estimated to be less transmissible than the 1918 strain [
<xref rid="pmed.1003018.ref002" ref-type="bibr">2</xref>
], spread to 74 countries within just 4 months [
<xref rid="pmed.1003018.ref003" ref-type="bibr">3</xref>
].</p>
<p>Mathematical and statistical models are important tools for pandemic planning and response. Although it is unlikely that we will ever be able to predict precisely where or when the next pandemic will occur [
<xref rid="pmed.1003018.ref004" ref-type="bibr">4</xref>
], once an outbreak of pandemic potential has been identified, models have enormous potential to improve the effectiveness of our response. They can be used to synthesize the available data to provide enhanced situational awareness, to predict the future course of the pandemic and likely associated social and economic costs, and to plan mitigation strategies [
<xref rid="pmed.1003018.ref005" ref-type="bibr">5</xref>
,
<xref rid="pmed.1003018.ref006" ref-type="bibr">6</xref>
].</p>
</sec>
<sec id="sec003">
<title>The role of modeling in current pandemic response policy</title>
<sec id="sec004">
<title>Pandemic modeling trends</title>
<p>Modeling is a well-established approach to improving pandemic preparedness and response capabilities. In 1973, Fox and colleagues described the use of pandemic simulation models based on pathogen characteristics akin to 1957 H2N2 and 1968 H3N2 to explore the potential impact of mass vaccination and school closures [
<xref rid="pmed.1003018.ref007" ref-type="bibr">7</xref>
,
<xref rid="pmed.1003018.ref008" ref-type="bibr">8</xref>
].</p>
<p>Decades later, modelers and policy makers employed similar methods in responding to influenza A(H1N1)pdm09. By leveraging surveillance systems and computational power not available to their predecessors in 1968, a variety of models were developed to provide real-time assessments of the pandemic impact level [
<xref rid="pmed.1003018.ref009" ref-type="bibr">9</xref>
,
<xref rid="pmed.1003018.ref010" ref-type="bibr">10</xref>
] and effectiveness of possible control measures [
<xref rid="pmed.1003018.ref010" ref-type="bibr">10</xref>
]. Additionally, many assumptions contained within the policy documents used in 2009 were based on prepandemic models [
<xref rid="pmed.1003018.ref006" ref-type="bibr">6</xref>
,
<xref rid="pmed.1003018.ref011" ref-type="bibr">11</xref>
<xref rid="pmed.1003018.ref014" ref-type="bibr">14</xref>
], and since 2009, models have increasingly supported the revision (and creation) of pandemic plans [
<xref rid="pmed.1003018.ref015" ref-type="bibr">15</xref>
<xref rid="pmed.1003018.ref017" ref-type="bibr">17</xref>
]. In recent decades, other global infectious disease events, including the epidemics of severe acute respiratory syndrome (SARS, 2002–2003), the emergence of highly pathogenic avian influenza (HPAI) virus H5N1 (2003), and the west African Ebola virus disease epidemic (2013–2016), have also stimulated advances in pandemic preparedness and response capabilities [
<xref rid="pmed.1003018.ref011" ref-type="bibr">11</xref>
,
<xref rid="pmed.1003018.ref018" ref-type="bibr">18</xref>
,
<xref rid="pmed.1003018.ref019" ref-type="bibr">19</xref>
].</p>
<p>The pandemic preparedness and response models produced from these efforts can be broadly classified into two groups: those aiming to inform situational awareness and those aiming to understand the merits of possible interventions.</p>
</sec>
<sec id="sec005">
<title>The importance of situational awareness</title>
<p>A key lesson from the emergence of influenza A(H1N1)pdm09 was the need for pandemic policies to be adaptable to evolving pandemic scenarios [
<xref rid="pmed.1003018.ref020" ref-type="bibr">20</xref>
,
<xref rid="pmed.1003018.ref021" ref-type="bibr">21</xref>
]. Many countries found that their planning assumptions did not match the expected level of pandemic impact because they were based on the more lethal HPAI H5N1 virus [
<xref rid="pmed.1003018.ref022" ref-type="bibr">22</xref>
,
<xref rid="pmed.1003018.ref023" ref-type="bibr">23</xref>
]. In light of the relative mildness of A(H1N1)pdm09, which still had serious consequences, countries had to rapidly adjust their plans in order to deliver a proportionate response [
<xref rid="pmed.1003018.ref020" ref-type="bibr">20</xref>
].</p>
<p>The World Health Organization (WHO) guiding document for pandemic influenza preparedness and response has since adopted a more flexible approach, emphasizing the importance of actions that can be scaled and targeted as needed [
<xref rid="pmed.1003018.ref024" ref-type="bibr">24</xref>
], and this has been reflected in updated country plans [
<xref rid="pmed.1003018.ref025" ref-type="bibr">25</xref>
<xref rid="pmed.1003018.ref027" ref-type="bibr">27</xref>
]. In the current generation of pandemic plans, pandemic impact is typically considered in terms of disease transmissibility and severity [
<xref rid="pmed.1003018.ref025" ref-type="bibr">25</xref>
,
<xref rid="pmed.1003018.ref027" ref-type="bibr">27</xref>
,
<xref rid="pmed.1003018.ref028" ref-type="bibr">28</xref>
]. Transmissibility describes how effectively the disease transmits between people. It strongly influences how quickly the epidemic grows, when it peaks, its overall magnitude, and how long it lasts. Severity determines how many people will become seriously unwell or die as a result of the disease.</p>
<p>At the onset of a pandemic, these pathogen characteristics will be unknown and must therefore be characterized as they emerge, because even pandemics of well-characterized pathogens will differ in these measures sufficiently to create uncertainty as to the best response. As our understanding of the probable impact of a pandemic improves, policy makers can then use this information to help decide on the overall scale of response, which control measures to implement, and when to deploy them [
<xref rid="pmed.1003018.ref029" ref-type="bibr">29</xref>
]. Given the dependency of response plans and decision-making on assessments of situational awareness, gathering the appropriate information as early as possible in an outbreak has been identified as a priority for surveillance and real-time data analysis activities [
<xref rid="pmed.1003018.ref030" ref-type="bibr">30</xref>
,
<xref rid="pmed.1003018.ref031" ref-type="bibr">31</xref>
].</p>
<p>To this end, advances have recently been made in the design of early outbreak surveillance methods such as First Few Hundred (FF100) household transmission studies [
<xref rid="pmed.1003018.ref026" ref-type="bibr">26</xref>
] and the development of novel algorithms for analyzing the resulting data [
<xref rid="pmed.1003018.ref032" ref-type="bibr">32</xref>
]. FF100 studies involve the collection of data from confirmed infections and their household contacts, including the date of symptom onset and final outcome, until a satisfactory characterization of the pathogen is achieved [
<xref rid="pmed.1003018.ref026" ref-type="bibr">26</xref>
]. The use of these protocols is recommended as part of enhanced early surveillance activities in the current pandemic plans of the United Kingdom [
<xref rid="pmed.1003018.ref026" ref-type="bibr">26</xref>
] and Australia [
<xref rid="pmed.1003018.ref027" ref-type="bibr">27</xref>
], and WHO recommends a detailed investigation of at least the first 100 confirmed cases of any nascent pandemic [
<xref rid="pmed.1003018.ref033" ref-type="bibr">33</xref>
]. These rapid, enhanced surveillance activities can be resource intensive but provide rich epidemiological data and overcome many quality, timeliness, and bias issues often associated with routine surveillance practices [
<xref rid="pmed.1003018.ref029" ref-type="bibr">29</xref>
]. Further, when these data are analyzed with FF100-specific algorithms [
<xref rid="pmed.1003018.ref032" ref-type="bibr">32</xref>
,
<xref rid="pmed.1003018.ref034" ref-type="bibr">34</xref>
], estimates of pathogen transmissibility and severity are obtained, enabling timely identification of the pandemic scenario that best characterizes an actual outbreak.</p>
<p>Similarly, epidemic forecasting algorithms that leverage routine surveillance data can also be used to rapidly predict pandemic characteristics relevant to policy makers. Every year during the influenza season, modelers in many parts of the world, sometimes in collaboration with public health practitioners, make weekly forecasts of epidemic characteristics, such as peak size and timing [
<xref rid="pmed.1003018.ref035" ref-type="bibr">35</xref>
<xref rid="pmed.1003018.ref037" ref-type="bibr">37</xref>
]. Since 2013, the United States Centers for Disease Control and Prevention (CDC) have even coordinated seasonal challenges to external researchers to predict onset week and peak week for the US influenza season [
<xref rid="pmed.1003018.ref038" ref-type="bibr">38</xref>
]. Real-time forecasting has also been used to enhance situational awareness in outbreaks of other diseases of public health interest, including the west African Ebola virus disease epidemic (2013–2016) [
<xref rid="pmed.1003018.ref019" ref-type="bibr">19</xref>
]. The Research and Policy for Infectious Disease Dynamics (RAPIDD) program subsequently hosted an Ebola forecasting challenge involving teams of modelers from both academic institutions and government agencies, with the goal of using “peace-time” to assess model performance and improve coordination between modeling groups [
<xref rid="pmed.1003018.ref039" ref-type="bibr">39</xref>
].</p>
</sec>
<sec id="sec006">
<title>Assessing the response options</title>
<p>Once there are estimates of the transmissibility and severity of a pathogen, policy makers can use this information to decide how to respond. These decisions are often informed by the results of intervention modeling analyses. These analyses are either conducted during preparedness planning, with (static) outcomes embedded in policy documents, or they are developed in real time as part of emergency response. Intervention modeling involves simulating an epidemic in a population, with and without the intervention of interest, and comparing the outcomes [
<xref rid="pmed.1003018.ref007" ref-type="bibr">7</xref>
,
<xref rid="pmed.1003018.ref015" ref-type="bibr">15</xref>
<xref rid="pmed.1003018.ref017" ref-type="bibr">17</xref>
,
<xref rid="pmed.1003018.ref040" ref-type="bibr">40</xref>
<xref rid="pmed.1003018.ref042" ref-type="bibr">42</xref>
]. These modeling studies have suggested that specific interventions are only effective under certain circumstances [
<xref rid="pmed.1003018.ref015" ref-type="bibr">15</xref>
<xref rid="pmed.1003018.ref017" ref-type="bibr">17</xref>
,
<xref rid="pmed.1003018.ref040" ref-type="bibr">40</xref>
,
<xref rid="pmed.1003018.ref041" ref-type="bibr">41</xref>
]. For example, in pandemic influenza scenarios in which clinical symptoms are severe (and thus highly visible to the healthcare system) and transmissibility is low, simulations suggest that liberal distribution of antivirals may completely avert the pandemic. On the other hand, if a pandemic virus exhibits low clinical severity and high transmissibility, antivirals alone would not be effective at reducing transmission or the burden on healthcare settings, and their primary utility will stem from their direct clinical benefits [
<xref rid="pmed.1003018.ref028" ref-type="bibr">28</xref>
].</p>
</sec>
</sec>
<sec id="sec007">
<title>A decision support system for pandemic response</title>
<p>Despite advances in methods for gaining situational awareness and assessing intervention impact, a major gap exists in terms of integrating the outputs from these methods with the advice contained in pandemic response policy. Policy documents will typically recognize the importance of methods for estimating pandemic impact (such as FF100), and their response advice is often informed by intervention models, but they do not articulate how these data and analytics will contribute to decision-making in real time during a pandemic.</p>
<p>The need for data collection and analysis pipelines to be made routine in epidemic response practice has been the topic of recent widespread discussion [
<xref rid="pmed.1003018.ref030" ref-type="bibr">30</xref>
,
<xref rid="pmed.1003018.ref031" ref-type="bibr">31</xref>
,
<xref rid="pmed.1003018.ref043" ref-type="bibr">43</xref>
,
<xref rid="pmed.1003018.ref044" ref-type="bibr">44</xref>
]. Furthermore, it is clear that situational evidence should be used with intervention models to assess the likely effectiveness of response options. Our contribution to this evolving discussion is to highlight the need for formalizing—and exercising—precisely how emerging evidence is synthesized and used to support the decision-making processes articulated in policy documents, as part of preparedness activities.</p>
<p>Drawing on established practice from the discipline of decision science, we argue that a decision model is required to partly address this implementation gap—one that combines evidence from situational awareness tools and intervention models, along with the information in response policy, to evaluate alternative response strategies. This is realized in a statistical framework to appropriately capture and propagate uncertainties throughout the inference and evaluation processes. Such a decision model would provide robust recommendations on response options, including advice on uncertainty with respect to future epidemic behavior and likely effectiveness of alternative response strategies. We further argue that the decision model should be embedded in a broader decision support system that formally incorporates other information relevant to the decision-making process, including stakeholder values, taking us well beyond any current-generation planning and response capabilities.</p>
<p>This approach to decision-making has been applied in other settings in which decisions must be made in real time, under conditions of high complexity or uncertainty, including aviation [
<xref rid="pmed.1003018.ref045" ref-type="bibr">45</xref>
], engineering [
<xref rid="pmed.1003018.ref046" ref-type="bibr">46</xref>
], wildfire management [
<xref rid="pmed.1003018.ref047" ref-type="bibr">47</xref>
], and livestock disease control [
<xref rid="pmed.1003018.ref048" ref-type="bibr">48</xref>
<xref rid="pmed.1003018.ref051" ref-type="bibr">51</xref>
]. In the context of human disease, although some have considered how to optimize interventions given dynamic knowledge of a system (including emerging epidemic data and resource availability), they tend to ignore the broader context in which decisions are made [
<xref rid="pmed.1003018.ref052" ref-type="bibr">52</xref>
].</p>
<p>
<xref ref-type="fig" rid="pmed.1003018.g001">Fig 1</xref>
depicts a proposed decision support system for pandemic response, featuring a statistical decision model that combines dynamic information from situational awareness tools and intervention models, along with the static information in response plans, and provides dynamic advice on optimal response strategies. When operating, the system would continually update as information becomes available, enabling decision-makers to revise and refine control measures over time, including making difficult decisions about scaling back or ceasing an intervention activity.</p>
<fig id="pmed.1003018.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1003018.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Proposed decision support system.</title>
<p>Schematic of a proposed decision support system for infectious disease pandemic response.</p>
</caption>
<graphic xlink:href="pmed.1003018.g001"></graphic>
</fig>
<p>Our ideas build on the decision-making framework developed by Lipsitch and colleagues [
<xref rid="pmed.1003018.ref029" ref-type="bibr">29</xref>
], which defines the data and interpretive tools required for a pandemic response in terms of the key public health decisions that must be made. Although they discuss an “idealized” progression from epidemiological and surveillance data to evidence and then to evidence-based decisions, they also acknowledge that other sources of data and evidence should and do influence decision-making. We have extended their framework by adding policy and contextual data and stakeholder priorities as inputs, as well as an additional layer of evidence interpretation—the decision model—which offers specific strategies (what, how much, when) to decision-makers.</p>
<sec id="sec008">
<title>Case study: Antiviral decision model for pandemic influenza in the Australian context</title>
<p>In order to demonstrate that outputs from situational and intervention analyses, when combined using a statistical decision model, can provide recommendations on response options (including uncertainty), we present a realistic example of an antiviral decision problem for pandemic influenza in
<xref ref-type="fig" rid="pmed.1003018.g002">Fig 2</xref>
(full details are provided in
<xref ref-type="supplementary-material" rid="pmed.1003018.s001">S1 Appendix</xref>
). For the intervention analysis component, we have used our previously published intervention model of targeted antiviral distribution strategies [
<xref rid="pmed.1003018.ref016" ref-type="bibr">16</xref>
]. This model and its findings form the basis for Australia’s current pandemic response plan [
<xref rid="pmed.1003018.ref027" ref-type="bibr">27</xref>
,
<xref rid="pmed.1003018.ref053" ref-type="bibr">53</xref>
]. The model allows for the use of antivirals for treatment of cases and postexposure prophylaxis of contacts, differential risks of severe disease outcomes and differential benefits of treatment across population subgroups, and health system capacity constraints. The most recent version of this model is described by Moss and colleagues [
<xref rid="pmed.1003018.ref016" ref-type="bibr">16</xref>
], and it builds on a larger body of work, conducted over a 15-year period, which has focused on developing pandemic antiviral policy for the Australian context [
<xref rid="pmed.1003018.ref013" ref-type="bibr">13</xref>
<xref rid="pmed.1003018.ref017" ref-type="bibr">17</xref>
,
<xref rid="pmed.1003018.ref028" ref-type="bibr">28</xref>
,
<xref rid="pmed.1003018.ref054" ref-type="bibr">54</xref>
].</p>
<fig id="pmed.1003018.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pmed.1003018.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Case study.</title>
<p>Antiviral decision model for pandemic influenza in the Australian context. FF100, First Few Hundred.</p>
</caption>
<graphic xlink:href="pmed.1003018.g002"></graphic>
</fig>
<p>In presenting this example, we have necessarily and deliberately kept the decision model to a minimum working example in order to focus on the broader decision analysis aspects of the problem and on the types and flow of information required by the model. As such, the decision model is limited to a single intervention (antivirals), with each strategy implemented at the start of the response phase (as defined by the Australian pandemic plan) for the remaining duration of the pandemic or until antiviral stockpile depletion. A decision model within a fully operational system would, of course, require a much higher dimensional decision space, including the use of an intervention model incorporating multiple interventions and the ability to integrate over all feasible intervention start and stop times. It would also require consideration of the computational implementation of the decision model to ensure timely (possibly daily) availability of situation-specific intervention model outcomes that captures uncertainty in FF100 estimates of epidemiological parameters (i.e., severity and transmissibility), as well as intervention parameters (e.g., drug effectiveness) and operational parameters (e.g., daily antiviral distribution capacity). It may also be important to reconcile potentially distinct transmission models used for the inference of disease characteristics and the assessment of interventions.</p>
</sec>
<sec id="sec009">
<title>The decision context</title>
<p>Although there is clearly much further technical work to do, these aspects are perhaps the most straightforward part of developing an operational system; more challenging is working with stakeholders to decide on the structures and outcomes of each component and how different types of evidence should be weighted. This depends on the social and political context in which decisions are made. For example, the availability and acceptability of interventions will depend on a host of social and political factors, which may change as the pandemic progresses [
<xref rid="pmed.1003018.ref055" ref-type="bibr">55</xref>
<xref rid="pmed.1003018.ref058" ref-type="bibr">58</xref>
]. Jurisdictional and community values must be carefully elicited and incorporated into the decision support system, not least because we know that pandemic response policies have the potential to perpetuate and exacerbate existing social disparities [
<xref rid="pmed.1003018.ref059" ref-type="bibr">59</xref>
]. As shown in
<xref ref-type="fig" rid="pmed.1003018.g001">Fig 1</xref>
, certain decision-maker priorities can be incorporated in system design (such as whether one type of evidence is more trusted than another), but ultimately, it is not expected that all social, political, and ethical considerations will be captured by system structures or parameters.</p>
<p>Decision science can contribute to pandemic preparedness and response not only by providing analytical tools for evaluating response options but also by providing a structured and inclusive approach for incorporating these tools into decision-making [
<xref rid="pmed.1003018.ref060" ref-type="bibr">60</xref>
]. This approach includes formally engaging with decision-makers to clearly define their response objectives and to design and agree on suitable metrics for assessing alternative response strategies. The role of the decision support system would be not to produce a single optimal strategy but to clearly and transparently present decision options in a way that effectively helps decision-makers choose the strategy most aligned with achieving their objectives. Examples of this approach exist in conservation [
<xref rid="pmed.1003018.ref061" ref-type="bibr">61</xref>
,
<xref rid="pmed.1003018.ref062" ref-type="bibr">62</xref>
] and livestock disease management [
<xref rid="pmed.1003018.ref049" ref-type="bibr">49</xref>
,
<xref rid="pmed.1003018.ref050" ref-type="bibr">50</xref>
]. Further, Moss and colleagues [
<xref rid="pmed.1003018.ref035" ref-type="bibr">35</xref>
,
<xref rid="pmed.1003018.ref063" ref-type="bibr">63</xref>
] describe their collaborative engagement with public health decision-makers in model development for seasonal influenza forecasting, which provides useful insight into their process and the value of these engagements.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec010">
<title>Discussion</title>
<p>Pandemic response capabilities will be improved by formally integrating outputs from situational and intervention analyses with pandemic response policy. We have proposed one such approach to doing so—a decision model embedded within a broader decision support system that recognizes the social and political context in which decisions are made. Under this approach, we draw on well-established analytical tools used in the discipline of decision science (that is, decision models) and argue that the broader decision support system should be developed using decision science principles.</p>
<p>A system developed using this approach will ensure that the most complete, robust information is available to decision-makers at operationally relevant time points. For example, such a system will enable the development of methods (that simultaneously account for relevant sources of uncertainty) for triggering key policy decisions, such as determining when to switch from general response strategies (when knowledge is scarce) to more proportionate and targeted response strategies (when sufficient knowledge is gained). This switch has significant resource implications because it signals the sufficient acquisition of FF100 data and the cessation of resource-intensive FF100 studies.</p>
<p>The testing and evaluation of our proposed system is an important challenge for its operational use. In order to evaluate the system against actual situational evidence from FF100 and forecasting, rather than the hypothetical evidence used in
<xref ref-type="fig" rid="pmed.1003018.g002">Fig 2</xref>
, we would require the relevant data to be collected concurrently during an outbreak. An initial evaluation step could involve conducting an FF100 trial during a seasonal influenza epidemic in a jurisdiction where seasonal forecasting tools are already routinely used. In addition to providing data against which to evaluate the performance of algorithms and models within the system, this would enable the identification of operational challenges associated with the FF100 study design and its implementation. Tabletop exercises would also be important for testing and improving the system, particularly to obtain feedback on the clarity of presentation of alternative response strategies and uncertainties. Tabletop exercises/response drills are already a matter of routine in many jurisdictions; we are calling for analytics to be an integral part of these exercises.</p>
<p>Although we have focused on the effective use of antivirals in an influenza pandemic in the decision model example, our ideas are relevant and adaptable to other diseases of pandemic/epidemic potential. It will be important to next incorporate a suite of nonspecific interventions, such as social distancing, border screening, and infection control measures, which are effective against a broader range of infectious diseases. FF100 data collection protocols and algorithms are adaptable to diseases other than influenza, and outbreaks of emerging pathogens such as SARS, for which pharmaceutical interventions were not available, have stimulated modeling research into the control of such pathogens. This has resulted in further development of intervention models for nonspecific control measures, including isolation and quarantine [
<xref rid="pmed.1003018.ref064" ref-type="bibr">64</xref>
<xref rid="pmed.1003018.ref066" ref-type="bibr">66</xref>
].</p>
<p>Under conditions of high stress and uncertainty, a pandemic response is more likely to succeed if responders have access to key information in a timely and coherent manner. Formal integration of outputs from situational awareness and intervention analysis methods with the information contained within policy documents will improve the ability of decision-makers to assess their response options in a given pandemic event. We have demonstrated a novel method for doing so (
<xref ref-type="fig" rid="pmed.1003018.g002">Fig 2</xref>
) and illustrated how it would fit into a broader decision support system (
<xref ref-type="fig" rid="pmed.1003018.g001">Fig 1</xref>
). We argue that such a system will best support the making of robust and transparent decisions when developed through a decision science process, emphasizing the social and political needs of pandemic planning efforts [
<xref rid="pmed.1003018.ref060" ref-type="bibr">60</xref>
].</p>
<p>Drawing on our example decision model (
<xref ref-type="fig" rid="pmed.1003018.g002">Fig 2</xref>
) and a host of published examples of stakeholder engagement in decision-making processes [
<xref rid="pmed.1003018.ref061" ref-type="bibr">61</xref>
,
<xref rid="pmed.1003018.ref062" ref-type="bibr">62</xref>
,
<xref rid="pmed.1003018.ref067" ref-type="bibr">67</xref>
], we suggest that both the technical and nontechnical challenges associated with developing a decision support system are surmountable. Having such a system in place—and articulated in pandemic policy documents—will be of great value to decision-makers when the next pandemic inevitably arrives.</p>
</sec>
<sec sec-type="supplementary-material" id="sec011">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="pmed.1003018.s001">
<label>S1 Appendix</label>
<caption>
<title>Methods supplement to
<xref ref-type="fig" rid="pmed.1003018.g002">Fig 2</xref>
.</title>
<p>(PDF)</p>
</caption>
<media xlink:href="pmed.1003018.s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to acknowledge Alexander E. Zarebski, David J. Price, and Marc Lipsitch for useful discussions in the conceptualization and preparation of this manuscript. This research was supported by use of the Nectar Research Cloud, a collaborative Australian research platform supported by the National Collaborative Research Infrastructure Strategy (NCRIS).</p>
</ack>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>CDC</term>
<def>
<p>Centers for Disease Control and Prevention</p>
</def>
</def-item>
<def-item>
<term>FF100</term>
<def>
<p>First Few Hundred</p>
</def>
</def-item>
<def-item>
<term>HPAI</term>
<def>
<p>highly pathogenic avian influenza</p>
</def>
</def-item>
<def-item>
<term>RAPIDD</term>
<def>
<p>Research and Policy for Infectious Disease Dynamics</p>
</def>
</def-item>
<def-item>
<term>SARS</term>
<def>
<p>severe acute respiratory syndrome</p>
</def>
</def-item>
<def-item>
<term>WHO</term>
<def>
<p>World Health Organization</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>References</title>
<ref id="pmed.1003018.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sands</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Mundaca-Shah</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Dzau</surname>
<given-names>VJ</given-names>
</name>
.
<article-title>The neglected dimension of global security—A framework for countering infectious-disease crises</article-title>
.
<source>N Engl J Med</source>
.
<year>2016</year>
;
<volume>374</volume>
(
<issue>13</issue>
):
<fpage>1281</fpage>
<lpage>1287</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMsr1600236</pub-id>
<pub-id pub-id-type="pmid">26761419</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mills</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Robins</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
.
<article-title>Transmissibility of 1918 pandemic influenza</article-title>
.
<source>Nature</source>
.
<year>2004</year>
;
<volume>432</volume>
:
<fpage>904</fpage>
<pub-id pub-id-type="doi">10.1038/nature03063</pub-id>
<pub-id pub-id-type="pmid">15602562</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref003">
<label>3</label>
<mixed-citation publication-type="other">World Health Organization. Disease Outbreak News 11 June 2009. Influenza A(H1N1)–update 47; 2009 June [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2009_06_11/en/">http://www.who.int/csr/don/2009_06_11/en/</ext-link>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Holmes</surname>
<given-names>EC</given-names>
</name>
,
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Andersen</surname>
<given-names>KG</given-names>
</name>
.
<article-title>Pandemics: Spend on surveillance, not prediction</article-title>
.
<source>Nature</source>
.
<year>2018</year>
;
<volume>558</volume>
(
<issue>7709</issue>
):
<fpage>180</fpage>
<lpage>182</lpage>
.
<pub-id pub-id-type="doi">10.1038/d41586-018-05373-w</pub-id>
<pub-id pub-id-type="pmid">29880819</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Mathews</surname>
<given-names>JD</given-names>
</name>
.
<article-title>Model answers or trivial pursuits? The role of mathematical models in influenza pandemic preparedness planning</article-title>
.
<source>Influenza Other Resp</source>
.
<year>2007</year>
;
<volume>1</volume>
(
<issue>2</issue>
):
<fpage>43</fpage>
<lpage>54</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kerkhove</surname>
<given-names>MDV</given-names>
</name>
,
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
.
<article-title>Epidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic</article-title>
.
<source>Bull World Health Organ</source>
.
<year>2012</year>
;
<volume>90</volume>
(
<issue>4</issue>
):
<fpage>306</fpage>
<lpage>310</lpage>
.
<pub-id pub-id-type="doi">10.2471/BLT.11.097949</pub-id>
<pub-id pub-id-type="pmid">22511828</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fox</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Kilbourne</surname>
<given-names>ED</given-names>
</name>
.
<article-title>Epidemiology of Influenza: Summary of Influenza Workshop IV</article-title>
.
<source>J Infect Dis</source>
.
<year>1973</year>
;
<volume>128</volume>
:
<fpage>361</fpage>
<lpage>386</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Elveback</surname>
<given-names>LR</given-names>
</name>
,
<name>
<surname>Fox</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Ackerman</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Langworthy</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Boyd</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gatewood</surname>
<given-names>L</given-names>
</name>
.
<article-title>An influenza simulation model for immunization studies</article-title>
.
<source>Am J Epidemiol</source>
.
<year>1976</year>
;
<volume>103</volume>
(
<issue>2</issue>
):
<fpage>52</fpage>
<lpage>65</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hanage</surname>
<given-names>WP</given-names>
</name>
,
<name>
<surname>Van Kerkhove</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>Hollingsworth</surname>
<given-names>TD</given-names>
</name>
,
<etal>et al</etal>
<article-title>Pandemic potential of a strain of influenza A (H1N1): Early findings</article-title>
.
<source>Science</source>
.
<year>2009</year>
;
<volume>324</volume>
(
<issue>5934</issue>
):
<fpage>1557</fpage>
<lpage>1561</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1176062</pub-id>
<pub-id pub-id-type="pmid">19433588</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Sugimoto</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Halloran</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Basta</surname>
<given-names>NE</given-names>
</name>
,
<name>
<surname>Chao</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Matrajt</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>The transmissibility and control of pandemic influenza A (H1N1) virus</article-title>
.
<source>Science</source>
.
<year>2009</year>
;
<volume>326</volume>
(
<issue>5953</issue>
):
<fpage>729</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1177373</pub-id>
<pub-id pub-id-type="pmid">19745114</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
,
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Meeyai</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Strategies for containing an emerging influenza pandemic in Southeast Asia</article-title>
.
<source>Nature</source>
.
<year>2005</year>
;
<volume>437</volume>
:
<fpage>209</fpage>
<pub-id pub-id-type="doi">10.1038/nature04017</pub-id>
<pub-id pub-id-type="pmid">16079797</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
</name>
,
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ungchusak</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Hanshaoworakul</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
,
<etal>et al</etal>
<article-title>Containing pandemic influenza at the source</article-title>
.
<source>Science</source>
.
<year>2005</year>
;
<volume>309</volume>
(
<issue>5737</issue>
):
<fpage>1083</fpage>
<lpage>1087</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1115717</pub-id>
<pub-id pub-id-type="pmid">16079251</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Wood</surname>
<given-names>JG</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs</article-title>
.
<source>PLoS ONE</source>
.
<year>2008</year>
;
<volume>3</volume>
(
<issue>6</issue>
):
<fpage>1</fpage>
<lpage>10</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic</article-title>
.
<source>Math Biosci</source>
.
<year>2007</year>
;
<volume>209</volume>
(
<issue>2</issue>
):
<fpage>336</fpage>
<lpage>360</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mbs.2007.02.003</pub-id>
<pub-id pub-id-type="pmid">17416393</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moss</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>Diagnosis and antiviral intervention strategies for mitigating an influenza epidemic</article-title>
.
<source>PLoS ONE</source>
.
<year>2011</year>
;
<volume>6</volume>
(
<issue>2</issue>
):
<fpage>1</fpage>
<lpage>10</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moss</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Hurt</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>Reducing disease burden in an influenza pandemic by targeted delivery of neuraminidase inhibitors: mathematical models in the Australian context</article-title>
.
<source>BMC Infect Dis</source>
.
<year>2016</year>
;
<volume>16</volume>
(
<issue>1</issue>
):
<fpage>552</fpage>
<pub-id pub-id-type="doi">10.1186/s12879-016-1866-7</pub-id>
<pub-id pub-id-type="pmid">27724915</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Moss</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>A decision support tool for evaluating the impact of a diagnostic capacity and antiviral-delivery constrained intervention strategy on an influenza pandemic</article-title>
.
<source>Influenza Other Resp</source>
.
<year>2011</year>
;
<volume>5</volume>
(
<issue>Suppl. 1</issue>
):
<fpage>202</fpage>
<lpage>229</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bauch</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Lloyd-Smith</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Coffee</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Galvani</surname>
<given-names>A</given-names>
</name>
.
<article-title>Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future</article-title>
.
<source>Epidemiology</source>
.
<year>2005</year>
;
<volume>16</volume>
(
<issue>6</issue>
):
<fpage>791</fpage>
<lpage>801</lpage>
.
<pub-id pub-id-type="doi">10.1097/01.ede.0000181633.80269.4c</pub-id>
<pub-id pub-id-type="pmid">16222170</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chretien</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>George</surname>
<given-names>DB</given-names>
</name>
.
<article-title>Mathematical modeling of the West Africa Ebola epidemic</article-title>
.
<source>eLife</source>
.
<year>2015</year>
;
<volume>4</volume>
:
<fpage>e09186</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.09186</pub-id>
<pub-id pub-id-type="pmid">26646185</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nicoll</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Karcher</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Penttinen</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Hegermann-Lindencrone</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Villanueva</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Developing pandemic preparedness in Europe in the 21st century: experience, evolution and next steps</article-title>
.
<source>Bull World Health Organ</source>
.
<year>2012</year>
;
<volume>90</volume>
:
<fpage>311</fpage>
<lpage>317</lpage>
.
<pub-id pub-id-type="doi">10.2471/BLT.11.097972</pub-id>
<pub-id pub-id-type="pmid">22511829</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Parada</surname>
<given-names>LV</given-names>
</name>
.
<article-title>Public health: Life lessons</article-title>
.
<source>Nature</source>
.
<year>2011</year>
;
<volume>480</volume>
:
<fpage>S11</fpage>
<pub-id pub-id-type="doi">10.1038/480S11a</pub-id>
<pub-id pub-id-type="pmid">22158294</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bennett</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Carney</surname>
<given-names>T</given-names>
</name>
.
<article-title>Public health emergencies of international concern: global, regional, and local responses to risk</article-title>
.
<source>Med Law Rev</source>
.
<year>2017</year>
;
<volume>25</volume>
(
<issue>2</issue>
):
<fpage>223</fpage>
<lpage>239</lpage>
.
<pub-id pub-id-type="doi">10.1093/medlaw/fwx004</pub-id>
<pub-id pub-id-type="pmid">28379440</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>News</surname>
<given-names>Nature</given-names>
</name>
.
<article-title>Pandemic flu: from the front lines</article-title>
.
<source>Nature</source>
.
<year>2009</year>
;
<volume>461</volume>
:
<fpage>20</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1038/461020a</pub-id>
<pub-id pub-id-type="pmid">19727174</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref024">
<label>24</label>
<mixed-citation publication-type="other">World Health Organization. Pandemic Influenza Risk Management: A WHO guide to inform and harmonize national and international pandemic preparedness and response; Geneva, 2017 May.
<ext-link ext-link-type="uri" xlink:href="https://apps.who.int/iris/handle/10665/259893">https://apps.who.int/iris/handle/10665/259893</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref025">
<label>25</label>
<mixed-citation publication-type="other">US Department of Health and Human Services. Pandemic Influenza Plan 2017 Update; 2017 June [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="https://www.cdc.gov/flu/pandemic-resources">https://www.cdc.gov/flu/pandemic-resources</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref026">
<label>26</label>
<mixed-citation publication-type="other">Public Health England. Pandemic Influenza Response Plan; London, 2014 Aug [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="https://www.gov.uk/government/publications/pandemic-influenza-response-plan">https://www.gov.uk/government/publications/pandemic-influenza-response-plan</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref027">
<label>27</label>
<mixed-citation publication-type="other">Australian Government Department of Health. Australian Health Management Plan for Pandemic Influenza. Canberra; 2014 Aug [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm">https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Glass</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Mercer</surname>
<given-names>GN</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
.
<article-title>Pandemic controllability: a concept to guide a proportionate and flexible operational response to future influenza pandemics</article-title>
.
<source>J Public Health</source>
.
<year>2014</year>
;
<volume>36</volume>
(
<issue>1</issue>
):
<fpage>5</fpage>
<lpage>12</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Finelli</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Heffernan</surname>
<given-names>RT</given-names>
</name>
,
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
,
<name>
<surname>Redd</surname>
<given-names>SC</given-names>
</name>
.
<article-title>Improving the Evidence Base for Decision Making During a Pandemic: The Example of 2009 Influenza A/H1N1</article-title>
.
<source>Biosecur Bioterror</source>
.
<year>2011</year>
;
<volume>9</volume>
(
<issue>2</issue>
):
<fpage>89</fpage>
<lpage>115</lpage>
.
<pub-id pub-id-type="doi">10.1089/bsp.2011.0007</pub-id>
<pub-id pub-id-type="pmid">21612363</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref030">
<label>30</label>
<mixed-citation publication-type="book">
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Santillana</surname>
<given-names>M</given-names>
</name>
.
<chapter-title>Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming Catastrophic</chapter-title>
In:
<name>
<surname>Inglesby</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Adalja</surname>
<given-names>A</given-names>
</name>
, editors.
<source>Global Catastrophic Biological Risks. Current Topics in Microbiology and Immunology</source>
.
<publisher-loc>Berlin, Heidelberg</publisher-loc>
:
<publisher-name>Springer</publisher-name>
;
<year>2019</year>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Polonsky</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Baidjoe</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kamvar</surname>
<given-names>ZN</given-names>
</name>
,
<name>
<surname>Cori</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Durski</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Edmunds</surname>
<given-names>WJW</given-names>
</name>
,
<etal>et al</etal>
<article-title>Outbreak analytics: a developing data science for informing the response to emerging pathogens</article-title>
.
<source>Phil Trans R Soc B</source>
.
<year>2019</year>
;
<volume>374</volume>
:
<fpage>20180276</fpage>
<pub-id pub-id-type="doi">10.1098/rstb.2018.0276</pub-id>
<pub-id pub-id-type="pmid">31104603</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Black</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Geard</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Ross</surname>
<given-names>JV</given-names>
</name>
.
<article-title>Characterising pandemic severity and transmissibility from data collected during first few hundred studies</article-title>
.
<source>Epidemics</source>
.
<year>2017</year>
;
<volume>19</volume>
:
<fpage>61</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2017.01.004</pub-id>
<pub-id pub-id-type="pmid">28189386</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref033">
<label>33</label>
<mixed-citation publication-type="other">World Health Organization. Global surveillance during an influenza pandemic; Geneva: 2009 Apr [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/csr/disease/swineflu/global_pandemic_influenza_surveilance_apr09.pdf">https://www.who.int/csr/disease/swineflu/global_pandemic_influenza_surveilance_apr09.pdf</ext-link>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Walker</surname>
<given-names>JN</given-names>
</name>
,
<name>
<surname>Ross</surname>
<given-names>JV</given-names>
</name>
,
<name>
<surname>Black</surname>
<given-names>AJ</given-names>
</name>
.
<article-title>Inference of epidemiological parameters from household stratified data</article-title>
.
<source>PLoS ONE</source>
.
<year>2017</year>
;
<volume>12</volume>
(
<issue>10</issue>
):
<fpage>1</fpage>
<lpage>21</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moss</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Fielding</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Franklin</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Stephens</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Dawson</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
<article-title>Epidemic forecasts as a tool for public health: interpretation and (re)calibration</article-title>
.
<source>Aust NZ J Publ Heal</source>
.
<year>2018</year>
;
<volume>42</volume>
(
<issue>1</issue>
):
<fpage>69</fpage>
<lpage>76</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doms</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Kramer</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Shaman</surname>
<given-names>J</given-names>
</name>
.
<article-title>Assessing the use of influenza forecasts and epidemiological modeling in public health decision making in the United States</article-title>
.
<source>Sci Rep</source>
.
<year>2018</year>
;
<volume>8</volume>
(
<issue>1</issue>
):
<fpage>12406</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-30378-w</pub-id>
<pub-id pub-id-type="pmid">30120267</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yamana</surname>
<given-names>TK</given-names>
</name>
,
<name>
<surname>Kandula</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Shaman</surname>
<given-names>J</given-names>
</name>
.
<article-title>Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States</article-title>
.
<source>PLoS Comput Biol</source>
.
<year>2017</year>
;
<volume>13</volume>
(
<issue>11</issue>
):
<fpage>1</fpage>
<lpage>17</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Biggerstaff</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Johansson</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Alper</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Brooks</surname>
<given-names>LC</given-names>
</name>
,
<name>
<surname>Chakraborty</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Farrow</surname>
<given-names>DC</given-names>
</name>
,
<etal>et al</etal>
<article-title>Results from the second year of a collaborative effort to forecast influenza seasons in the United States</article-title>
.
<source>Epidemics</source>
.
<year>2018</year>
;
<volume>24</volume>
:
<fpage>26</fpage>
<lpage>33</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2018.02.003</pub-id>
<pub-id pub-id-type="pmid">29506911</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Gaffey</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ajelli</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Fumanelli</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Merler</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>The RAPIDD ebola forecasting challenge: synthesis and lessons learnt</article-title>
.
<source>Epidemics</source>
.
<year>2018</year>
;
<volume>22</volume>
:
<fpage>13</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2017.08.002</pub-id>
<pub-id pub-id-type="pmid">28958414</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
,
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Cajka</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Cooley</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
.
<article-title>Strategies for mitigating an influenza pandemic</article-title>
.
<source>Nature</source>
.
<year>2006</year>
;
<volume>442</volume>
(
<issue>7101</issue>
):
<fpage>448</fpage>
<lpage>452</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature04795</pub-id>
<pub-id pub-id-type="pmid">16642006</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Araz</surname>
<given-names>OM</given-names>
</name>
,
<name>
<surname>Damien</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Paltiel</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Van De Geijn</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Galvani</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Simulating school closure policies for cost effective pandemic decision making</article-title>
.
<source>BMC Public Health</source>
.
<year>2012</year>
;
<volume>12</volume>
(
<issue>1</issue>
):
<fpage>1</fpage>
.
<pub-id pub-id-type="pmid">22214479</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Khazeni</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Hutton</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Garber</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Owens</surname>
<given-names>DK</given-names>
</name>
.
<article-title>Effectiveness and cost-effectiveness of expanded antiviral prophylaxis and adjuvanted vaccination strategies for the next influenza pandemic</article-title>
.
<source>Ann Intern Med</source>
.
<year>2009</year>
;
<volume>151</volume>
(
<issue>12</issue>
):
<fpage>840</fpage>
<lpage>853</lpage>
.
<pub-id pub-id-type="doi">10.7326/0003-4819-151-12-200912150-00156</pub-id>
<pub-id pub-id-type="pmid">20008760</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morgan</surname>
<given-names>O</given-names>
</name>
.
<article-title>How decision makers can use quantitative approaches to guide outbreak responses</article-title>
.
<source>Phil Trans R Soc B</source>
.
<year>2019</year>
;
<volume>374</volume>
:
<fpage>20180365</fpage>
<pub-id pub-id-type="doi">10.1098/rstb.2018.0365</pub-id>
<pub-id pub-id-type="pmid">31104605</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rivers</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Chretien</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Pavlin</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Woodward</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Brett-Major</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Using “outbreak science” to strengthen the use of models during epidemics</article-title>
.
<source>Nat Commun</source>
.
<year>2019</year>
;
<volume>10</volume>
(
<issue>1</issue>
):
<fpage>3102</fpage>
<pub-id pub-id-type="doi">10.1038/s41467-019-11067-2</pub-id>
<pub-id pub-id-type="pmid">31308372</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Boneh</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Weymouth</surname>
<given-names>PN</given-names>
</name>
,
<name>
<surname>Potts</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Bally</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nicholson</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Korb</surname>
<given-names>KB</given-names>
</name>
.
<article-title>Fog forecasting for Melbourne Airport using a Bayesian decision network</article-title>
.
<source>Weather Forecast</source>
.
<year>2015</year>
;
<volume>30</volume>
:
<fpage>1218</fpage>
<lpage>1232</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cheng</surname>
<given-names>MH</given-names>
</name>
,
<name>
<surname>Beck</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Heaton</surname>
<given-names>TH</given-names>
</name>
.
<article-title>An engineering application of earthquake early warning: ePAD-based decision framework for elevator control</article-title>
.
<source>J Struct Eng</source>
.
<year>2016</year>
;
<volume>142</volume>
(
<issue>1</issue>
):
<fpage>04015092</fpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dunn</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Calkin</surname>
<given-names>DE</given-names>
</name>
.
<article-title>A framework for developing safe and effective large-fire response in a new fire management paradigm</article-title>
.
<source>Forest Ecol Manag</source>
.
<year>2017</year>
;
<volume>404</volume>
:
<fpage>184</fpage>
<lpage>196</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ge</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Mourits</surname>
<given-names>MCM</given-names>
</name>
,
<name>
<surname>Kristensen</surname>
<given-names>AR</given-names>
</name>
,
<name>
<surname>Huirne</surname>
<given-names>RBM</given-names>
</name>
.
<article-title>A modelling approach to support dynamic decision-making in the control of FMD epidemics</article-title>
.
<source>Prev Vet Med</source>
.
<year>2010</year>
;
<volume>95</volume>
(
<issue>3</issue>
):
<fpage>167</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="pmid">20471708</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shea</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Tildesley</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Runge</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Fonnesbeck</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Ferrari</surname>
<given-names>MJ</given-names>
</name>
.
<article-title>Adaptive management and the value of information: learning via intervention in epidemiology</article-title>
.
<source>PLoS Biol</source>
.
<year>2014</year>
;
<volume>12</volume>
(
<issue>10</issue>
):
<fpage>1</fpage>
<lpage>11</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Probert</surname>
<given-names>WJM</given-names>
</name>
,
<name>
<surname>Shea</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Fonnesbeck</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Runge</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>TE</given-names>
</name>
,
<name>
<surname>Dürr</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Decision-making for foot-and-mouth disease control: objectives matter</article-title>
.
<source>Epidemics</source>
.
<year>2016</year>
;
<volume>15</volume>
:
<fpage>10</fpage>
<lpage>19</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2015.11.002</pub-id>
<pub-id pub-id-type="pmid">27266845</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref051">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Webb</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Ferrari</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lindström</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Dürr</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Garner</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
<article-title>Ensemble modelling and structured decision-making to support emergency disease management</article-title>
.
<source>Prev Vet Med</source>
.
<year>2017</year>
;
<volume>138</volume>
:
<fpage>124</fpage>
<lpage>133</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.prevetmed.2017.01.003</pub-id>
<pub-id pub-id-type="pmid">28237227</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yaesoubi</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Cohen</surname>
<given-names>T</given-names>
</name>
.
<article-title>Identifying cost-effective dynamic policies to control epidemics</article-title>
.
<source>Stat Med</source>
.
<year>2016</year>
;
<volume>35</volume>
(
<issue>28</issue>
):
<fpage>5189</fpage>
<lpage>5209</lpage>
.
<pub-id pub-id-type="doi">10.1002/sim.7047</pub-id>
<pub-id pub-id-type="pmid">27449759</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref053">
<label>53</label>
<mixed-citation publication-type="other">Australian Government Department of Health and Ageing. Antivirals Evidence Summary; Canberra, 2014 [cited 2019 Dec 5].
<ext-link ext-link-type="uri" xlink:href="https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm#comm-reports">https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-ahmppi.htm#comm-reports</ext-link>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Nolan</surname>
<given-names>TM</given-names>
</name>
.
<article-title>Modelling strategic use of the national antiviral stockpile during the CONTAIN and SUSTAIN phases of an Australian pandemic influenza response</article-title>
.
<source>Aust NZ J Publ Heal</source>
.
<year>2010</year>
;
<volume>34</volume>
(
<issue>2</issue>
):
<fpage>113</fpage>
<lpage>119</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ibuka</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Chapman</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Meyers</surname>
<given-names>LA</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Galvani</surname>
<given-names>AP</given-names>
</name>
.
<article-title>The dynamics of risk perceptions and precautionary behavior in response to 2009 (H1N1) pandemic influenza</article-title>
.
<source>BMC Infect Dis</source>
.
<year>2010</year>
;
<volume>10</volume>
(
<issue>1</issue>
):
<fpage>296</fpage>
.
<pub-id pub-id-type="pmid">20946662</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Davis</surname>
<given-names>MDM</given-names>
</name>
,
<name>
<surname>Stephenson</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Lohm</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Waller</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Flowers</surname>
<given-names>P</given-names>
</name>
.
<article-title>Beyond resistance: social factors in the general public response to pandemic influenza</article-title>
.
<source>BMC Public Health</source>
.
<year>2015</year>
;
<volume>15</volume>
(
<issue>1</issue>
):
<fpage>436</fpage>
.
<pub-id pub-id-type="pmid">25926035</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Funk</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bansal</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bauch</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Eames</surname>
<given-names>KTD</given-names>
</name>
,
<name>
<surname>Edmunds</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Galvani</surname>
<given-names>AP</given-names>
</name>
,
<etal>et al</etal>
<article-title>Nine challenges in incorporating the dynamics of behaviour in infectious diseases models</article-title>
.
<source>Epidemics</source>
.
<year>2015</year>
;
<volume>10</volume>
:
<fpage>21</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2014.09.005</pub-id>
<pub-id pub-id-type="pmid">25843377</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>McVernon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Mason</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Petrony</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Nathan</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>LaMontagne</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Bentley</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
<article-title>Recommendations for and compliance with social restrictions during implementation of school closures in the early phase of the influenza A (H1N1) 2009 outbreak in Melbourne, Australia</article-title>
.
<source>BMC Infect Dis</source>
.
<year>2011</year>
;
<volume>11</volume>
:
<fpage>257</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2334-11-257</pub-id>
<pub-id pub-id-type="pmid">21958428</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>DeBruin</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Liaschenko</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Marshall</surname>
<given-names>MF</given-names>
</name>
.
<article-title>Social justice in pandemic preparedness</article-title>
.
<source>Am J Public Health</source>
.
<year>2012</year>
;
<volume>102</volume>
(
<issue>4</issue>
):
<fpage>586</fpage>
<lpage>591</lpage>
.
<pub-id pub-id-type="doi">10.2105/AJPH.2011.300483</pub-id>
<pub-id pub-id-type="pmid">22397337</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref060">
<label>60</label>
<mixed-citation publication-type="book">
<name>
<surname>Gregory</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Failing</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Harstone</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>McDaniels</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ohlson</surname>
<given-names>D</given-names>
</name>
.
<source>Structured decision making: a practical guide to environmental management choices</source>
.
<publisher-loc>Oxford, United Kingdom</publisher-loc>
:
<publisher-name>Wiley-Blackwell</publisher-name>
;
<year>2012</year>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Klein</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Jupiter</surname>
<given-names>SD</given-names>
</name>
,
<name>
<surname>Possingham</surname>
<given-names>HP</given-names>
</name>
.
<article-title>Setting conservation priorities in Fiji: decision science versus additive scoring systems</article-title>
.
<source>Mar Policy</source>
.
<year>2014</year>
;
<volume>48</volume>
:
<fpage>204</fpage>
<lpage>205</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref062">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Marcot</surname>
<given-names>BG</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>MP</given-names>
</name>
,
<name>
<surname>Runge</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Thompson</surname>
<given-names>FR</given-names>
</name>
,
<name>
<surname>McNulty</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cleaves</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Recent advances in applying decision science to managing national forests</article-title>
.
<source>Forest Ecol Manag</source>
.
<year>2012</year>
;
<volume>285</volume>
:
<fpage>123</fpage>
<lpage>132</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref063">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moss</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Zarebski</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Dawson</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Franklin</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Birrell</surname>
<given-names>FA</given-names>
</name>
,
<name>
<surname>McCaw</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Anatomy of a seasonal influenza epidemic forecast</article-title>
.
<source>Commun Dis Intell</source>
.
<year>2019</year>
;
<volume>43</volume>
:
<fpage>1</fpage>
<lpage>14</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref064">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Fenimore</surname>
<given-names>PW</given-names>
</name>
,
<name>
<surname>Castillo-Garsow</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Castillo-chavez</surname>
<given-names>C</given-names>
</name>
.
<article-title>SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism</article-title>
.
<source>J Theor Biol</source>
.
<year>2003</year>
;
<volume>224</volume>
:
<fpage>1</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0022-5193(03)00228-5</pub-id>
<pub-id pub-id-type="pmid">12900200</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref065">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gumel</surname>
<given-names>AB</given-names>
</name>
,
<name>
<surname>Ruan</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Day</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Watmough</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Brauer</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Van Den Driessche</surname>
<given-names>P</given-names>
</name>
,
<etal>et al</etal>
<article-title>Modelling strategies for controlling SARS outbreaks</article-title>
.
<source>Proc Royal Soc B</source>
.
<year>2004</year>
;
<volume>271</volume>
:
<fpage>2223</fpage>
<lpage>2232</lpage>
.</mixed-citation>
</ref>
<ref id="pmed.1003018.ref066">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Day</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Madras</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Gumel</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
.
<article-title>When is quarantine a useful control strategy for emerging infectious diseases?</article-title>
<source>Am J Epidemiol</source>
.
<year>2006</year>
;
<volume>163</volume>
(
<issue>5</issue>
):
<fpage>479</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="doi">10.1093/aje/kwj056</pub-id>
<pub-id pub-id-type="pmid">16421244</pub-id>
</mixed-citation>
</ref>
<ref id="pmed.1003018.ref067">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wong-Parodi</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Krishnamurti</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Davis</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Schwartz</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Fischhoff</surname>
<given-names>B</given-names>
</name>
.
<article-title>A decision science approach for integrating social science in climate and energy solutions</article-title>
.
<source>Nat Clim Change</source>
.
<year>2016</year>
;
<volume>6</volume>
:
<fpage>563</fpage>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000516 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000516 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6952100
   |texte=   Infectious disease pandemic planning and response: Incorporating decision analysis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31917786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021