Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000181 ( Pmc/Corpus ); précédent : 0001809; suivant : 0001820 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection</title>
<author>
<name sortKey="Lin, Sue Jane" sort="Lin, Sue Jane" uniqKey="Lin S" first="Sue-Jane" last="Lin">Sue-Jane Lin</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lo, Ming" sort="Lo, Ming" uniqKey="Lo M" first="Ming" last="Lo">Ming Lo</name>
<affiliation>
<nlm:aff id="Aff4">Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Rei Lin" sort="Kuo, Rei Lin" uniqKey="Kuo R" first="Rei-Lin" last="Kuo">Rei-Lin Kuo</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shih, Shin Ru" sort="Shih, Shin Ru" uniqKey="Shih S" first="Shin-Ru" last="Shih">Shin-Ru Shih</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ojcius, David M" sort="Ojcius, David M" uniqKey="Ojcius D" first="David M" last="Ojcius">David M. Ojcius</name>
<affiliation>
<nlm:aff id="Aff5">Department of Molecular Cell Biology, Health Sciences Research Institute, University of California, Merced, CA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jean" sort="Lu, Jean" uniqKey="Lu J" first="Jean" last="Lu">Jean Lu</name>
<affiliation>
<nlm:aff id="Aff6">Genomics Research Center, Academia Sinica, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Chien Kuo" sort="Lee, Chien Kuo" uniqKey="Lee C" first="Chien-Kuo" last="Lee">Chien-Kuo Lee</name>
<affiliation>
<nlm:aff id="Aff7">Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hui Chen" sort="Chen, Hui Chen" uniqKey="Chen H" first="Hui-Chen" last="Chen">Hui-Chen Chen</name>
<affiliation>
<nlm:aff id="Aff8">Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Meei Yun" sort="Lin, Meei Yun" uniqKey="Lin M" first="Meei Yun" last="Lin">Meei Yun Lin</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leu, Chuen Miin" sort="Leu, Chuen Miin" uniqKey="Leu C" first="Chuen-Miin" last="Leu">Chuen-Miin Leu</name>
<affiliation>
<nlm:aff id="Aff9">Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chia Ni" sort="Lin, Chia Ni" uniqKey="Lin C" first="Chia-Ni" last="Lin">Chia-Ni Lin</name>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff10">Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Ching Hwa" sort="Tsai, Ching Hwa" uniqKey="Tsai C" first="Ching-Hwa" last="Tsai">Ching-Hwa Tsai</name>
<affiliation>
<nlm:aff id="Aff4">Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25407417</idno>
<idno type="pmc">4243311</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243311</idno>
<idno type="RBID">PMC:4243311</idno>
<idno type="doi">10.1186/s12929-014-0099-6</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection</title>
<author>
<name sortKey="Lin, Sue Jane" sort="Lin, Sue Jane" uniqKey="Lin S" first="Sue-Jane" last="Lin">Sue-Jane Lin</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lo, Ming" sort="Lo, Ming" uniqKey="Lo M" first="Ming" last="Lo">Ming Lo</name>
<affiliation>
<nlm:aff id="Aff4">Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Rei Lin" sort="Kuo, Rei Lin" uniqKey="Kuo R" first="Rei-Lin" last="Kuo">Rei-Lin Kuo</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shih, Shin Ru" sort="Shih, Shin Ru" uniqKey="Shih S" first="Shin-Ru" last="Shih">Shin-Ru Shih</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ojcius, David M" sort="Ojcius, David M" uniqKey="Ojcius D" first="David M" last="Ojcius">David M. Ojcius</name>
<affiliation>
<nlm:aff id="Aff5">Department of Molecular Cell Biology, Health Sciences Research Institute, University of California, Merced, CA USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jean" sort="Lu, Jean" uniqKey="Lu J" first="Jean" last="Lu">Jean Lu</name>
<affiliation>
<nlm:aff id="Aff6">Genomics Research Center, Academia Sinica, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Chien Kuo" sort="Lee, Chien Kuo" uniqKey="Lee C" first="Chien-Kuo" last="Lee">Chien-Kuo Lee</name>
<affiliation>
<nlm:aff id="Aff7">Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hui Chen" sort="Chen, Hui Chen" uniqKey="Chen H" first="Hui-Chen" last="Chen">Hui-Chen Chen</name>
<affiliation>
<nlm:aff id="Aff8">Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Meei Yun" sort="Lin, Meei Yun" uniqKey="Lin M" first="Meei Yun" last="Lin">Meei Yun Lin</name>
<affiliation>
<nlm:aff id="Aff1">Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leu, Chuen Miin" sort="Leu, Chuen Miin" uniqKey="Leu C" first="Chuen-Miin" last="Leu">Chuen-Miin Leu</name>
<affiliation>
<nlm:aff id="Aff9">Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Chia Ni" sort="Lin, Chia Ni" uniqKey="Lin C" first="Chia-Ni" last="Lin">Chia-Ni Lin</name>
<affiliation>
<nlm:aff id="Aff3">Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff10">Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Ching Hwa" sort="Tsai, Ching Hwa" uniqKey="Tsai C" first="Ching-Hwa" last="Tsai">Ching-Hwa Tsai</name>
<affiliation>
<nlm:aff id="Aff4">Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Biomedical Science</title>
<idno type="ISSN">1021-7770</idno>
<idno type="eISSN">1423-0127</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection.</p>
</sec>
<sec>
<title>Results</title>
<p>We established H1N1 IAV-infected mouse models using three viruses of varying pathogenicity and noted the accumulation of a defined Gr1 + CD11b + myeloid population correlating with the pathogenicity. Herein, we reported that CCR2+ inflammatory monocytes are the major cell compartments in this population. Of note, impaired clearance of the high pathogenicity virus prolonged IFN expression, leading to CCR2+ inflammatory monocytes amplifying their own recruitment via an interferon-α/β receptor 1 (IFNAR1)-triggered chemokine loop. Blockage of IFNAR1-triggered signaling or inhibition of viral replication by Oseltamivir significantly suppresses the expression of CCR2 ligands and reduced the influx of CCR2+ inflammatory monocytes. Furthermore, trafficking of CCR2+ inflammatory monocytes from the bone marrow to the lung was evidenced by a CCR2-dependent chemotaxis. Importantly, leukocyte infiltration, cytokine storm and expression of iNOS were significantly reduced in
<italic>CCR2−/−</italic>
mice lacking infiltrating CCR2+ inflammatory monocytes, enhancing the survival of the infected mice.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Our results indicated that uncontrolled viral replication leads to excessive production of inflammatory innate immune responses by accumulating CCR2+ inflammatory monocytes, which contribute to the fatal outcomes of high pathogenicity virus infections.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham Rowe, D" uniqKey="Graham Rowe D">D Graham-Rowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taubenberger, Jk" uniqKey="Taubenberger J">JK Taubenberger</name>
</author>
<author>
<name sortKey="Kash, Jc" uniqKey="Kash J">JC Kash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lam, Tt" uniqKey="Lam T">TT Lam</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Zhou, B" uniqKey="Zhou B">B Zhou</name>
</author>
<author>
<name sortKey="Duan, L" uniqKey="Duan L">L Duan</name>
</author>
<author>
<name sortKey="Cheung, Cl" uniqKey="Cheung C">CL Cheung</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C Ma</name>
</author>
<author>
<name sortKey="Lycett, Sj" uniqKey="Lycett S">SJ Lycett</name>
</author>
<author>
<name sortKey="Leung, Cy" uniqKey="Leung C">CY Leung</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Hong, W" uniqKey="Hong W">W Hong</name>
</author>
<author>
<name sortKey="Chai, Y" uniqKey="Chai Y">Y Chai</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Liang, H" uniqKey="Liang H">H Liang</name>
</author>
<author>
<name sortKey="Ou, Z" uniqKey="Ou Z">Z Ou</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Farooqui, A" uniqKey="Farooqui A">A Farooqui</name>
</author>
<author>
<name sortKey="Kelvin, Dj" uniqKey="Kelvin D">DJ Kelvin</name>
</author>
<author>
<name sortKey="Poon, Ll" uniqKey="Poon L">LL Poon</name>
</author>
<author>
<name sortKey="Smith, Dk" uniqKey="Smith D">DK Smith</name>
</author>
<author>
<name sortKey="Pybus, Og" uniqKey="Pybus O">OG Pybus</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
<author>
<name sortKey="Shu, Y" uniqKey="Shu Y">Y Shu</name>
</author>
<author>
<name sortKey="Webster, Rg" uniqKey="Webster R">RG Webster</name>
</author>
<author>
<name sortKey="Webby, Rj" uniqKey="Webby R">RJ Webby</name>
</author>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perrone, La" uniqKey="Perrone L">LA Perrone</name>
</author>
<author>
<name sortKey="Plowden, Jk" uniqKey="Plowden J">JK Plowden</name>
</author>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
<author>
<name sortKey="Katz, Jm" uniqKey="Katz J">JM Katz</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobasa, D" uniqKey="Kobasa D">D Kobasa</name>
</author>
<author>
<name sortKey="Jones, Sm" uniqKey="Jones S">SM Jones</name>
</author>
<author>
<name sortKey="Shinya, K" uniqKey="Shinya K">K Shinya</name>
</author>
<author>
<name sortKey="Kash, Jc" uniqKey="Kash J">JC Kash</name>
</author>
<author>
<name sortKey="Copps, J" uniqKey="Copps J">J Copps</name>
</author>
<author>
<name sortKey="Ebihara, H" uniqKey="Ebihara H">H Ebihara</name>
</author>
<author>
<name sortKey="Hatta, Y" uniqKey="Hatta Y">Y Hatta</name>
</author>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
<author>
<name sortKey="Halfmann, P" uniqKey="Halfmann P">P Halfmann</name>
</author>
<author>
<name sortKey="Hatta, M" uniqKey="Hatta M">M Hatta</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F Feldmann</name>
</author>
<author>
<name sortKey="Alimonti, Jb" uniqKey="Alimonti J">JB Alimonti</name>
</author>
<author>
<name sortKey="Fernando, L" uniqKey="Fernando L">L Fernando</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Katze, Mg" uniqKey="Katze M">MG Katze</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baskin, Cr" uniqKey="Baskin C">CR Baskin</name>
</author>
<author>
<name sortKey="Bielefeldt Ohmann, H" uniqKey="Bielefeldt Ohmann H">H Bielefeldt-Ohmann</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
<author>
<name sortKey="Sabourin, Pj" uniqKey="Sabourin P">PJ Sabourin</name>
</author>
<author>
<name sortKey="Long, Jp" uniqKey="Long J">JP Long</name>
</author>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
<author>
<name sortKey="Tolnay, Ae" uniqKey="Tolnay A">AE Tolnay</name>
</author>
<author>
<name sortKey="Albrecht, R" uniqKey="Albrecht R">R Albrecht</name>
</author>
<author>
<name sortKey="Pyles, Ja" uniqKey="Pyles J">JA Pyles</name>
</author>
<author>
<name sortKey="Olson, Ph" uniqKey="Olson P">PH Olson</name>
</author>
<author>
<name sortKey="Aicher, Ld" uniqKey="Aicher L">LD Aicher</name>
</author>
<author>
<name sortKey="Rosenzweig, Er" uniqKey="Rosenzweig E">ER Rosenzweig</name>
</author>
<author>
<name sortKey="Murali Krishna, K" uniqKey="Murali Krishna K">K Murali-Krishna</name>
</author>
<author>
<name sortKey="Clark, Ea" uniqKey="Clark E">EA Clark</name>
</author>
<author>
<name sortKey="Kotur, Ms" uniqKey="Kotur M">MS Kotur</name>
</author>
<author>
<name sortKey="Fornek, Jl" uniqKey="Fornek J">JL Fornek</name>
</author>
<author>
<name sortKey="Proll, S" uniqKey="Proll S">S Proll</name>
</author>
<author>
<name sortKey="Palermo, Re" uniqKey="Palermo R">RE Palermo</name>
</author>
<author>
<name sortKey="Sabourin, Cl" uniqKey="Sabourin C">CL Sabourin</name>
</author>
<author>
<name sortKey="Katze, Mg" uniqKey="Katze M">MG Katze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salomon, R" uniqKey="Salomon R">R Salomon</name>
</author>
<author>
<name sortKey="Hoffmann, E" uniqKey="Hoffmann E">E Hoffmann</name>
</author>
<author>
<name sortKey="Webster, Rg" uniqKey="Webster R">RG Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perrone, La" uniqKey="Perrone L">LA Perrone</name>
</author>
<author>
<name sortKey="Szretter, Kj" uniqKey="Szretter K">KJ Szretter</name>
</author>
<author>
<name sortKey="Katz, Jm" uniqKey="Katz J">JM Katz</name>
</author>
<author>
<name sortKey="Mizgerd, Jp" uniqKey="Mizgerd J">JP Mizgerd</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Bp" uniqKey="Chen B">BP Chen</name>
</author>
<author>
<name sortKey="Kuziel, Wa" uniqKey="Kuziel W">WA Kuziel</name>
</author>
<author>
<name sortKey="Lane, Te" uniqKey="Lane T">TE Lane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, Jk" uniqKey="Lim J">JK Lim</name>
</author>
<author>
<name sortKey="Obara, Cj" uniqKey="Obara C">CJ Obara</name>
</author>
<author>
<name sortKey="Rivollier, A" uniqKey="Rivollier A">A Rivollier</name>
</author>
<author>
<name sortKey="Pletnev, Ag" uniqKey="Pletnev A">AG Pletnev</name>
</author>
<author>
<name sortKey="Kelsall, Bl" uniqKey="Kelsall B">BL Kelsall</name>
</author>
<author>
<name sortKey="Murphy, Pm" uniqKey="Murphy P">PM Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dawson, Tc" uniqKey="Dawson T">TC Dawson</name>
</author>
<author>
<name sortKey="Beck, Ma" uniqKey="Beck M">MA Beck</name>
</author>
<author>
<name sortKey="Kuziel, Wa" uniqKey="Kuziel W">WA Kuziel</name>
</author>
<author>
<name sortKey="Henderson, F" uniqKey="Henderson F">F Henderson</name>
</author>
<author>
<name sortKey="Maeda, N" uniqKey="Maeda N">N Maeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Kl" uniqKey="Lin K">KL Lin</name>
</author>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y Suzuki</name>
</author>
<author>
<name sortKey="Nakano, H" uniqKey="Nakano H">H Nakano</name>
</author>
<author>
<name sortKey="Ramsburg, E" uniqKey="Ramsburg E">E Ramsburg</name>
</author>
<author>
<name sortKey="Gunn, Md" uniqKey="Gunn M">MD Gunn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iijima, N" uniqKey="Iijima N">N Iijima</name>
</author>
<author>
<name sortKey="Mattei, Lm" uniqKey="Mattei L">LM Mattei</name>
</author>
<author>
<name sortKey="Iwasaki, A" uniqKey="Iwasaki A">A Iwasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daley Bauer, Lp" uniqKey="Daley Bauer L">LP Daley-Bauer</name>
</author>
<author>
<name sortKey="Wynn, Gm" uniqKey="Wynn G">GM Wynn</name>
</author>
<author>
<name sortKey="Mocarski, Es" uniqKey="Mocarski E">ES Mocarski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norris, Ba" uniqKey="Norris B">BA Norris</name>
</author>
<author>
<name sortKey="Uebelhoer, Ls" uniqKey="Uebelhoer L">LS Uebelhoer</name>
</author>
<author>
<name sortKey="Nakaya, Hi" uniqKey="Nakaya H">HI Nakaya</name>
</author>
<author>
<name sortKey="Price, Aa" uniqKey="Price A">AA Price</name>
</author>
<author>
<name sortKey="Grakoui, A" uniqKey="Grakoui A">A Grakoui</name>
</author>
<author>
<name sortKey="Pulendran, B" uniqKey="Pulendran B">B Pulendran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuo, Rl" uniqKey="Kuo R">RL Kuo</name>
</author>
<author>
<name sortKey="Krug, Rm" uniqKey="Krug R">RM Krug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neumann, G" uniqKey="Neumann G">G Neumann</name>
</author>
<author>
<name sortKey="Watanabe, T" uniqKey="Watanabe T">T Watanabe</name>
</author>
<author>
<name sortKey="Ito, H" uniqKey="Ito H">H Ito</name>
</author>
<author>
<name sortKey="Watanabe, S" uniqKey="Watanabe S">S Watanabe</name>
</author>
<author>
<name sortKey="Goto, H" uniqKey="Goto H">H Goto</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
<author>
<name sortKey="Hughes, M" uniqKey="Hughes M">M Hughes</name>
</author>
<author>
<name sortKey="Perez, Dr" uniqKey="Perez D">DR Perez</name>
</author>
<author>
<name sortKey="Donis, R" uniqKey="Donis R">R Donis</name>
</author>
<author>
<name sortKey="Hoffmann, E" uniqKey="Hoffmann E">E Hoffmann</name>
</author>
<author>
<name sortKey="Hobom, G" uniqKey="Hobom G">G Hobom</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manicassamy, B" uniqKey="Manicassamy B">B Manicassamy</name>
</author>
<author>
<name sortKey="Manicassamy, S" uniqKey="Manicassamy S">S Manicassamy</name>
</author>
<author>
<name sortKey="Belicha Villanueva, A" uniqKey="Belicha Villanueva A">A Belicha-Villanueva</name>
</author>
<author>
<name sortKey="Pisanelli, G" uniqKey="Pisanelli G">G Pisanelli</name>
</author>
<author>
<name sortKey="Pulendran, B" uniqKey="Pulendran B">B Pulendran</name>
</author>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babcock, Aa" uniqKey="Babcock A">AA Babcock</name>
</author>
<author>
<name sortKey="Toft Hansen, H" uniqKey="Toft Hansen H">H Toft-Hansen</name>
</author>
<author>
<name sortKey="Owens, T" uniqKey="Owens T">T Owens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, Su" uniqKey="Seo S">SU Seo</name>
</author>
<author>
<name sortKey="Kwon, Hj" uniqKey="Kwon H">HJ Kwon</name>
</author>
<author>
<name sortKey="Ko, Hj" uniqKey="Ko H">HJ Ko</name>
</author>
<author>
<name sortKey="Byun, Yh" uniqKey="Byun Y">YH Byun</name>
</author>
<author>
<name sortKey="Seong, Bl" uniqKey="Seong B">BL Seong</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Kweon, Mn" uniqKey="Kweon M">MN Kweon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Weerd, Na" uniqKey="De Weerd N">NA de Weerd</name>
</author>
<author>
<name sortKey="Vivian, Jp" uniqKey="Vivian J">JP Vivian</name>
</author>
<author>
<name sortKey="Nguyen, Tk" uniqKey="Nguyen T">TK Nguyen</name>
</author>
<author>
<name sortKey="Mangan, Ne" uniqKey="Mangan N">NE Mangan</name>
</author>
<author>
<name sortKey="Gould, Ja" uniqKey="Gould J">JA Gould</name>
</author>
<author>
<name sortKey="Braniff, Sj" uniqKey="Braniff S">SJ Braniff</name>
</author>
<author>
<name sortKey="Zaker Tabrizi, L" uniqKey="Zaker Tabrizi L">L Zaker-Tabrizi</name>
</author>
<author>
<name sortKey="Fung, Ky" uniqKey="Fung K">KY Fung</name>
</author>
<author>
<name sortKey="Forster, Sc" uniqKey="Forster S">SC Forster</name>
</author>
<author>
<name sortKey="Beddoe, T" uniqKey="Beddoe T">T Beddoe</name>
</author>
<author>
<name sortKey="Reid, Hh" uniqKey="Reid H">HH Reid</name>
</author>
<author>
<name sortKey="Rossjohn, J" uniqKey="Rossjohn J">J Rossjohn</name>
</author>
<author>
<name sortKey="Hertzog, Pj" uniqKey="Hertzog P">PJ Hertzog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serbina, Nv" uniqKey="Serbina N">NV Serbina</name>
</author>
<author>
<name sortKey="Pamer, Eg" uniqKey="Pamer E">EG Pamer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsou, Cl" uniqKey="Tsou C">CL Tsou</name>
</author>
<author>
<name sortKey="Peters, W" uniqKey="Peters W">W Peters</name>
</author>
<author>
<name sortKey="Si, Y" uniqKey="Si Y">Y Si</name>
</author>
<author>
<name sortKey="Slaymaker, S" uniqKey="Slaymaker S">S Slaymaker</name>
</author>
<author>
<name sortKey="Aslanian, Am" uniqKey="Aslanian A">AM Aslanian</name>
</author>
<author>
<name sortKey="Weisberg, Sp" uniqKey="Weisberg S">SP Weisberg</name>
</author>
<author>
<name sortKey="Mack, M" uniqKey="Mack M">M Mack</name>
</author>
<author>
<name sortKey="Charo, If" uniqKey="Charo I">IF Charo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karupiah, G" uniqKey="Karupiah G">G Karupiah</name>
</author>
<author>
<name sortKey="Chen, Jh" uniqKey="Chen J">JH Chen</name>
</author>
<author>
<name sortKey="Mahalingam, S" uniqKey="Mahalingam S">S Mahalingam</name>
</author>
<author>
<name sortKey="Nathan, Cf" uniqKey="Nathan C">CF Nathan</name>
</author>
<author>
<name sortKey="Macmicking, Jd" uniqKey="Macmicking J">JD MacMicking</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hofmann, P" uniqKey="Hofmann P">P Hofmann</name>
</author>
<author>
<name sortKey="Sprenger, H" uniqKey="Sprenger H">H Sprenger</name>
</author>
<author>
<name sortKey="Kaufmann, A" uniqKey="Kaufmann A">A Kaufmann</name>
</author>
<author>
<name sortKey="Bender, A" uniqKey="Bender A">A Bender</name>
</author>
<author>
<name sortKey="Hasse, C" uniqKey="Hasse C">C Hasse</name>
</author>
<author>
<name sortKey="Nain, M" uniqKey="Nain M">M Nain</name>
</author>
<author>
<name sortKey="Gemsa, D" uniqKey="Gemsa D">D Gemsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermesh, T" uniqKey="Hermesh T">T Hermesh</name>
</author>
<author>
<name sortKey="Moltedo, B" uniqKey="Moltedo B">B Moltedo</name>
</author>
<author>
<name sortKey="Moran, Tm" uniqKey="Moran T">TM Moran</name>
</author>
<author>
<name sortKey="Lopez, Cb" uniqKey="Lopez C">CB Lopez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, K" uniqKey="Honda K">K Honda</name>
</author>
<author>
<name sortKey="Takaoka, A" uniqKey="Takaoka A">A Takaoka</name>
</author>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gough, Dj" uniqKey="Gough D">DJ Gough</name>
</author>
<author>
<name sortKey="Messina, Nl" uniqKey="Messina N">NL Messina</name>
</author>
<author>
<name sortKey="Clarke, Cj" uniqKey="Clarke C">CJ Clarke</name>
</author>
<author>
<name sortKey="Johnstone, Rw" uniqKey="Johnstone R">RW Johnstone</name>
</author>
<author>
<name sortKey="Levy, De" uniqKey="Levy D">DE Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, T" uniqKey="Watanabe T">T Watanabe</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mok, Ck" uniqKey="Mok C">CK Mok</name>
</author>
<author>
<name sortKey="Lee, Hh" uniqKey="Lee H">HH Lee</name>
</author>
<author>
<name sortKey="Chan, Mc" uniqKey="Chan M">MC Chan</name>
</author>
<author>
<name sortKey="Sia, Sf" uniqKey="Sia S">SF Sia</name>
</author>
<author>
<name sortKey="Lestra, M" uniqKey="Lestra M">M Lestra</name>
</author>
<author>
<name sortKey="Nicholls, Jm" uniqKey="Nicholls J">JM Nicholls</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Peiris, Jm" uniqKey="Peiris J">JM Peiris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shahangian, A" uniqKey="Shahangian A">A Shahangian</name>
</author>
<author>
<name sortKey="Chow, Ek" uniqKey="Chow E">EK Chow</name>
</author>
<author>
<name sortKey="Tian, X" uniqKey="Tian X">X Tian</name>
</author>
<author>
<name sortKey="Kang, Jr" uniqKey="Kang J">JR Kang</name>
</author>
<author>
<name sortKey="Ghaffari, A" uniqKey="Ghaffari A">A Ghaffari</name>
</author>
<author>
<name sortKey="Liu, Sy" uniqKey="Liu S">SY Liu</name>
</author>
<author>
<name sortKey="Belperio, Ja" uniqKey="Belperio J">JA Belperio</name>
</author>
<author>
<name sortKey="Cheng, G" uniqKey="Cheng G">G Cheng</name>
</author>
<author>
<name sortKey="Deng, Jc" uniqKey="Deng J">JC Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wareing, Md" uniqKey="Wareing M">MD Wareing</name>
</author>
<author>
<name sortKey="Lyon, A" uniqKey="Lyon A">A Lyon</name>
</author>
<author>
<name sortKey="Inglis, C" uniqKey="Inglis C">C Inglis</name>
</author>
<author>
<name sortKey="Giannoni, F" uniqKey="Giannoni F">F Giannoni</name>
</author>
<author>
<name sortKey="Charo, I" uniqKey="Charo I">I Charo</name>
</author>
<author>
<name sortKey="Sarawar, Sr" uniqKey="Sarawar S">SR Sarawar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hogner, K" uniqKey="Hogner K">K Hogner</name>
</author>
<author>
<name sortKey="Wolff, T" uniqKey="Wolff T">T Wolff</name>
</author>
<author>
<name sortKey="Pleschka, S" uniqKey="Pleschka S">S Pleschka</name>
</author>
<author>
<name sortKey="Plog, S" uniqKey="Plog S">S Plog</name>
</author>
<author>
<name sortKey="Gruber, Ad" uniqKey="Gruber A">AD Gruber</name>
</author>
<author>
<name sortKey="Kalinke, U" uniqKey="Kalinke U">U Kalinke</name>
</author>
<author>
<name sortKey="Walmrath, Hd" uniqKey="Walmrath H">HD Walmrath</name>
</author>
<author>
<name sortKey="Bodner, J" uniqKey="Bodner J">J Bodner</name>
</author>
<author>
<name sortKey="Gattenlohner, S" uniqKey="Gattenlohner S">S Gattenlohner</name>
</author>
<author>
<name sortKey="Lewe Schlosser, P" uniqKey="Lewe Schlosser P">P Lewe-Schlosser</name>
</author>
<author>
<name sortKey="Matrosovich, M" uniqKey="Matrosovich M">M Matrosovich</name>
</author>
<author>
<name sortKey="Seeger, W" uniqKey="Seeger W">W Seeger</name>
</author>
<author>
<name sortKey="Lohmeyer, J" uniqKey="Lohmeyer J">J Lohmeyer</name>
</author>
<author>
<name sortKey="Herold, S" uniqKey="Herold S">S Herold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujikura, D" uniqKey="Fujikura D">D Fujikura</name>
</author>
<author>
<name sortKey="Chiba, S" uniqKey="Chiba S">S Chiba</name>
</author>
<author>
<name sortKey="Muramatsu, D" uniqKey="Muramatsu D">D Muramatsu</name>
</author>
<author>
<name sortKey="Kazumata, M" uniqKey="Kazumata M">M Kazumata</name>
</author>
<author>
<name sortKey="Nakayama, Y" uniqKey="Nakayama Y">Y Nakayama</name>
</author>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T Kawai</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Kida, H" uniqKey="Kida H">H Kida</name>
</author>
<author>
<name sortKey="Miyazaki, T" uniqKey="Miyazaki T">T Miyazaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teijaro, Jr" uniqKey="Teijaro J">JR Teijaro</name>
</author>
<author>
<name sortKey="Walsh, Kb" uniqKey="Walsh K">KB Walsh</name>
</author>
<author>
<name sortKey="Cahalan, S" uniqKey="Cahalan S">S Cahalan</name>
</author>
<author>
<name sortKey="Fremgen, Dm" uniqKey="Fremgen D">DM Fremgen</name>
</author>
<author>
<name sortKey="Roberts, E" uniqKey="Roberts E">E Roberts</name>
</author>
<author>
<name sortKey="Scott, F" uniqKey="Scott F">F Scott</name>
</author>
<author>
<name sortKey="Martinborough, E" uniqKey="Martinborough E">E Martinborough</name>
</author>
<author>
<name sortKey="Peach, R" uniqKey="Peach R">R Peach</name>
</author>
<author>
<name sortKey="Oldstone, Mb" uniqKey="Oldstone M">MB Oldstone</name>
</author>
<author>
<name sortKey="Rosen, H" uniqKey="Rosen H">H Rosen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, T" uniqKey="Jia T">T Jia</name>
</author>
<author>
<name sortKey="Leiner, I" uniqKey="Leiner I">I Leiner</name>
</author>
<author>
<name sortKey="Dorothee, G" uniqKey="Dorothee G">G Dorothee</name>
</author>
<author>
<name sortKey="Brandl, K" uniqKey="Brandl K">K Brandl</name>
</author>
<author>
<name sortKey="Pamer, Eg" uniqKey="Pamer E">EG Pamer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ioannidis, I" uniqKey="Ioannidis I">I Ioannidis</name>
</author>
<author>
<name sortKey="Mcnally, B" uniqKey="Mcnally B">B McNally</name>
</author>
<author>
<name sortKey="Willette, M" uniqKey="Willette M">M Willette</name>
</author>
<author>
<name sortKey="Peeples, Me" uniqKey="Peeples M">ME Peeples</name>
</author>
<author>
<name sortKey="Chaussabel, D" uniqKey="Chaussabel D">D Chaussabel</name>
</author>
<author>
<name sortKey="Durbin, Je" uniqKey="Durbin J">JE Durbin</name>
</author>
<author>
<name sortKey="Ramilo, O" uniqKey="Ramilo O">O Ramilo</name>
</author>
<author>
<name sortKey="Mejias, A" uniqKey="Mejias A">A Mejias</name>
</author>
<author>
<name sortKey="Flano, E" uniqKey="Flano E">E Flano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teijaro, Jr" uniqKey="Teijaro J">JR Teijaro</name>
</author>
<author>
<name sortKey="Walsh, Kb" uniqKey="Walsh K">KB Walsh</name>
</author>
<author>
<name sortKey="Rice, S" uniqKey="Rice S">S Rice</name>
</author>
<author>
<name sortKey="Rosen, H" uniqKey="Rosen H">H Rosen</name>
</author>
<author>
<name sortKey="Oldstone, Mb" uniqKey="Oldstone M">MB Oldstone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, T" uniqKey="Jia T">T Jia</name>
</author>
<author>
<name sortKey="Serbina, Nv" uniqKey="Serbina N">NV Serbina</name>
</author>
<author>
<name sortKey="Brandl, K" uniqKey="Brandl K">K Brandl</name>
</author>
<author>
<name sortKey="Zhong, Mx" uniqKey="Zhong M">MX Zhong</name>
</author>
<author>
<name sortKey="Leiner, Im" uniqKey="Leiner I">IM Leiner</name>
</author>
<author>
<name sortKey="Charo, If" uniqKey="Charo I">IF Charo</name>
</author>
<author>
<name sortKey="Pamer, Eg" uniqKey="Pamer E">EG Pamer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helft, J" uniqKey="Helft J">J Helft</name>
</author>
<author>
<name sortKey="Manicassamy, B" uniqKey="Manicassamy B">B Manicassamy</name>
</author>
<author>
<name sortKey="Guermonprez, P" uniqKey="Guermonprez P">P Guermonprez</name>
</author>
<author>
<name sortKey="Hashimoto, D" uniqKey="Hashimoto D">D Hashimoto</name>
</author>
<author>
<name sortKey="Silvin, A" uniqKey="Silvin A">A Silvin</name>
</author>
<author>
<name sortKey="Agudo, J" uniqKey="Agudo J">J Agudo</name>
</author>
<author>
<name sortKey="Brown, Bd" uniqKey="Brown B">BD Brown</name>
</author>
<author>
<name sortKey="Schmolke, M" uniqKey="Schmolke M">M Schmolke</name>
</author>
<author>
<name sortKey="Miller, Jc" uniqKey="Miller J">JC Miller</name>
</author>
<author>
<name sortKey="Leboeuf, M" uniqKey="Leboeuf M">M Leboeuf</name>
</author>
<author>
<name sortKey="Leboeuf, M" uniqKey="Leboeuf M">M Leboeuf</name>
</author>
<author>
<name sortKey="Murphy, Km" uniqKey="Murphy K">KM Murphy</name>
</author>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
<author>
<name sortKey="Merad, M" uniqKey="Merad M">M Merad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, Ik" uniqKey="Pang I">IK Pang</name>
</author>
<author>
<name sortKey="Pillai, Ps" uniqKey="Pillai P">PS Pillai</name>
</author>
<author>
<name sortKey="Iwasaki, A" uniqKey="Iwasaki A">A Iwasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, Jp" uniqKey="Long J">JP Long</name>
</author>
<author>
<name sortKey="Kotur, Ms" uniqKey="Kotur M">MS Kotur</name>
</author>
<author>
<name sortKey="Stark, Gv" uniqKey="Stark G">GV Stark</name>
</author>
<author>
<name sortKey="Warren, Rl" uniqKey="Warren R">RL Warren</name>
</author>
<author>
<name sortKey="Kasoji, M" uniqKey="Kasoji M">M Kasoji</name>
</author>
<author>
<name sortKey="Craft, Jl" uniqKey="Craft J">JL Craft</name>
</author>
<author>
<name sortKey="Albrecht, Ra" uniqKey="Albrecht R">RA Albrecht</name>
</author>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
<author>
<name sortKey="Katze, Mg" uniqKey="Katze M">MG Katze</name>
</author>
<author>
<name sortKey="Waters, Km" uniqKey="Waters K">KM Waters</name>
</author>
<author>
<name sortKey="Vasconcelos, D" uniqKey="Vasconcelos D">D Vasconcelos</name>
</author>
<author>
<name sortKey="Sabourin, Pj" uniqKey="Sabourin P">PJ Sabourin</name>
</author>
<author>
<name sortKey="Bresler, Hs" uniqKey="Bresler H">HS Bresler</name>
</author>
<author>
<name sortKey="Sabourin, Cl" uniqKey="Sabourin C">CL Sabourin</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Biomed Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Biomed. Sci</journal-id>
<journal-title-group>
<journal-title>Journal of Biomedical Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1021-7770</issn>
<issn pub-type="epub">1423-0127</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25407417</article-id>
<article-id pub-id-type="pmc">4243311</article-id>
<article-id pub-id-type="publisher-id">99</article-id>
<article-id pub-id-type="doi">10.1186/s12929-014-0099-6</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Lin</surname>
<given-names>Sue-Jane</given-names>
</name>
<address>
<email>suejane.lin@mail.cgu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lo</surname>
<given-names>Ming</given-names>
</name>
<address>
<email>loming1986@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff4"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kuo</surname>
<given-names>Rei-Lin</given-names>
</name>
<address>
<email>rlkuo@mail.cgu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shih</surname>
<given-names>Shin-Ru</given-names>
</name>
<address>
<email>srshih@mail.cgu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ojcius</surname>
<given-names>David M</given-names>
</name>
<address>
<email>dojcius@ucmerced.edu</email>
</address>
<xref ref-type="aff" rid="Aff5"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Jean</given-names>
</name>
<address>
<email>joyce.jean.lu@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff6"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Chien-Kuo</given-names>
</name>
<address>
<email>leeck@ntu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff7"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Hui-Chen</given-names>
</name>
<address>
<email>hcchen725@mail.cmu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff8"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Meei Yun</given-names>
</name>
<address>
<email>meeiyunlin@yahoo.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leu</surname>
<given-names>Chuen-Miin</given-names>
</name>
<address>
<email>cmleu@ym.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff9"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Chia-Ni</given-names>
</name>
<address>
<email>chianilin@cgmh.org.tw</email>
</address>
<xref ref-type="aff" rid="Aff3"></xref>
<xref ref-type="aff" rid="Aff10"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Tsai</surname>
<given-names>Ching-Hwa</given-names>
</name>
<address>
<email>chtsai@ntu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff4"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</aff>
<aff id="Aff2">
<label></label>
Graduate institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</aff>
<aff id="Aff3">
<label></label>
Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan</aff>
<aff id="Aff4">
<label></label>
Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan</aff>
<aff id="Aff5">
<label></label>
Department of Molecular Cell Biology, Health Sciences Research Institute, University of California, Merced, CA USA</aff>
<aff id="Aff6">
<label></label>
Genomics Research Center, Academia Sinica, Taipei, Taiwan</aff>
<aff id="Aff7">
<label></label>
Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan</aff>
<aff id="Aff8">
<label></label>
Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan</aff>
<aff id="Aff9">
<label></label>
Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan</aff>
<aff id="Aff10">
<label></label>
Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>18</day>
<month>11</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>18</day>
<month>11</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<volume>21</volume>
<issue>1</issue>
<elocation-id>99</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>10</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© Lin et al.; licensee BioMed Central Ltd. 2014</copyright-statement>
<license license-type="open-access">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection.</p>
</sec>
<sec>
<title>Results</title>
<p>We established H1N1 IAV-infected mouse models using three viruses of varying pathogenicity and noted the accumulation of a defined Gr1 + CD11b + myeloid population correlating with the pathogenicity. Herein, we reported that CCR2+ inflammatory monocytes are the major cell compartments in this population. Of note, impaired clearance of the high pathogenicity virus prolonged IFN expression, leading to CCR2+ inflammatory monocytes amplifying their own recruitment via an interferon-α/β receptor 1 (IFNAR1)-triggered chemokine loop. Blockage of IFNAR1-triggered signaling or inhibition of viral replication by Oseltamivir significantly suppresses the expression of CCR2 ligands and reduced the influx of CCR2+ inflammatory monocytes. Furthermore, trafficking of CCR2+ inflammatory monocytes from the bone marrow to the lung was evidenced by a CCR2-dependent chemotaxis. Importantly, leukocyte infiltration, cytokine storm and expression of iNOS were significantly reduced in
<italic>CCR2−/−</italic>
mice lacking infiltrating CCR2+ inflammatory monocytes, enhancing the survival of the infected mice.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Our results indicated that uncontrolled viral replication leads to excessive production of inflammatory innate immune responses by accumulating CCR2+ inflammatory monocytes, which contribute to the fatal outcomes of high pathogenicity virus infections.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Influenza A virus</kwd>
<kwd>CCR2+ inflammatory monocytes</kwd>
<kwd>IFNAR1</kwd>
<kwd>CCL2</kwd>
<kwd>CCL7 and CCL12</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2014</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Background</title>
<p>Influenza A virus (IAV) is a common human respiratory virus and causes seasonal epidemic and pandemic infections. In the past 100 years, pandemics of influenza have been caused by the IAV strains H1N1 (1918), H2N2 (1957), H3N2 (1968) and H1N1 (2009) [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. These pandemic strains vary in their virulence and pathogenicy. Compared to the 1968 and 2009 pandemics, the 1957 pandemic featured intermediate pathogenicity, while the virus causing the 1918 pandemic was relatively highly pathogenic in the human population [
<xref ref-type="bibr" rid="CR2">2</xref>
]. Currently we are threatened by sporadic infections by emerging avian IAVs, including highly pathogenic avian H5N1 and H7N9 viruses [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
]. Two well known, highly pathogenic IAVs, 1918 H1N1 and avian H5N1 cause high levels of morbidity including excessive infiltration of neutrophils and monocytes into the lungs, high viral loads and hypercytokinemia, with significant increases of IL-1, IL-6, IL-8, TNF, CXCL10 and CCL2 in the patients’ plasma [
<xref ref-type="bibr" rid="CR4">4</xref>
-
<xref ref-type="bibr" rid="CR6">6</xref>
]. Thus, cytokines and chemokines induced at high levels by IAV infections have become targets for the development of IAV therapy. However, the results of experiments using knock-out mice indicate that none of them alone determines highly pathogenic virus-induced lethality [
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR8">8</xref>
]. Thus, we used another approach to identify the immune cell types that are recruited during infection and contribute to the excessive inflammatory responses during highly pathogenic virus infection.</p>
<p>H1N1 IAV circulate continuously in the human population, and the three H1N1 strains selected for this study display low, intermediate and high virulence in mice as follows: (1) seasonal H1N1 A/Taiwan/141/02 (141; low virulence); (2) pandemic H1N1 A/Taiwan/126/2009 (swine-origin influenza virus, SOIV; intermediate virulence) and (3) mouse adapted H1N1 A/Puerto Rico/8/34 (PR8; high virulence). Using these mouse models, we demonstrated that rate of viral clearance and disease severity is correlated with the numbers of a defined Gr1 + CD11b + myeloid population in the lung. Until now, it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe IAV infection.</p>
<p>In this paper, we report that CCR2+ inflammatory monocytes are the major cell components in this defined Gr1 + CD11b + myeloid population. Multiple roles of CCR2+ inflammatory monocytes during viral infections have been reported: promoting host survival of West Nile virus-induced encephalitis and IAV and mouse hepatitis virus infections [
<xref ref-type="bibr" rid="CR9">9</xref>
-
<xref ref-type="bibr" rid="CR12">12</xref>
], stimulating anti-viral Th1 immunity in HSV-2 infection [
<xref ref-type="bibr" rid="CR13">13</xref>
] and suppressing anti-viral CD8 T cell responses in mouse cytomegalovirus (MCMV) and persistent lymphocytic choriomeningitis virus (LCMV) infections [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
]. These results indicate that CCR2+ inflammatory monocytes play a double edge sword in anti-viral responses and immunopathogenesis. Using established infection models with variable rates of viral clearance, which are accompanied by different levels of inflammatory infiltrates, we found that an amplified inflammatory chemokine feedback loop links the impaired clearance of highly pathogenic virus and a massive infiltration of CCR2+ inflammatory monocytes. So, we sought to investigate which cell types are responsible for the production of CCR2 ligands. Furthermore, we identified the inflammatory signals that are triggered by an impaired anti-viral response to induce expression of CCR2 ligands. Finally, the pathological effects of excessive accumulated CCR2+ inflammatory monocytes were explored during highly pathogenic IAV infection.</p>
<p>Overall, we provided a comprehensive study to address the detail mechanism why and how accumulated CCR2+ inflammatory monocytes involved in highly pathogenic IAV infections. Impaired clearance of virus led to spread of virus to newly arrived CCR2+ inflammatory monocytes and to sustain production of IFNAR1-induced CCR2 ligands, which attract BM-derived CCR2+ monocytes migrated to inflamed lung and amplify their own recruitment continuously through the IFNAR1-dependent chemokine feedback loop, resulting in an enhancement of CCR2+ inflammatory monocytes-mediated pathological effects.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec3">
<title>Mouse strains</title>
<p>C57BL/6 and
<italic>CCR2</italic>
−/− mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA).
<italic>IFNAR1</italic>
−/− mice were obtained from Dr. Chien-Kuo Lee (Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan).
<italic>MyD88</italic>
−/− mice were obtained from Hui-Chen Chen (Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan). Mice were maintained under specific pathogen free conditions in Chang Gung University. All animal experiments were performed according to the animal protocol approved by the Institutional Animal Care and User Committee of Chang Gung University and in accordance with the guidelines of Animal Care and Use of Laboratory Animals of the Taiwanese Council of Agriculture.</p>
</sec>
<sec id="Sec4">
<title>Virus preparation and inoculation</title>
<p>All segmented expression plasmids of IAV were kindly provided by Dr. Shin-Ru Shih of Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taiwan. Recombinant IAVs, seasonal 141, pandemic SOIV and mouse adapted PR8 were generated using a reverse genetics system, according to previous reports [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]. Briefly, 293 T cells were transfected by using 15 μl Trans IT-LT1 (Mirus Bio LLC) with 1 μg per each plasmid (pPolI-PB2, −PB1, −PA, −HA, −NP, −NA, −M, −NS of 141, SOIV or PR8). Recombinant IAVs were harvested and propagated in 10 day-old embryonated chicken eggs. Harvested viruses were aliquoted and stored at −80°C until use. For IAV inoculation, mouse was infected intranasally with 200 PFU of virus.</p>
</sec>
<sec id="Sec5">
<title>Plaque assays</title>
<p>Lungs were harvested and grind tissue suspension were frozen in 600 μl aliquots. Viral supernatant was thawed and then 10 folds serially diluted. MDCK cells were cultured at a density of 1 × 10
<sup>6</sup>
cells/well in a 6 well-plate. One hundred microliter of each serial dilution containing trypsin was added to 90% confluent of MDCK cells. After 1 hour incubation, each well was overlaid with a ratio of 1:1 mixture of 0.8% agarose and 2× serum free DMEM to wells. Two days later, the plaques were visualized by addition of 1% crystal violet and plaque forming unit (units/lung) was calculated.</p>
</sec>
<sec id="Sec6">
<title>Preparation of lung leucocytes, mediastinal lymph node (MLN), bone marrow (BM) cells and PBMC</title>
<p>Harvested lungs were homogenized using a metal mesh and the suspension was treated with type I collagenase (Invitrogen) per lung for 30 mins at 37°C. Cells were recovered and washed once with complete PRMI medium containing 10% FBS, 1 mM glutamine, 100 U/ml of penicillin and 100 μg/ml of streptomycin. The pelvic and femoral bones were harvested and BM cells were flushed out with complete RPMI medium by insertion of a 1 ml syringe with a 25G needle into one end of the bone. MLN cells were homogenized using glass slides with ground edges. Leukocytes were obtained from the lungs, peripheral blood, BM and MLN after RBC lysis buffer treatment.</p>
</sec>
<sec id="Sec7">
<title>Cytokine antibody array and ELISA</title>
<p>To obtain bronchoalveolar lavage fluid (BALF), airways were flushed three times with 0.5 ml sterile PBS and centrifuged to remove infiltrating cells. Pooled BALFs were assayed using the R & D mouse cytokine arrays (R & D Systems, Inc.) according to the manufacturer’s instructions. CCL2, CCL7 and CCL12 proteins were measured in serum using ELISA kits (eBioscience) according to the manufacturer’s instructions.</p>
</sec>
<sec id="Sec8">
<title>Immunofluorescent surface and intracellular staining</title>
<p>Two million cells were stained with fluorescently labeled mAbs, including Gr1, CD11b, Ly6C, Ly6G, CCR2 and CX3CR1 for 30 min at 4°C. All Abs were purchased from BD Biosciences, except for CCR2 mAb (R & D Systems). After staining, the cells were fixed with Cytofix (BD Biosciences) for 5 min at 4°C. For intracellular staining, cells were stained with fluorescently labeled anti-Gr1, −CD11b and -Ly6C mAbs and then fixed with Cytofix/cytoperm (BD Biosciences) for 20 mins at 4°C. Fixed cells were further stained with FITC-labeled anti-IAV nucleoprotein (NP) Ab (Abcam) for another 30 min at 4°C. Finally, the cells were washed and re-suspended in FACS buffer (PBS with 2% FBS) and analyzed by LSRII flow cytometry (BD Biosciences).</p>
</sec>
<sec id="Sec9">
<title>Cell sorting and Wright stain</title>
<p>Infiltrating leukocytes from the lungs were harvested and incubated with anti-Gr1, −CD11b and -Ly6G mAbs. Gr1 + CD11b+, Gr1-CD11b-, Gr1 + CD11b + Ly6G + (for granulocyte sorting) or Gr1 + CD11b + Ly6G- (for monocyte sorting) leukocytes were sorted by FACS Aria (BD Biosciences). For morphological evaluation of Gr1 + CD11b + cells, sorted cells were spun onto glass slides at 250 rpm for 5 min using a Shandon Cytospin 3 Centrifuge (Global Medical Instrumentation Inc.) and stained with HemaTek stain Pak (Siemens Healthcare Diagnostic Inc.) using an automatic HemaTek hematology stainer (Bayer Healthcare, LLC.).</p>
</sec>
<sec id="Sec10">
<title>RNA extraction, reverse transcription and quantitative polymerase chain reaction (RT-QPCR)</title>
<p>Total RNA was extracted from isolated or sorted cells using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. RNA was used to synthesize cDNA with Superscript III reverese transcriptase (Invitrogen). TaqMan® Gene Expression Assays (Applied Biosystems) were performed to detect mouse CCL2, CCL7, CCL12, iNOS, IFNβ and GADPH mRNAs. Expression of the various genes was normalized with the GADPH level in each group. Relative gene expression was determined using △△Ct analysis.</p>
</sec>
<sec id="Sec11">
<title>Western blotting</title>
<p>Frozen lung tissues were lysed using lysis buffer (100 mM Tris, 250 mM NaCl, 0.5% sodium deoxycholate, 1 mM PMSF and 0.5% NP40). Tissue lysates were resolved by electrophoresis in SDS-polyacrylamide gels and electrotransferred onto Hybond-P PVDF membranes (GE Healthcare). Milk blocked blots were incubated with anti-actin and -NP antibodies at 4°C overnight and then washed and incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (Jackson ImmunoResearch) at room temperature for 1 hr. The proteins were revealed using the Immobilon Western Chemiluminescent HRP Substrate (Millipore).</p>
</sec>
<sec id="Sec12">
<title>Oseltamivir treatment</title>
<p>PR8-infected mouse was treated with 50 mg Oseltamivir daily according to a previous report [
<xref ref-type="bibr" rid="CR18">18</xref>
].</p>
</sec>
<sec id="Sec13">
<title>Treatment with anti-IFNAR1 blocking antibody</title>
<p>Day 3 post-infected mice were anesthetized and then injected intranasally with either 50 μg of IgG isotype control antibody (Abcam) or 50 μg of anti-IFNAR1 antibody (eBioscience). After 3 days, infiltrating cells were counted and then stained with specific Abs against with Gr1, CD11b, Ly6G, Ly6C and CCR2.</p>
</sec>
<sec id="Sec14">
<title>Adoptive transfer of BM enriched CCR2+ monocytes into mice</title>
<p>BM cells from naïve B6 mice were harvested and monocytes were enriched by negative selection using an EasySep™ Mouse Monocyte Enrichment Kit and EasySep™ magnet system (STEMCELL Technologies Inc.). Enriched monocytes were suspended in PBS at a concentration of 2.0 × 10
<sup>7</sup>
cells/ml and incubated with 5 μM carboxyfluorescein diacetate succinimidyl ester (CFSE, Invitrogen) solution for 12 min at 37°C. One million CFSE-labeled cells were adoptively transferred via the tail vein into naïve or virus-infected mice. After 2 days, leukocytes were harvested from the lungs and stained with anti-Ly6C and anti-CCR2 antibodies. Finally, CCR2 + CFSE + transferred monocytes were traced using flow cytometric analysis.</p>
</sec>
<sec id="Sec15">
<title>Statistical analysis</title>
<p>Statistical significance of the data was analyzed by Student’s two-tailed t test.</p>
</sec>
</sec>
<sec id="Sec16" sec-type="results">
<title>Results</title>
<sec id="Sec17">
<title>Excessive accumulation of CCR2+ inflammatory monocytes in severe IAV infection</title>
<p>We observed varying levels of body weight change and lung inflammation in the infected mice and investigated which infiltrating cell type was associated with severe inflammation. As shown in Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
A, mice infected with the mild 141 strain lost 5%-10% of their original body weight, while the moderate SOIV strain caused 15%-20% original body weight loss. Notably, severe PR8 infection caused progressive weight loss and led to 100% mortality in the infected mice at day 7–10 post-infection. In these infections, lung inflammation was dramatically correlated with body weight loss at day 7 post-infection (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
B). Furthermore, we demonstrated that a defined Gr1 + CD11b + myeloid population is preferentially recruited to the infected lung, but only few to MLN (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
C). Of interest, the total numbers of infiltrating leukocytes and Gr1 + CD11b + cells were significantly associated with the severity of inflammation (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
D and E). Gr1 + CD11b + cells are a heterogeneous cell population, so the true identity of major infiltrating cells should be further characterized using the Wright stain and by the expression of Ly6G and Ly6C on cell surface. Gr1 + CD11b + sorted cells consisted mostly of mononuclear cells containing abundant cytoplasmic vacuoles and few segmented granulocytes (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
F, upper panel). Furthermore, Gr1 + CD11b + cells are composed of appoximately 68-81% monocytes (Ly6G-Ly6C
<sup>high</sup>
) and 19-32% granulocytes (Ly6G + Ly6C
<sup>intermediate</sup>
) (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
F, lower panel). Using specific Abs against surface CCR2 and CX3CR1, we further demonstrated that the infiltrating monocytes in the lungs were Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes but not Ly6C
<sup>low</sup>
CX3CR1+ patrolling monocytes (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
G). Importantly, the numbers of infiltrating CCR2+ inflammatory monocytes were highly associated with the severity of inflammation (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
H).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>
<bold>Excessive accumulation of CCR2+ inflammatory monocytes in severe IAV infection.</bold>
C57BL/6 mice were infected with 200 PFU of 141, SOIV or PR8 viruses.
<bold>(A)</bold>
Body weights were monitored daily until day 14 post-infection (n = 6 -8 per group, mean ± SEM).
<bold>(B)</bold>
Appearance of lung inflammation was photographed at days 3 and 7 post-infection (n = 3 per group).
<bold>(C)</bold>
Total leukocytes were stained with Abs against Gr1 and CD11b. The percentage of Gr1 + CD11b + myeloid cells was analyzed by flow cytometry.
<bold>(D)</bold>
Total leukocytes were harvested from the lungs at the time points indicated and counted by trypan blue exclusion. These data are a composite of four to seven independent experiments (n = 3 per group, mean ± SEM; n.s: no significant difference; *P < 0.05; **P < 0.01).
<bold>(E)</bold>
Numbers of Gr1 + CD11b + myeloid cell of lung were shown. These data are a composite of four independent experiments (n = 3 per group, mean ± SEM; ns: no significant difference; *P < 0.05; ** P < 0.01). (
<bold>F</bold>
, upper panel) Gr1 + CD11b + cells were sorted from infiltrating leukocytes and then stained by Wright stain. The cell morphology was photographed under 1000× magnification using an Olympus microscope. Granulocytes are indicated by arrow heads and monocytes are indicated by arrows. (F, lower panel). The percentage of Ly6G-Ly6C
<sup>high</sup>
monocytes in the Gr1 + CD11b + gated population is shown. Dot plots are the representative result from three repeated experiments with three mice per group.
<bold>(G)</bold>
The percentage of CCR2+ inflammatory monocytes and CX3CR1 patrolling monocytes in Gr1 + CD11b + myeloid cells.
<bold>(H)</bold>
Numbers of Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes were shown at day 7 post-infection. This is a representative result from four repeated experiments with three mice per group.</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec18">
<title>Cytokine and chemokine profiling of BALFs</title>
<p>To investigate the mechanism of extensive accumulation of CCR2+ inflammatory monocytes in severe inflammation, the cytokines and chemokines listed in Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
A were evaluated. According to the results of protein arrays, levels of G-CSF, CCL1, CCL2, CCL12, IL-10, CXCL9, IL-16 and CCL5 were correlated with the severity of lung inflammation (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
A). Notably, both CCL2 and CCL12 are ligands of CCR2, in addition to CCL7. So, we speculated that the aggressive recruitment of CCR2+ inflammatory monocytes is linked to expression of CCR2 ligands. In Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
C, we found that Gr1 + CD11b + cells preferentially migrate to the lung but not to MLN. Therefore, we suggested that leukocytes infiltrating the lung may frequently induce CCR2 ligands to attract CCR2+ inflammatory monocytes. Indeed, all transcripts of CCR2 ligands were over 4000 fold higher in the lung than in MLN (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
B). In addition, the levels of CCR2 ligands in sera were clearly correlated with the numbers of infiltrating CCR2+ inflammatory monocytes (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
C). These results suggested that robust expression of CCR2 ligands may contribute to the aggressive recruitment of CCR2+ inflammatory monocytes into the lungs.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>
<bold>Expression of CCR2 ligands in BALF, MLN, lung and serum of infected mice.</bold>
C57BL/6 mice were infected with 200 PFU of 141, SOIV or PR8 viruses. BALF was harvested from naïve or virus-infected mice at days 3 and 7 post-infection (n = 3–4 mice per group).
<bold>(A)</bold>
Pooled BALFs were subjected to cytokine or ckemokine expression analysis using cytokine protein arrays.
<bold>(B)</bold>
Mice were infected with PR8 viruses. At day 7 postinfection, RNAs were harvested from isolated MLN and lung leukocytes. Relative expression of CCL2, CCL7 and CCL12 in total leukocytes from MLN and lung was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GAPDH level and then to total leukocytes from MLN (mean ± SEM). Experiment (n = 3 mice per group) was performed twice and one representative is shown.
<bold>(C)</bold>
Sera were collected from naïve and virus-infected mice at days 3 and 7 post-infection. Concentrations of CCL2, CCL7 and CCL12 in the sera were measured by ELISA (n = 6–11 mice per group, mean ± SEM; ns: no significant difference; *P < 0.05; **P < 0.01; ***P < 0.001).</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
</sec>
<sec id="Sec19">
<title>Induction of CCR2 ligands by CCR2+ inflammatory monocytes</title>
<p>We sought to determine whether the infiltrating Gr1 + CD11b + cells are possible producers of CCR2 ligands. To test this possibility, total infiltrating leukocytes were separated into Gr1 + CD11b + cells and Gr1-CD11b- cells using a cell sorter (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
A). Compared to leukocytes in the lungs of naïve mice, infiltrating leukocytes harvested from virus-infected mice had tens- to thousands-fold induction of CCR2 ligands (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
B). The relative fold induction of CCR2 ligands was similar between total leukocytes and Gr1 + CD11b + sorted cells, suggesting that Gr1 + CD11b + cells are probably the main producers of CCR2 ligands. To confirm that CCR2+ inflammatory monocytes were producers of CCR2 ligands, granulocytes and monocytes were sorted from the Gr1 + CD11b + myeloid population (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
C). As shown in Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
D, both cell types could express CCL2, CCL7 and CCL12, but more expression of these CCR2 ligands was seen in monocytes. Thus, our results suggested that infiltrating CCR2+ inflammatory monocytes act positively in a chemokine feedback loop to recruit more CCR2+ inflammatory monocytes.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>
<bold>CCR2+ inflammatory monocytes produce high amounts of CCR2 ligand.</bold>
Total leukocytes were harvested from naïve or virus-infected mice at day 7 post-infection.
<bold>(A)</bold>
Gr1 + CD11b + and Gr1-CD11b- cells were sorted form total leukocytes using a cell sorter.
<bold>(B)</bold>
RNAs were extracted from total leukocytes, Gr1 + CD11b + sorted cells and Gr1-CD11b- sorted cells from the virus-infected mice indicated. Experiment (n = 3-6 mice per group) was performed at least twice and one representative is shown.
<bold>(C)</bold>
Isolated leukocytes were stained with anti-Gr1, −CD11b and –Ly6G Abs. Gr1 + CD11b + Ly6G + and Gr1 + CD11b + Ly6G- cells were sorted.
<bold>(D)</bold>
RNA was extracted from total leukocytes, Gr1 + CD11b + Ly6G + sorted cells and Gr1 + CD11b + Ly6G- sorted cells from PR8-infected mice and expression of CCL2, CCL7 and CCL12 was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GAPDH level and then to total leukocytes from naïve mice (mean ± SEM; ns: no significant difference; *P < 0.05; **P < 0.01; ***P < 0.001). Experiment (n = 4–5 mice per group) was performed twice and one representative is shown.</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec20">
<title>Induction of CCR2 ligands is dependent on IFNAR1-triggered signaling</title>
<p>We next sought to determine which inflammatory signaling pathway was responsible for the induction of CCR2 ligands. Previous studies indicated that signaling pathways of MyD88 and type I IFN could modulate the recruitment of myeloid cells [
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
]. Therefore,
<italic>MyD88−/−</italic>
and
<italic>IFNAR1−/−</italic>
mice were used in this study. Compared to infected WT and
<italic>MyD88</italic>
−/− mice, the expression of CCR2 ligands by Gr1 + CD11b + cells was significantly reduced in infected
<italic>IFNAR1</italic>
−/− mice (Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
A). In addition, we found that the percentage of CCR2+ inflammatory monocytes was only reduced in
<italic>IFNAR1</italic>
−/− mice. In Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
B, CCR2+ inflammatory monocytes accounted for 81.8 ± 1.1% of total leukocytes in infected WT mice and 84.5 ± 4.5% in infected
<italic>MyD88</italic>
deficient mice; however, CCR2+ inflammatory monocytes accounted for only 39.8 ± 0.35% in infected
<italic>IFNAR1</italic>
−/− mice. Thus, accumulation of CCR2+ inflammatory monocytes was suppressed when the IFNAR1-induced expression of CCR2 ligands was interrupted. Because aggressive recruitment of Gr1 + CD11b + cells was observed after day 3 post-infection (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
E), we wondered whether intranasal treatment with an anti-IFNAR1 blocking antibody at day 3 post-infection could interrupt the influx of CCR2+ inflammatory monocytes. In Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
C and D, the recruitment of CCR2+ inflammatory monocytes was reduced significantly in anti-IFNAR1 blocking antibody-treated mice, but not in isotype control-treated mice. Overall, these data implied that excessive recruitment of CCR2+ inflammatory monocytes contributes to continuous activation of IFNAR1-induced expression of CCR2 ligands.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>
<bold>Induction of CCR2 ligands is dependent on the IFNAR1-triggered signaling. (A)</bold>
Gr1 + CD11b + myeloid cells were isolated from the lungs of PR8-infected WT,
<italic>MyD88</italic>
−/− and
<italic>IFNAR1</italic>
−/− mice and RNAs were extracted. Expression of CCL2, CCL7 and CCL12 was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to its GAPDH and then to WT infected mice (mean ± SEM; ns: no significant difference; ***P < 0.001). These data are a composite of three independent experiments (n = 6 mice per group).
<bold>(B)</bold>
Total leukocytes were isolated from PR8-infected WT,
<italic>MyD88−/−</italic>
or
<italic>IFNAR1</italic>
−/− mice and the cells were stained with anti-Gr1, −CD11b, −Ly6C and -CCR2 Abs. The percentage of Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes in Gr1 + CD11b + gated cells is shown. This is a representative result of two repeated experiments with two-three mice per group.
<bold>(C-D)</bold>
Day 3 PR8-infected mice were treated either with isotype control antibody or anti-IFNAR1 blocking antibody. After 3 days, leukocytes were harvested and stained with anti-Gr1, −CD11b, −Ly6C and -CCR2 Abs. The percentage of Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes in Gr1 + CD11b + gated cells and numbers of Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes are shown (mean ± SEM; ***P < 0.001). These data are a composite of two independent experiments (Isotype control, n = 5; anti-IFNAR1 Ab treatment, n = 6).</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
</sec>
<sec id="Sec21">
<title>Impaired anti-viral responses prolong IFNβ expression</title>
<p>Type I IFNs (IFNα and IFNβ) are considerd to bind the heterodimeric complexes of IFNAR1 and IFNAR2. Recent study has shown that induction of CCL2 and CCL7 is triggered by the IFNAR1-IFNβ signaling in
<italic>IFNAR2−/−</italic>
mice [
<xref ref-type="bibr" rid="CR21">21</xref>
]. In addition, we also observed differential expression of CCR2 ligands among Gr1 + CD11b + sorted cells in 141, SOIV and PR8 infections (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
B). Therefore, we examined the expression levels of IFNβ in all infected mice. As expected, expression of IFNβ as detected only in the Gr1 + CD11b + sorted cells harvested from PR8-infected mice at day 7 post-infection (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
A). In addtion, both granulocytes and monocytes in Gr1 + CD11b + population could express IFNβ (data not shown). Because detectable IFNβ production reflects activated viral replication, the anti-viral responses of the host were examined by measuring virus titers and detecting influenza NP expression in the infected lung. As shown in Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
B and C, 141-infected mice completely eliminated the virus at day 7. SOIV-infected mice still showed weak expression of NP at day 7 and the host completely cleared the virus at day 8 post-infection. Of note, PR8-infected lungs still showed strong NP expression and viral replication at day 7–8 post-infection. These data suggested that the duration of IFNβ production is a function of the rate of viral clearance. Next, we sought to explore why Gr1 + CD11b + cells produce abundant IFNβ in PR8-infected mice in the late phase of infection. We hypothesized that recruited CCR2+ inflammatory monocytes are infected by the PR8 virus, resulting in amplified production of IFNβ. Indeed, expression of influenza NP was detected in CCR2+ inflammatory monocytes in PR8-infected mice (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
D). Thus, our results suggested that impaired clearance of PR8 virus prolonged expression of IFNβ, which led to infected CCR2+ inflammatory monocytes amplifying their own recruitment by an IFNAR1-triggered chemokine feedback loop. To determine whether high viral loads are potent inducers for CCR2+ monocyte infiltration, an anti-viral drug, Oseltamivir, was used to suppress virus replication in infected mice. In Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
E, body weight loss was attenuated when infected mice received Oseltamivir treatment, demonstrating the efficacy of Oseltamivir. Influx of CCR2+ inflammatory monocytes was dramatically reduced in Oseltamivir-treated mice, compared to PBS-treated mice (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
F). Taken together, our results supported the concept that continuous recruitment of CCR2+ inflammatory monocytes by the IFNAR1-triggered chemokine feedback loop is attributable to the extended duration of IFNβ expression in the late phase of infection.
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>
<bold>Impaired clearance of viral replication sustains IFNβ production.</bold>
Total leukocytes were harvested from naïve or virus-infected mice at day 7 post-infection.
<bold>(A)</bold>
RNA was extracted from total leukocytes, Gr1 + CD11b + sorted cells and Gr1-CD11b- sorted cells. Expression of IFNβ was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GAPDH level and then to total leukocytes from naïve mice (mean ± SEM). Experiment (n = 3–6 mice per group) was performed twice and one representative is shown.
<bold>(B)</bold>
Lungs were harvested from virus infected mice at the time points indicated and the virus load was measured by plaque assays (n = 3 mice per group; mean ± SEM).
<bold>(C)</bold>
Protein lysates of lungs were harvested from infected mice (n = 3 mice per group) on day 7 and expression of influenza NP was detected by western blotting; β-actin expression served as the internal control. This is a representative result from three repeated experiments.
<bold>(D)</bold>
Total leukocytes were harvested from PR8-infected mice at day 7 post-infection. Expression of influenza NP in Ly6C
<sup>high</sup>
CCR2+ cells was detected by flow cytometry. This is a representative result from three repeated experiments.
<bold>(E)</bold>
Body weight changes of PBS- and Oseltamivir-treated mice were monitored at day 0, 3 and 6 post-infection (mean ± SEM).
<bold>(F)</bold>
Leukocytes were harvested from PBS- and Oseltamivir-treated mice at day 6 post-infection. Cells were stained with Abs against Gr1, CD11b, Ly6C and CCR2, and then CCR2+ monocytes were analyzed by flow cytometry. The numbers of CCR2+ inflammatory monocytes were calculated in each group. These data are a composite of two independent experiments (n = 4 mice per group, mean ± SEM; *P < 0.05).</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
</sec>
<sec id="Sec22">
<title>The balance of CCR2+ inflammatory monocytes between the BM and lungs</title>
<p>We next examined the source of infiltrating CCR2+ inflammatory monocytes in the host. In general, CCR2+ inflammatory monocytes are generated from the BM and migrate rapidly to inflamed sites following pathogen invasion [
<xref ref-type="bibr" rid="CR22">22</xref>
]. Therefore, we first checked the proportions of Gr1 + CD11b + cells and CCR2+ inflammatory monocytes in the PBMC and BM during infection. As shown in Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
A-D, the proportion of Gr1 + CD11b + cells and CCR2+ inflammatory monocytes in the PBMC was positively correlated with disease severity. In contrast, the proportion of CCR2+ monocytes in the BM was inversely correlated with the severity of inflammation (Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
E). In Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
F, total CCR2+ monocytes were significantly decreased in the BM of PR8-infected mice, compared to those in 141- and SOIV-infected mice. These results implied that CCR2+ monocytes are rapidly recruited from the BM to the infected lung and mobilization of these cells is possibly dependent on the expression of CCR2 ligands. To demonstrate CCR2-mediated trafficking of inflammatory monocytes to the lungs, BM-enriched CCR2+ monocytes were isolated from naïve mice, labeled with CFSE, and then adoptively transferred to naïve, 141-, SOIV- or PR8-infected mice. After 2 days, transferred CCR2+ inflammatory monocytes were traced by the CCR2 + CFSE + signals on the cells (Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
G). In Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
H, more transferred CCR2 + CFSE + monocytes were found in PR8-infected lungs than in those 141- and SOIV-infected lungs.
<italic>CCR2</italic>
−/− mice were used to confirm that influx of CCR2+ inflammatory monocytes was dependent on CCR2-triggered chemotaxis. In Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
I, the proportion of Gr1 + CD11b + cells was significantly decreased in infected
<italic>CCR2</italic>
−/− mice, compared to WT mice. In Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
J, only few CCR2+ inflammatory monocytes were detected in the blood and lungs of infected
<italic>CCR2</italic>
−/− mice, suggesting the importance of CCR2-driven monocytes localization within the infected lung.
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<p>
<bold>Balance of CCR2+ inflammatory monocytes between the BM and lung. (A-F)</bold>
PBMC and BM cells were harvested from infected mice at day 7 post-infection.
<bold>(A-B)</bold>
The dot plots and percentage of Gr1 + CD11b + cells in PBMC are shown. This data are a composite of three independent experiments (n = 9 mice per group, mean ± SEM, *P < 0.05; ** P < 0.01).
<bold>(C-D)</bold>
The dot plots and percentage of Ly6C
<sup>high</sup>
CCR2+ monocytes in the Gr1 + CD11b + gated cells in PBMC are shown. This data are a composite of two independent experiments (n = 3 mice per group, mean ± SEM, ***P < 0.001).
<bold>(E-F)</bold>
The dot plots and numbers of CCR2+ monocytes were counted from indicated virus infections at day 7 post-infection. These data are a composite of four independent experiments (mean ± SEM; *P < 0.05; ***P < 0.001).
<bold>(G-H)</bold>
CFSE-labeled monocytes of BM were transferred into naïve or day 4 post-infected mice. After 2 days, infiltrating leukocytes were harvested from the lungs and stained with a specific Ab against CCR2.
<bold>(G)</bold>
The percentage of CCR2 + CFSE + transferred cells is shown for the groups indicated.
<bold>(H)</bold>
Absolute numbers of transferred CCR2 + CFSE + monocytes in the lungs were counted in each group. These data are a composite of three independent experiments (n = 7 to 8 mice per group, means ± SEM; ns: no significant difference; ***P < 0.001).
<bold>(I)</bold>
Percentage of Gr1 + CD11b + cells in PBMC or lung is shown.
<bold>(J)</bold>
Ly6C
<sup>high</sup>
CCR2+ inflammatory monocytes in Gr1 + CD11b + gated population in PBMC or lung are shown. This is a representative result from three repeated experiments.</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
<sec id="Sec23">
<title>Pathological effects of CCR2+ inflammatory monocytes upon IAV infection</title>
<p>A previous study showed that monocytes are retained in the BM when they lack CCR2 expression [
<xref ref-type="bibr" rid="CR23">23</xref>
]. To investigate the biological consequences of an excessive accumulation of CCR2+ inflammatory monocytes in the lungs, CCR2−/− mice were used to examine leukocyte infiltration, cytokine storm, expression of iNOS and the survival rate after a lethal dose challenge of PR8 virus. In the absence of infiltrating CCR2+ inflammatory monocytes, total leukocytes in the lung and expression of CCL1, sICAM-1, IFNγ, IL-1ra, IL-16, M-CSF, CCL2, CCL12 and CXCL9 in BALF were decreased, suggesting that CCR2+ inflammatory monocytes contribute to the expression of these molecules (Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
A and B). Consistent with the results from cytokine arrays, expression of CCR2 ligands was also significantly decreased in the infiltrating leukocytes of
<italic>CCR2</italic>
−/− mice, compared to WT mice (Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
C). A previous report has shown that iNOS is induced in activated myeloid cells and significantly involved in the development of IAV-induced pneumonitis [
<xref ref-type="bibr" rid="CR24">24</xref>
]. As shown in Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
D, Gr1 + CD11b + cells were the predominant producers of iNOS. Interestingly, expression of iNOS was correlated with the severity of inflammation. To demonstrate further the importance of CCR2+ inflammatory monocytes-mediated immunopathological effects, expression of iNOS and the survival rate were compared in PR8-infected WT and
<italic>CCR2</italic>
−/− mice. Expression of iNOS transcripts was dramatically reduced in infected
<italic>CCR2</italic>
−/− mice, (Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
E). Finally, 38.5% of infected
<italic>CCR2</italic>
−/− mice, but none of the WT mice, survived a lethal dose challenge of PR8 virus (Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
F). Thus, infiltrating CCR2+ inflammatory monocytes play a pivotal role in highly virulent IAV infection-mediated pathological effects.
<fig id="Fig7">
<label>Figure 7</label>
<caption>
<p>
<bold>Decreasing pathological effects in PR8-infected</bold>
<bold>
<italic>CCR2</italic>
</bold>
<bold>−/− mice. (A)</bold>
Total leukocytes were harvested from the lungs and counted by trypan blue exclusion. These data are a composite of three independent experiments (n = 9 mice per group, mean ± SEM; ***P < 0.001).
<bold>(B)</bold>
Pooled BALFs were subjected to cytokine or chemokine expression analysis using cytokine protein arrays (n = 6 mice per group).
<bold>(C)</bold>
Relative expression of CCL2, CCL7 and CCL12 was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GADPH level and then to total leukocytes from WT mice (mean ± SEM). This is a representative result from two repeated experiments.
<bold>(D)</bold>
RNAs were extracted from total leukocytes, Gr1+ CD11b+ sorted cells and Gr1-CD11b- sorted cells from the virus-infected mice indicated. Relative expression of iNOS transcripts was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GAPDH level and then to total leukocytes from naïve mice (mean ± SEM). Experiment (n = 3–6 mice per group) was performed twice and one representative is shown.
<bold>(E)</bold>
RNAs were harvested from leukocytes isolated from the lungs of WT and
<italic>CCR2</italic>
−/− infected mice. Relative expression of iNOS was measured by RT-QPCR. The mRNA relative folds were determined by normalizing the level of each group to the corresponding GAPDH level and then to total leukocytes from WT mice (n = 3 mice per group; mean ± SEM). Experiment was performed twice and one representative is shown.
<bold>(F)</bold>
WT (n = 13) and
<italic>CCR2</italic>
−/− mice (n = 13) were infected with PR8 viruses. Survival rate was monitored daily until day 14 post-infection. These data are a composite of three independent experiments.</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec24" sec-type="discussion">
<title>Discussion</title>
<p>IAV not only infect pulmonary epithelial cells, endothelial cells and resident alveolar macrophages but also infiltrating granulocytes, monocytes and dendritic cells [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
]. Furthermore, infected leukocytes are the main contributors to aggressive production of inflammatory innate immune responses. Before entering the inflamed lung, these uninfected infiltrates are already primed with type I IFN, which upregulates the levels of MAD5, RIG-I and IRF7 [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
]. In addition, these IFN-stimulated molecules coupled with viral nucleic acids are responsible for amplified production of type I IFN [
<xref ref-type="bibr" rid="CR28">28</xref>
]. Our findings revealed that the rate of virus clearance determines the duration of IFNβ expression in infiltrating Gr1 + CD11b + cells. Sustained expression of IFNβ was critical for aggressive recruitment of CCR2+ inflammatory monocytes in severe inflammation. When virus replication was suppressed by Oseltamivir, body weight and influx of CCR2+ inflammatory monocytes were significantly reduced. These results indicated that excessive accumulation of CCR2+ inflammatory monocytes plays a crucial role in the pathological outcomes of highly pathogenic H1N1 IAV infections. Recently, we are continuously threatened by sporadic infections by emerging avian influenza viruses, including highly pathogenic avian H5N1 and H7N9 viruses which rapidly develop acute respiratory distress syndrome, including excessive infiltration of neutrophils and monocytes into the lungs, high viral loads and hypercytokinemia [
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
]. Futhermore, it is worth to see whether the same phenomenon is observed in avain flu infections, such as H5N1 and H7N9. If accumulation of CCR2+ inflammatory monocytes is a common phenomenon in highly pathogenic influenza infection, CCR2+ inflammatory monocytes will be a good therapeutic target in infection.</p>
<p>The mechanism of accumulation of CCR2+ inflammatory monocytes in severe IAV infection remains largely unclear. Previous reports have shown that small numbers of neutrophils are recruited early in infection, followed by influx of large numbers of monocytes [
<xref ref-type="bibr" rid="CR4">4</xref>
]. Based on our result, CCR2 ligands produced by neutrophils might play a key role in the early recruitment of monocytes. In Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
F, the ratio of neutrophils and monocytes was skewed according to degrees of inflammation at day 7 post-infection. This result indicated two things: (1) Monocyte attractive chemokines were not only provided by neutrophils but also by other inflammatory cells. Using cell sorting, we showed that accumulated CCR2+ inflammatory monocytes are the main contributors of CCR2 ligands and then amplify their own recruitment. (2) Infiltrating monocytes might interfere with the further influx of neutrophils in severe inflammation. A previous study has demonstrated that type I IFN suppresses neutrophil-mediated chemokine attraction, CXCL1 and CXCL2, leading to impaired recruitment of neutrophils [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Therefore, we suggested that sustained expression of IFNβ from CCR2 inflammatory monocytes interrupts the recruitment of neutrophils. Indeed, our data are consistent with previous reports that a doubling of neutrophil numbers is observed in
<italic>CCR2</italic>
−/− and IFNAR1−/− mice [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
].</p>
<p>Production of type I IFN is a double edged sword in terms of viral clearance and virus-mediated pathogenesis. Previous studies have shown that prolonged induction of type I IFN was seen in highly virulent IAV infections, leading to severe consequences: (1) Type I IFN-induced apoptosis of alveolar epithelial cells by TRAIL is observed in severe IAV infections [
<xref ref-type="bibr" rid="CR33">33</xref>
]. (2) Type I IFN-induced FasL expression in the epithelial cells of the lung contributes to the severity of infection [
<xref ref-type="bibr" rid="CR34">34</xref>
]. (3) Type I IFN mediates the development of post-influenza bacterial infections [
<xref ref-type="bibr" rid="CR31">31</xref>
]. In our study, CCR2+ inflammatory monocytes amplify their own recruitment by a prolonged IFNAR1-triggered chemokine feedback loop.</p>
<p>In our study, induction of CCR2 ligands in CCR2+ inflammatory monocytes was dependent on the IFNAR1-triggered signaling pathway. However, recruitment of CCR2+ inflammatory monocytes could not be completely abolished in
<italic>IFNAR1−/−</italic>
mice, suggesting that induction of CCR2 ligands in other cell types by IFNAR1-independent pathways may not be excluded. Indeed, expression of CCL2 is regulated by Sphingosine-1-phosphate receptor-triggered signaling in pulmonary endothelial cells or by the MyD88-mediated pathway in pulmonary epithelial cells [
<xref ref-type="bibr" rid="CR35">35</xref>
-
<xref ref-type="bibr" rid="CR37">37</xref>
]. In addition, IL-1R signaling is also involved in CCL2 induction in undefined cell types during IAV infection [
<xref ref-type="bibr" rid="CR38">38</xref>
]. A previous study has demonstrated that mice deficient in a single ligand, either CCL2 or CCL7, only can block 40-50% monocytes egressing from the BM [
<xref ref-type="bibr" rid="CR39">39</xref>
]. Thus, it is not surprising that gene deficiency of CCL2 cannot protect mice against highly pathogenic virus-mediated death [
<xref ref-type="bibr" rid="CR7">7</xref>
]. Our results indicated that CCL2, CCL7 and CCL12 were highly induced during IAV infections. Therefore, blockage of any single CCR2 ligand is not sufficient to block recruitment of CCR2+ inflammatory monocytes.</p>
<p>Recuirted CCR2+ inflammatory monocytes play a critical role in innate and adaptive immune responses during IAV infections. In successful clearance of 141 and SOIV infecions, CCR2+ inflammatory monocytes expressed high levels of IFNγR, MHC class I and MHC class II molecules than those molecules on monocytes isolated from PR8-infected mice (data not shown). Our and previous studies have demonstrated that monocytes are the mainly susceptible cell type to IAV infections [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
]. Therefore, we suggested that the rate of viral clearance markedly determines the functional direction of inflitrating CCR2+ inflammatory monocytes toward in either protective or pathological role. In infections of MCMV and LCMV, CCR2+ inflammatory monocyte-produced large amount of iNOS and facilitate the production of nitric oxide (NO). NO plays a critical role to impair anti-CD8 T cell responses [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
]. In our study, CCR2+ inflammatory monocytes expressed iNOS; and its expression was correlated with rate of viral clearance. Thus, these results implied that excessive accumulation of CCR2+ inflammatoy monocytes might interfere effective anti-viral CD8 T-cell responses via excessive NO prodution in highly pathogenic IAV infections.</p>
<p>In summary, overabundant innate immune responses produced by monocytes contribute significantly to highly pathogenic virus-mediated fatal outcomes. Based on our findings, the proportion of CCR2+ inflammatory monocytes in the blood and concentration of CCR2 ligands in the serum have potential as translational biomarkers to predict IAV virulence and pathogenesis in an emerging pandemic infection and sporadic infections of avian IAVs. In addition, inhibition of recruitment of CCR2+ inflammatory monocytes or depletion of infiltrating CCR2+ inflammatory monocytes may provide an alternative immunotherapeutic way to reduce the damaging effects of accumulating CCR2+ inflammatory monocytes in highly pathogenic IAV infections.</p>
</sec>
<sec id="Sec25" sec-type="conclusion">
<title>Conclusion</title>
<p>The excessive accumulation of Gr1 + CD11b + cells is strongly associated with severe lung pathology in highly pathogenic 1918 H1N1 and avian H5N1 infections [
<xref ref-type="bibr" rid="CR42">42</xref>
]. According to a detailed characterization of Gr1 + CD11b + cells, we found that CCR2+ inflammatory monocytes are a prominent cell type and that they contribute to overabundant inflammatory immune responses. In this study, we demonstrated that the accumulation of infiltrating CCR2+ inflammatory monocytes is determined by the efficiency of host in clearing the virus. Based on our findings, the CCR2+ inflammatory monocytes were one of determinants for pathogenicity of highly pathogenic IAV infection (Figure 
<xref rid="Fig8" ref-type="fig">8</xref>
).
<fig id="Fig8">
<label>Figure 8</label>
<caption>
<p>
<bold>Roles of CCR2+ inflammatory monocytes in highly pathogenic IAV infection.</bold>
We achieved varying degrees of weight loss with mildly, moderately or severely inflamed lungs in mice inoculated with the 141, SOIV or PR8 strains. These H1N1 infection models with variable efficiencies of viral clearance result in the accumulation of varying numbers of CCR2+ inflammatrory monocytes, which are highly associated with the generation of a cytokine storm and expression of iNOS. In the early phase of infection, we propose that a small number of infiltratng CCR2+ inflammatory monocytes are infected with IAV and respond to autocrine and/or paracrine IFNβ, which induces the expression of the CCR2 ligands, CCL2, CCL7 and CCL12. Recruited CCR2+ inflammatory monocytes drive further recruitment of CCR2+ inflammatory monocytes from the BM to the lung through CCR2-dependent chemotaxis. In the late phase of infection, impaired clearance of PR8 virus leads to spread of infection to recently arrived CCR2+ inflammatory monocytes and to sustained production of the IFNAR1-IFNβ signaling axis-induced CCR2 ligands, which cause infiltrating CCR2+ inflammatrory monocytes to amplify their own recruitment continuously through the IFNAR1-dependent chemokine feedback loop.</p>
</caption>
<graphic xlink:href="12929_2014_99_Fig8_HTML" id="MO8"></graphic>
</fig>
</p>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-list>
<def-item>
<term>IAV</term>
<def>
<p>Influenza A virus</p>
</def>
</def-item>
<def-item>
<term>IFNAR1</term>
<def>
<p>interferon-α/β receptor 1</p>
</def>
</def-item>
<def-item>
<term>SOIV</term>
<def>
<p>swine-origin influenza virus</p>
</def>
</def-item>
<def-item>
<term>MCMV</term>
<def>
<p>mouse cytomegalovirus</p>
</def>
</def-item>
<def-item>
<term>LCMV</term>
<def>
<p>lymphocytic choriomeningitis virus</p>
</def>
</def-item>
<def-item>
<term>BM</term>
<def>
<p>bone marrow</p>
</def>
</def-item>
<def-item>
<term>NP</term>
<def>
<p>nucleoprotein</p>
</def>
</def-item>
<def-item>
<term>MLN</term>
<def>
<p>mediastinal lymph node</p>
</def>
</def-item>
<def-item>
<term>BALF</term>
<def>
<p>bronchoalveolar lavage fluid</p>
</def>
</def-item>
<def-item>
<term>CFSE</term>
<def>
<p>carboxyfluorescein diacetate succinimidyl ester</p>
</def>
</def-item>
<def-item>
<term>NO</term>
<def>
<p>nitric oxide</p>
</def>
</def-item>
</def-list>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>SJL designed experiments, performed experiments, analyzed the data and co-wrote the manuscript; ML designed experiments, performed experiments and analyzed the data; RLK provided materials, SRS provided materials; DMO provided materials; JL provided materials; CKL provided materials; HCC provided materials; MYL provided materials; CML provided materials, CNL provided materials and CHT designed experiments and co-wrote the manuscript. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<p>We thank Dr. Chen-Kung Chou of Department of Biomedical Science, College of Medicine, Chang Gung University, Taiwan, kindly provided the IVC system for breeding and management of mice. We thank Dr. Tim J. Harrison of UCL Medical School, London, UK, for reviewing the manuscript critically. We thank the Core Instrument Center of Chang Gung University for providing assistance with cell sorting. We thank Dr. Kuo-Feng Weng (Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan) for providing assistance with hypothesis cartoon. This work was supported by National Science Council, Chang Gung Memorial Hospital, National Health Research Institute and Excellent Translational Medicine Research Projects of National Taiwan University College of Medicine and National Taiwan University Hospital (grants: MOST-103-2320-B-182-028-MY3, NSC-102-2325-B-182-002, CMRPD1A0091, CMRPD1A0092 and CMRPD1A0093 to S.-J.L., NSC-100-2320-B-002-100-MY3, NHRI-EX102-10031BI and 102R39012 to C.-H.T; NSC-100-2320-B-182-019-MY3 to R.-L.K.; CMU100-S-03 to H.-C.C).</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham-Rowe</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Epidemiology: Racing against the flu</article-title>
<source>Nature</source>
<year>2011</year>
<volume>480</volume>
<fpage>S2</fpage>
<lpage>S3</lpage>
<pub-id pub-id-type="doi">10.1038/480S2a</pub-id>
<pub-id pub-id-type="pmid">22158296</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taubenberger</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Kash</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Influenza virus evolution, host adaptation, and pandemic formation</article-title>
<source>Cell Host Microbe</source>
<year>2010</year>
<volume>7</volume>
<fpage>440</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2010.05.009</pub-id>
<pub-id pub-id-type="pmid">20542248</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lam</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lycett</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Farooqui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kelvin</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Pybus</surname>
<given-names>OG</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Webby</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>The genesis and source of the H7N9 influenza viruses causing human infections in China</article-title>
<source>Nature</source>
<year>2013</year>
<volume>502</volume>
<fpage>241</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="doi">10.1038/nature12515</pub-id>
<pub-id pub-id-type="pmid">23965623</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perrone</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Plowden</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice</article-title>
<source>PLoS Pathog</source>
<year>2008</year>
<volume>4</volume>
<fpage>e1000115</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1000115</pub-id>
<pub-id pub-id-type="pmid">18670648</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobasa</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Shinya</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kash</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Copps</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ebihara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hatta</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Halfmann</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hatta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Alimonti</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Fernando</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Katze</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus</article-title>
<source>Nature</source>
<year>2007</year>
<volume>445</volume>
<fpage>319</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.1038/nature05495</pub-id>
<pub-id pub-id-type="pmid">17230189</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baskin</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Bielefeldt-Ohmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Sabourin</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tolnay</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pyles</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Aicher</surname>
<given-names>LD</given-names>
</name>
<name>
<surname>Rosenzweig</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Murali-Krishna</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Kotur</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Fornek</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Proll</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Palermo</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Sabourin</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Katze</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2009</year>
<volume>106</volume>
<fpage>3455</fpage>
<lpage>3460</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0813234106</pub-id>
<pub-id pub-id-type="pmid">19218453</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salomon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2007</year>
<volume>104</volume>
<fpage>12479</fpage>
<lpage>12481</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0705289104</pub-id>
<pub-id pub-id-type="pmid">17640882</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perrone</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Szretter</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Mizgerd</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus</article-title>
<source>J Infect Dis</source>
<year>2010</year>
<volume>202</volume>
<fpage>1161</fpage>
<lpage>1170</lpage>
<pub-id pub-id-type="doi">10.1086/656365</pub-id>
<pub-id pub-id-type="pmid">20815704</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Kuziel</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>TE</given-names>
</name>
</person-group>
<article-title>Lack of CCR2 results in increased mortality and impaired leukocyte activation and trafficking following infection of the central nervous system with a neurotropic coronavirus</article-title>
<source>J Immunol</source>
<year>2001</year>
<volume>167</volume>
<fpage>4585</fpage>
<lpage>4592</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.167.8.4585</pub-id>
<pub-id pub-id-type="pmid">11591787</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Obara</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Rivollier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pletnev</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Kelsall</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis</article-title>
<source>J Immunol</source>
<year>2011</year>
<volume>186</volume>
<fpage>471</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1003003</pub-id>
<pub-id pub-id-type="pmid">21131425</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dawson</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Kuziel</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus</article-title>
<source>Am J Pathol</source>
<year>2000</year>
<volume>156</volume>
<fpage>1951</fpage>
<lpage>1959</lpage>
<pub-id pub-id-type="doi">10.1016/S0002-9440(10)65068-7</pub-id>
<pub-id pub-id-type="pmid">10854218</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakano</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ramsburg</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gunn</surname>
<given-names>MD</given-names>
</name>
</person-group>
<article-title>CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality</article-title>
<source>J Immunol</source>
<year>2008</year>
<volume>180</volume>
<fpage>2562</fpage>
<lpage>2572</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.180.4.2562</pub-id>
<pub-id pub-id-type="pmid">18250467</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iijima</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mattei</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2011</year>
<volume>108</volume>
<fpage>284</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1005201108</pub-id>
<pub-id pub-id-type="pmid">21173243</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daley-Bauer</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Wynn</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Mocarski</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes</article-title>
<source>Immunity</source>
<year>2012</year>
<volume>37</volume>
<fpage>122</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2012.04.014</pub-id>
<pub-id pub-id-type="pmid">22840843</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norris</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Uebelhoer</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Grakoui</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pulendran</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity</article-title>
<source>Immunity</source>
<year>2013</year>
<volume>38</volume>
<fpage>309</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2012.10.022</pub-id>
<pub-id pub-id-type="pmid">23438822</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuo</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Krug</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells</article-title>
<source>J Virol</source>
<year>2009</year>
<volume>83</volume>
<fpage>1611</fpage>
<lpage>1616</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01491-08</pub-id>
<pub-id pub-id-type="pmid">19052083</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neumann</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Donis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hobom</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Generation of influenza A viruses entirely from cloned cDNAs</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1999</year>
<volume>96</volume>
<fpage>9345</fpage>
<lpage>9350</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.16.9345</pub-id>
<pub-id pub-id-type="pmid">10430945</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Manicassamy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Manicassamy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Belicha-Villanueva</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pisanelli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pulendran</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2010</year>
<volume>107</volume>
<fpage>11531</fpage>
<lpage>11536</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0914994107</pub-id>
<pub-id pub-id-type="pmid">20534532</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babcock</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Toft-Hansen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Owens</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Signaling through MyD88 regulates leukocyte recruitment after brain injury</article-title>
<source>J Immunol</source>
<year>2008</year>
<volume>181</volume>
<fpage>6481</fpage>
<lpage>6490</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.181.9.6481</pub-id>
<pub-id pub-id-type="pmid">18941239</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seo</surname>
<given-names>SU</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Byun</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kweon</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Type I interferon signaling regulates Ly6C (hi) monocytes and neutrophils during acute viral pneumonia in mice</article-title>
<source>PLoS Pathog</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1001304</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1001304</pub-id>
<pub-id pub-id-type="pmid">21383977</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Weerd</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Vivian</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Mangan</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Gould</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Braniff</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Zaker-Tabrizi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Forster</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Beddoe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Rossjohn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hertzog</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Structural basis of a unique interferon-beta signaling axis mediated via the receptor IFNAR1</article-title>
<source>Nat Immunol</source>
<year>2013</year>
<volume>14</volume>
<fpage>901</fpage>
<lpage>907</lpage>
<pub-id pub-id-type="doi">10.1038/ni.2667</pub-id>
<pub-id pub-id-type="pmid">23872679</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serbina</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Pamer</surname>
<given-names>EG</given-names>
</name>
</person-group>
<article-title>Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2</article-title>
<source>Nat Immunol</source>
<year>2006</year>
<volume>7</volume>
<fpage>311</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1038/ni1309</pub-id>
<pub-id pub-id-type="pmid">16462739</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsou</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Si</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Slaymaker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aslanian</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Weisberg</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Charo</surname>
<given-names>IF</given-names>
</name>
</person-group>
<article-title>Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites</article-title>
<source>J Clin Invest</source>
<year>2007</year>
<volume>117</volume>
<fpage>902</fpage>
<lpage>909</lpage>
<pub-id pub-id-type="doi">10.1172/JCI29919</pub-id>
<pub-id pub-id-type="pmid">17364026</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karupiah</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Mahalingam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nathan</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>MacMicking</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice</article-title>
<source>J Exp Med</source>
<year>1998</year>
<volume>188</volume>
<fpage>1541</fpage>
<lpage>1546</lpage>
<pub-id pub-id-type="doi">10.1084/jem.188.8.1541</pub-id>
<pub-id pub-id-type="pmid">9782132</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hofmann</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sprenger</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bender</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hasse</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nain</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gemsa</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Susceptibility of mononuclear phagocytes to influenza A virus infection and possible role in the antiviral response</article-title>
<source>J Leukoc Biol</source>
<year>1997</year>
<volume>61</volume>
<fpage>408</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="pmid">9103226</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hermesh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Moltedo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Moran</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Lopez</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Antiviral instruction of bone marrow leukocytes during respiratory viral infections</article-title>
<source>Cell Host Microbe</source>
<year>2010</year>
<volume>7</volume>
<fpage>343</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2010.04.006</pub-id>
<pub-id pub-id-type="pmid">20478536</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Takaoka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors</article-title>
<source>Immunity</source>
<year>2006</year>
<volume>25</volume>
<fpage>349</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2006.08.009</pub-id>
<pub-id pub-id-type="pmid">16979567</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gough</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Messina</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Johnstone</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Constitutive type I interferon modulates homeostatic balance through tonic signaling</article-title>
<source>Immunity</source>
<year>2012</year>
<volume>36</volume>
<fpage>166</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="doi">10.1016/j.immuni.2012.01.011</pub-id>
<pub-id pub-id-type="pmid">22365663</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Pathogenesis of the 1918 pandemic influenza virus</article-title>
<source>PLoS Pathog</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1001218</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1001218</pub-id>
<pub-id pub-id-type="pmid">21298032</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mok</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Sia</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Lestra</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Pathogenicity of the novel A/H7N9 influenza virus in mice</article-title>
<source>MBio</source>
<year>2013</year>
<volume>4</volume>
<fpage>e00362</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1128/mBio.00362-13</pub-id>
<pub-id pub-id-type="pmid">23820393</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shahangian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chow</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Ghaffari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Belperio</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice</article-title>
<source>J Clin Invest</source>
<year>2009</year>
<volume>119</volume>
<fpage>1910</fpage>
<lpage>1920</lpage>
<pub-id pub-id-type="doi">10.1172/JCI35412</pub-id>
<pub-id pub-id-type="pmid">19487810</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wareing</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Lyon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Inglis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Giannoni</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Charo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sarawar</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Chemokine regulation of the inflammatory response to a low-dose influenza infection in CCR2−/− mice</article-title>
<source>J Leukoc Biol</source>
<year>2007</year>
<volume>81</volume>
<fpage>793</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="doi">10.1189/jlb.0506299</pub-id>
<pub-id pub-id-type="pmid">17179466</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hogner</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wolff</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pleschka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Plog</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Kalinke</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Walmrath</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Bodner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gattenlohner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lewe-Schlosser</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Matrosovich</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Seeger</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lohmeyer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Herold</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia</article-title>
<source>PLoS Pathog</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003188</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1003188</pub-id>
<pub-id pub-id-type="pmid">23468627</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujikura</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chiba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Muramatsu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kazumata</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakayama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kawai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kida</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Type-I interferon is critical for FasL expression on lung cells to determine the severity of influenza</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<fpage>e55321</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0055321</pub-id>
<pub-id pub-id-type="pmid">23408968</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teijaro</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Cahalan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fremgen</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Martinborough</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Peach</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Oldstone</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection</article-title>
<source>Cell</source>
<year>2011</year>
<volume>146</volume>
<fpage>980</fpage>
<lpage>991</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2011.08.015</pub-id>
<pub-id pub-id-type="pmid">21925319</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Leiner</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dorothee</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brandl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pamer</surname>
<given-names>EG</given-names>
</name>
</person-group>
<article-title>MyD88 and Type I interferon receptor-mediated chemokine induction and monocyte recruitment during Listeria monocytogenes infection</article-title>
<source>J Immunol</source>
<year>2009</year>
<volume>183</volume>
<fpage>1271</fpage>
<lpage>1278</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.0900460</pub-id>
<pub-id pub-id-type="pmid">19553532</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ioannidis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>McNally</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Willette</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peeples</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Chaussabel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Durbin</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Ramilo</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Mejias</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Flano</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection</article-title>
<source>J Virol</source>
<year>2012</year>
<volume>86</volume>
<fpage>5422</fpage>
<lpage>5436</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.06757-11</pub-id>
<pub-id pub-id-type="pmid">22398282</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teijaro</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Walsh</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Oldstone</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<fpage>3799</fpage>
<lpage>3804</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1400593111</pub-id>
<pub-id pub-id-type="pmid">24572573</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Serbina</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Brandl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>MX</given-names>
</name>
<name>
<surname>Leiner</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Charo</surname>
<given-names>IF</given-names>
</name>
<name>
<surname>Pamer</surname>
<given-names>EG</given-names>
</name>
</person-group>
<article-title>Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection</article-title>
<source>J Immunol</source>
<year>2008</year>
<volume>180</volume>
<fpage>6846</fpage>
<lpage>6853</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.180.10.6846</pub-id>
<pub-id pub-id-type="pmid">18453605</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Helft</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Manicassamy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guermonprez</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Silvin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Agudo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Schmolke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Leboeuf</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leboeuf</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Merad</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cross-presenting CD103+ dendritic cells are protected from influenza virus infection</article-title>
<source>J Clin Invest</source>
<year>2012</year>
<volume>122</volume>
<fpage>4037</fpage>
<lpage>4047</lpage>
<pub-id pub-id-type="doi">10.1172/JCI60659</pub-id>
<pub-id pub-id-type="pmid">23041628</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Pillai</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Iwasaki</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>13910</fpage>
<lpage>13915</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1303275110</pub-id>
<pub-id pub-id-type="pmid">23918369</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Kotur</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Kasoji</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Craft</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Katze</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Waters</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Vasconcelos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sabourin</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Bresler</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Sabourin</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Accumulation of CD11b (+) Gr-1 (+) cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses</article-title>
<source>Arch Virol</source>
<year>2013</year>
<volume>158</volume>
<fpage>1305</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="doi">10.1007/s00705-012-1593-3</pub-id>
<pub-id pub-id-type="pmid">23397329</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000181  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000181  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021