Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken

Identifieur interne : 000100 ( Pmc/Corpus ); précédent : 000099; suivant : 000101

The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken

Auteurs : Olga Stech ; Jutta Veits ; El-Sayed M. Abdelwhab ; Ute Wessels ; Thomas C. Mettenleiter ; Jürgen Stech

Source :

RBID : PMC:4549673

Abstract

Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant.


Url:
DOI: 10.1038/srep13493
PubMed: 26306544
PubMed Central: 4549673

Links to Exploration step

PMC:4549673

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken</title>
<author>
<name sortKey="Stech, Olga" sort="Stech, Olga" uniqKey="Stech O" first="Olga" last="Stech">Olga Stech</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Veits, Jutta" sort="Veits, Jutta" uniqKey="Veits J" first="Jutta" last="Veits">Jutta Veits</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abdelwhab, El Sayed M" sort="Abdelwhab, El Sayed M" uniqKey="Abdelwhab E" first="El-Sayed M." last="Abdelwhab">El-Sayed M. Abdelwhab</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wessels, Ute" sort="Wessels, Ute" uniqKey="Wessels U" first="Ute" last="Wessels">Ute Wessels</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mettenleiter, Thomas C" sort="Mettenleiter, Thomas C" uniqKey="Mettenleiter T" first="Thomas C." last="Mettenleiter">Thomas C. Mettenleiter</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stech, Jurgen" sort="Stech, Jurgen" uniqKey="Stech J" first="Jürgen" last="Stech">Jürgen Stech</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26306544</idno>
<idno type="pmc">4549673</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549673</idno>
<idno type="RBID">PMC:4549673</idno>
<idno type="doi">10.1038/srep13493</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken</title>
<author>
<name sortKey="Stech, Olga" sort="Stech, Olga" uniqKey="Stech O" first="Olga" last="Stech">Olga Stech</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Veits, Jutta" sort="Veits, Jutta" uniqKey="Veits J" first="Jutta" last="Veits">Jutta Veits</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abdelwhab, El Sayed M" sort="Abdelwhab, El Sayed M" uniqKey="Abdelwhab E" first="El-Sayed M." last="Abdelwhab">El-Sayed M. Abdelwhab</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wessels, Ute" sort="Wessels, Ute" uniqKey="Wessels U" first="Ute" last="Wessels">Ute Wessels</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mettenleiter, Thomas C" sort="Mettenleiter, Thomas C" uniqKey="Mettenleiter T" first="Thomas C." last="Mettenleiter">Thomas C. Mettenleiter</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stech, Jurgen" sort="Stech, Jurgen" uniqKey="Stech J" first="Jürgen" last="Stech">Jürgen Stech</name>
<affiliation>
<nlm:aff id="a1">
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Neumann, G" uniqKey="Neumann G">G. Neumann</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Gao, G F" uniqKey="Gao G">G. F. Gao</name>
</author>
<author>
<name sortKey="Shu, Y" uniqKey="Shu Y">Y. Shu</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y. Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Capua, I" uniqKey="Capua I">I. Capua</name>
</author>
<author>
<name sortKey="Marangon, S" uniqKey="Marangon S">S. Marangon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R. A. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y. Kawaoka</name>
</author>
<author>
<name sortKey="Webster, R G" uniqKey="Webster R">R. G. Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez, D L" uniqKey="Suarez D">D. L. Suarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klenk, H D" uniqKey="Klenk H">H. D. Klenk</name>
</author>
<author>
<name sortKey="Garten, W" uniqKey="Garten W">W. Garten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aamir, U B" uniqKey="Aamir U">U. B. Aamir</name>
</author>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U. Wernery</name>
</author>
<author>
<name sortKey="Ilyushina, N" uniqKey="Ilyushina N">N. Ilyushina</name>
</author>
<author>
<name sortKey="Webster, R G" uniqKey="Webster R">R. G. Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, M C" uniqKey="Cheng M">M. C. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gohrbandt, S" uniqKey="Gohrbandt S">S. Gohrbandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Y J" uniqKey="Guo Y">Y. J. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horimoto, T" uniqKey="Horimoto T">T. Horimoto</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y. Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bogs, J" uniqKey="Bogs J">J. Bogs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gohrbandt, S" uniqKey="Gohrbandt S">S. Gohrbandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V. J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stech, O" uniqKey="Stech O">O. Stech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Londt, B Z" uniqKey="Londt B">B. Z. Londt</name>
</author>
<author>
<name sortKey="Banks, J" uniqKey="Banks J">J. Banks</name>
</author>
<author>
<name sortKey="Alexander, D J" uniqKey="Alexander D">D. J. Alexander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veits, J" uniqKey="Veits J">J. Veits</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wasilenko, J L" uniqKey="Wasilenko J">J. L. Wasilenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gabriel, G" uniqKey="Gabriel G">G. Gabriel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilbourne, E D" uniqKey="Kilbourne E">E. D. Kilbourne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scholtissek, C" uniqKey="Scholtissek C">C. Scholtissek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexander, D J" uniqKey="Alexander D">D. J. Alexander</name>
</author>
<author>
<name sortKey="Vallat, B" uniqKey="Vallat B">B. Vallat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abolnik, C" uniqKey="Abolnik C">C. Abolnik</name>
</author>
<author>
<name sortKey="Bisschop, S P" uniqKey="Bisschop S">S. P. Bisschop</name>
</author>
<author>
<name sortKey="Gerdes, G H" uniqKey="Gerdes G">G. H. Gerdes</name>
</author>
<author>
<name sortKey="Olivier, A J" uniqKey="Olivier A">A. J. Olivier</name>
</author>
<author>
<name sortKey="Horner, R F" uniqKey="Horner R">R. F. Horner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, K L" uniqKey="Deshpande K">K. L. Deshpande</name>
</author>
<author>
<name sortKey="Naeve, C W" uniqKey="Naeve C">C. W. Naeve</name>
</author>
<author>
<name sortKey="Webster, R G" uniqKey="Webster R">R. G. Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munier, S" uniqKey="Munier S">S. Munier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sorrell, E M" uniqKey="Sorrell E">E. M. Sorrell</name>
</author>
<author>
<name sortKey="Song, H" uniqKey="Song H">H. Song</name>
</author>
<author>
<name sortKey="Pena, L" uniqKey="Pena L">L. Pena</name>
</author>
<author>
<name sortKey="Perez, D R" uniqKey="Perez D">D. R. Perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuoka, Y" uniqKey="Matsuoka Y">Y. Matsuoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blumenkrantz, D" uniqKey="Blumenkrantz D">D. Blumenkrantz</name>
</author>
<author>
<name sortKey="Roberts, K L" uniqKey="Roberts K">K. L. Roberts</name>
</author>
<author>
<name sortKey="Shelton, H" uniqKey="Shelton H">H. Shelton</name>
</author>
<author>
<name sortKey="Lycett, S" uniqKey="Lycett S">S. Lycett</name>
</author>
<author>
<name sortKey="Barclay, W S" uniqKey="Barclay W">W. S. Barclay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmann, T W" uniqKey="Hoffmann T">T. W. Hoffmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stech, J" uniqKey="Stech J">J. Stech</name>
</author>
<author>
<name sortKey="Xiong, X" uniqKey="Xiong X">X. Xiong</name>
</author>
<author>
<name sortKey="Scholtissek, C" uniqKey="Scholtissek C">C. Scholtissek</name>
</author>
<author>
<name sortKey="Webster, R G" uniqKey="Webster R">R. G. Webster</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26306544</article-id>
<article-id pub-id-type="pmc">4549673</article-id>
<article-id pub-id-type="pii">srep13493</article-id>
<article-id pub-id-type="doi">10.1038/srep13493</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Stech</surname>
<given-names>Olga</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Veits</surname>
<given-names>Jutta</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abdelwhab</surname>
<given-names>El-Sayed M.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="author-notes" rid="n1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wessels</surname>
<given-names>Ute</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mettenleiter</surname>
<given-names>Thomas C.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stech</surname>
<given-names>Jürgen</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health</institution>
, Südufer 10, 17493 Greifswald-Insel Riems,
<country>Germany</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>juergen.stech@fli.bund.de</email>
</corresp>
<fn id="n1">
<label>*</label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>26</day>
<month>08</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>13493</elocation-id>
<history>
<date date-type="received">
<day>03</day>
<month>02</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>07</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in poultry world-wide and raise concerns about a novel pandemic due to repeated zoonotic transmissions to humans
<xref ref-type="bibr" rid="b1">1</xref>
. These strains develop from low-pathogenic precursors specifying the hemagglutinin (HA) serotypes H5 or H7. HPAIV carry a polybasic HA cleavage site (HACS)
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
whereas the HA of all low-pathogenic avian viruses (LPAIV) and human influenza viruses carry a mono- or dibasic motif
<xref ref-type="bibr" rid="b6">6</xref>
<xref ref-type="bibr" rid="b7">7</xref>
<xref ref-type="bibr" rid="b8">8</xref>
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
. In HPAIV, the polybasic HACS is the prime virulence determinant essential for high pathogenicity in chicken; its conversion to a monobasic motif renders the virus low-pathogenic
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b11">11</xref>
. Conversely, introduction of a polybasic HACS into LPAIV of several HA serotypes does not necessarily result in high virulence
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
. Interestingly, four natural H5 strains with polybasic HACS but low pathogenicity in chickens were found
<xref ref-type="bibr" rid="b16">16</xref>
. Furthermore, LPAIV single-gene reassortants carrying an HPAIV HA display variable levels of virulence
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b17">17</xref>
. The reciprocal gene constellation, i.e. an LPAIV HA with engineered polybasic HACS plus the other seven gene segments from an HPAIV caused highly pathogenic phenotypes even in case of a nonH5/H7 HA
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b17">17</xref>
. Moreover, specific gene constellations involving PB2, PB1, and NP may enable high virulence
<xref ref-type="bibr" rid="b18">18</xref>
. Taken together, those findings revealed that, besides the essential polybasic HACS, additional virulence determinants reside in HA and the other seven genes. Such additional adaptive changes might accumulate in the low-pathogenic precursors during their circulation in gallinaceous poultry prior to an HPAIV outbreak
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
. In this study, we aim to elucidate those additional virulence determinants of all nonHA genes.</p>
<sec disp-level="1">
<title>Results</title>
<sec disp-level="2">
<title>Selection reveals that HPAIV PB2, HA, NP, NA, and M confer high virulence</title>
<p>To reveal HPAIV gene constellations sufficient for high virulence, we performed selection experiments with the genes of HPAIV A/Swan/Germany/R65/2006 (H5N1) (R65) versus those of LPAIV A/Teal/Germany/Wv632/2005 (H5N1) (TG05). To this end, we co-transfected plasmids encoding the R65 and TG05 genes, used the resulting supernatants for infection of chickens, took oral swabs and screened them for reassortant genotypes. Since we already could demonstrate that the introduction of the R65 HA into the genetic background of TG05 (reassortant TG05-HA
<sub>R65</sub>
) leads to 100% morbidity and 30% lethality in chicken
<xref ref-type="bibr" rid="b12">12</xref>
, we omitted the TG05 HA but retained the R65 HA.</p>
<p>First, to narrow selection to the small R65 genes (NA, M, and NS), we co-transfected the TG05 polymerase gene plasmids (PB2, PB1, PA, NP) and the R65 HA plasmid together with mixtures of the NA, M, and NS plasmids originating both from TG05 and R65. Sanger sequencing of the post-transfection supernatant indicated the simultaneous presence of the NA and M genes from both TG05 and R65 plus the presence of the TG05 NS gene (
<xref ref-type="fig" rid="f1">Fig. 1a</xref>
). Oculonasal infection of ten chickens with this post-transfection mixture resulted in death of all animals by day 3 (
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
). Genotyping of 30 isolated plaques from oral swabs taken on days 2 and 3 from three animals (#1, #3 (which died and therefore was swabbed on day 2 only), and #4; ten plaques each) revealed a preference for the R65 NA and M genes (except one plaque from animal #4 containing the R65 NA but the TG05 M) or, in another animal (#2 from which only one plaque could be isolated), the presence of the R65 NA gene only.</p>
<p>To allow for selection of
<italic>all</italic>
R65 genes, we then co-transfected the TG05 plasmids except the HA plasmid together with all eight R65 plasmids. Sanger sequencing of the post-transfection supernatant revealed mixtures of the PB2, PB1, NP, NA, and M genes, whereas PA and NS appeared to originate from TG05 predominantly (
<xref ref-type="fig" rid="f1">Fig. 1b</xref>
). Oculonasal infection of chickens with the post-transfection supernatant resulted in death of all ten animals on day 3 post infection except animal #10 which already succumbed to death on day 2 (
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
). We then isolated plaques from oral swabs taken on day 2 from animals #2 and #10. The genotyping of five plaques from animal #2 and one from animal #10 indicated the presence of the TG05 PB1, PA, and NS1 genes and (in addition to the HA) of the PB2, NP, NA, M genes from R65. To investigate whether this gene composition confers high virulence, we reconstituted the reassortant TG05-HA/PB2/NP/NA/M
<sub>R65</sub>
by reverse genetics to infect chickens. All directly infected animals died on days 3–4 and the contact animals succumbed to death on days 5–7, indicating a virulence equivalent to that of R65 (
<xref ref-type="fig" rid="f3">Fig. 3</xref>
). Taken together, the screening for random reassortant genotypes shed by chickens infected with supernatants after co-transfection with TG05/R65 plasmid mixtures indicated that, in addition to the R65 HA, the PB2, NP, NA, and M form an optimal gene combination enabling high virulence like the parent virus R65.</p>
</sec>
<sec disp-level="2">
<title>Stepwise reduction of HPAIV genes reveals that R65 HA plus NA are sufficient for high virulence and transmission</title>
<p>To identify the specific HPAIV genes conferring high virulence, we generated tailored reassortants from HPAIV R65 and LPAIV TG05 by reverse genetics
<xref ref-type="bibr" rid="b19">19</xref>
. Since introduction of the R65 HA into the genetic background of TG05 resulted in 100% morbidity and 30% lethality in chicken (reassortant TG05-HA
<sub>R65</sub>
in
<xref ref-type="bibr" rid="b12">12</xref>
), we stepwise replaced several TG05 genes in TG05-HA
<sub>R65</sub>
by their R65 counterparts yielding these reassortants: TG05-HA/PB2/PB1/PA/NP
<sub>R65</sub>
contains the TG05 NA, M, and NS genes and the R65 HA plus polymerase complex genes (PB2, PB1, PA, and NP), whereas reassortant TG05-HA/NA/M/NS
<sub>R65</sub>
carries the HA plus the NA, M, and NS genes from R65 but the polymerase complex genes of TG05. Oculonasal inoculation of ten chickens with 10
<sup>5</sup>
pfu of TG05-HA/PB2/PB1/PA/NP
<sub>R65</sub>
resulted in a lethality of 30% like TG05-HA
<sub>R65</sub>
<xref ref-type="bibr" rid="b12">12</xref>
indicating that the R65 polymerase complex alone does not confer high virulence. In contrast, the reciprocal “small” gene reassortant TG05-HA/NA/M/NS
<sub>R65</sub>
exhibited 100% lethality resembling R65. Furthermore, the 2.9 days (d) mean death time (MDT) of TG05-HA/NA/M/NS
<sub>R65</sub>
is close to that of R65 with 3.8 d (range 3–5 d, six animals) (
<xref ref-type="table" rid="t1">Table 1</xref>
,
<xref ref-type="fig" rid="f3">Fig. 3</xref>
), indicating that the R65 HA, NA, M or NS genes are sufficient for a highly pathogenic phenotype.</p>
<p>To identify which of the R65 NA, M or NS gene(s) is responsible for high virulence, we infected chickens with the three triple reassortants TG05-HA/NA/M
<sub>R65</sub>
, TG05-HA/NA/NS
<sub>R65</sub>
, TG05-HA/M/NS
<sub>R65</sub>
, or the double reassortant TG05-HA
<sub>R65</sub>
NA
<sub>R65</sub>
. TG05-HA/NA/M
<sub>R65</sub>
and TG05-HA/NA/NS
<sub>R65</sub>
displayed 100% lethality with increased MDT of 3.6 d and 5.2 d, respectively, suggesting a decrease in virulence compared to the quadruple reassortant TG05-HA/NA/M/NS
<sub>R65</sub>
(MDT 2.9 d) (
<xref ref-type="table" rid="t1">Table 1</xref>
). In contrast, replacement of the R65 NA gene by that of TG05 as in TG05-HA/M/NS
<sub>R65</sub>
resulted in death of only three of eight animals similar to TG05-HA
<sub>R65</sub>
<xref ref-type="bibr" rid="b12">12</xref>
, indicating a crucial role of the NA for high virulence in R65 (
<xref ref-type="table" rid="t1">Table 1</xref>
). Correspondingly, the HA/NA reassortant TG05-HA
<sub>R65</sub>
NA
<sub>R65</sub>
(which differs from TG05-HA
<sub>R65</sub>
only by the R65 NA) displays 100% lethality, although at a prolonged MDT of 5.9 d (range 5–7 d), proving that introduction of the R65 NA gene into TG05-HA
<sub>R65</sub>
resulted in a highly pathogenic phenotype (
<xref ref-type="table" rid="t1">Table 1</xref>
). Since M, NS or the polymerase complex contribute to the high virulence of R65 to a very limited extent only in the presence of the R65 NA, the NA represents a major virulence determinant.</p>
<p>To investigate the impact of the R65 NA and M on virus transmission, we infected six chickens with the reassortants TG05-HA/NA/M
<sub>R65</sub>
or TG05-HA
<sub>R65</sub>
NA
<sub>R65</sub>
and added four contact animals after one day. In both groups, all primarily infected animals died on days 4 to 6. All contact animals succumbed to death on days 7 to 8 with TG05-HA/NA/M
<sub>R65</sub>
and days 8 to 9 with TG05-HA
<sub>R65</sub>
NA
<sub>R65</sub>
(
<xref ref-type="fig" rid="f3">Fig. 3</xref>
). To investigate whether all other R65 genes combined but except the NA can confer high virulence, we replaced the NA in R65 by that of TG05 resulting in the reassortant R65-NA
<sub>TG05</sub>
. Oculonasal infection of chickens resulted in 100% mortality both in the primarily infected and the contact animals (
<xref ref-type="fig" rid="f3">Fig. 3</xref>
), in contrast to TG05-HA/M/NS
<sub>R65</sub>
displaying a mortality of 37.5% (
<xref ref-type="table" rid="t1">Table 1</xref>
). Thus, in the absence of the R65 NA, the HA, M, and NS can only confer a highly pathogenic phenotype in conjunction with the polymerase genes of R65. On the other hand, R65 HA and NA alone are sufficient for high virulence and transmission.</p>
</sec>
<sec disp-level="2">
<title>NA stalk deletion plus polybasic HACS form a minimal set of virulence determinants</title>
<p>After having shown that the R65 HA and NA alone are sufficient for a highly pathogenic phenotype, we addressed the question whether the stalk deletion of the R65 NA, increasingly found in contemporary H5N1 HPAIV
<xref ref-type="bibr" rid="b20">20</xref>
, is crucial for high virulence and virus transmission. To this end, we generated two different NA mutant viruses. Removal of amino acids (aa) 49 to 68 in the TG05 NA stalk region resulted in the same stalk deletion as in the NA of R65; this NA mutant plasmid was used to rescue TG05-HA
<sub>R65</sub>
NA
<sub>short-TG05</sub>
. For a mirror-imaged virus mutant, we inserted amino acids 49–68 from the TG05 NA into the stalk region of the R65 NA to rescue TG05-HA
<sub>R65</sub>
NA
<sub>long-R65</sub>
. After infection of six chickens with 10
<sup>5</sup>
pfu and addition of 4 contact animals one day later, TG05-HA
<sub>R65</sub>
NA
<sub>long-R65</sub>
caused death in four of six animals and no symptoms in the contact animals (
<xref ref-type="fig" rid="f4">Fig. 4</xref>
). However, TG05-HA
<sub>R65</sub>
NA
<sub>short-TG05</sub>
in striking contrast to TG05-HA
<sub>R65</sub>
(30% lethality) (
<xref ref-type="table" rid="t1">Table 1</xref>
), displayed 100% lethality both in the primarily infected and the contact animals demonstrating high virulence and efficient transmission (
<xref ref-type="fig" rid="f4">Fig. 4</xref>
). Therefore, in R65 the NA stalk deletion is a major but non-essential virulence determinant which, together with R65 HA carrying a polybasic cleavage site, is sufficient to confer high virulence on TG05.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Discussion</title>
<p>HPAIV evolve from low-pathogenic precursors by acquisition of a polybasic HACS
<xref ref-type="bibr" rid="b4">4</xref>
which is not per se sufficient for high virulence
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b17">17</xref>
. Prior to the emergence of HPAIV, those precursor strains often circulate in gallinaceous poultry thereby accumulating mutational changes
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
. In this study, we aimed to elucidate the genetic determinants which in addition to those of the HA gene facilitate the transformation of LPAIV into HPAIV by two approaches.</p>
<p>First, to reveal minimal gene constellations conferring high virulence, we selected random reassortants by co-transfection of plasmids from both the HPAIV R65 (H5N1) and LPAIV TG05 (H5N1) followed by infection of chickens. In contrast to the classical technique to obtain reassortants by double-infection
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
, this approach allowed us to exclude specific viral genes by omitting the respective plasmids. Infection of chickens with the supernatant after co-transfection of plasmids coding for all eight R65 but seven TG05 genes without HA resulted in 100% lethality. Orally shed reassortants carried the R65 PB2, NP, HA, NA, and M genes, whereas the PB1, PA and NS genes originated from TG05. Reconstitution of this genotype by reverse genetics led to an HPAIV undistinguishable from R65. This finding suggests that the TG05 PB1, PA, and NS genes do not require further adaptation, whereas a highly pathogenic phenotype is conferred by the R65 HA plus the PB2, NP, NA, and M genes.</p>
<p>Secondly, we investigated specific reassortants from R65 and TG05 in chicken. Stepwise reduction of the R65 genes beginning with reassortant TG05-HA/NA/M/NS
<sub>R65</sub>
resulted in prolonged mean death times indicating limited contribution of the R65 polymerase, M, and NS genes to virulence (
<xref ref-type="table" rid="t1">Table 1</xref>
). Remarkably, the R65 polymerase and NP, or the M and NS genes on their own were not sufficient for high virulence. Such subtle changes in virulence are likely not reflected by the intravenous pathogenicity index test
<xref ref-type="bibr" rid="b23">23</xref>
since the intravenous inoculation ensures standardization but bypasses infection of the natural target tissues. In contrast, high lethality and efficient transmission of the single-gene reassortant R65-NA
<sub>TG05</sub>
demonstrates that beside HA, the R65 polymerase including NP
<italic>plus</italic>
the M and NS genes yield an HPAIV. On the other hand, high virulence was conferred by the R65 HA and NA genes alone (reassortant TG05-HA
<sub>R65</sub>
NA
<sub>R65</sub>
).</p>
<p>We then investigated whether the NA stalk deletion in R65 is crucial for high virulence and transmission to contact animals. Repairing the stalk deletion led to reduced virulence and prevented transmission, whereas introduction of the NA stalk deletion into the TG05 NA as in the mutant TG05-HA
<sub>R65</sub>
NA
<sub>short-TG05</sub>
increased lethality and transmission to 100% compared with its parental virus TG05-HA
<sub>R65</sub>
displaying 30% lethality
<xref ref-type="bibr" rid="b12">12</xref>
. This finding reveals that in the presence of an HPAIV HA with polybasic HACS, virulence determinants, already present in LPAIV, like the NA stalk deletion
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
alone may support the transformation to a highly pathogenic phenotype.</p>
<p>Current understanding on functional consequences of the NA stalk deletion is still limited. An elevated V
<sub>max</sub>
at a nearly unaffected K
<sub>m</sub>
has been demonstrated in case of a small substrate
<xref ref-type="bibr" rid="b28">28</xref>
. However, the ability of the virus to elute from agglutinated erythrocytes and to penetrate mucus on cells of mammalian origin is reduced
<xref ref-type="bibr" rid="b28">28</xref>
<xref ref-type="bibr" rid="b29">29</xref>
. Remarkably, the NA stalk deletion is detrimental for virus replication in ducks
<xref ref-type="bibr" rid="b30">30</xref>
but shifts the viral tropism from the intestinal to the respiratory tract in chicken
<xref ref-type="bibr" rid="b27">27</xref>
. Correspondingly, the NA stalk deletion is considered an adaptation of low-pathogenic avian strains from waterfowl to domestic poultry, in particular to chicken
<xref ref-type="bibr" rid="b27">27</xref>
.</p>
<p>In general, the pairwise comparison of an HPAIV versus its putative low-pathogenic precursor may be limited to only a partial subset of a concealed set of virulence determinants, all together conferring high virulence. Such a complete set may be formed by an NA stalk deletion as a
<italic>major</italic>
but non-essential plus the polybasic HACS as the prime and
<italic>essential</italic>
virulence determinant. However, without the NA stalk deletion, a highly pathogenic phenotype is displayed by the reassortant R65-NA
<sub>TG05</sub>
which in addition to the R65 HA carries the R65 polymerase and NP genes together with the R65 M and NS genes. Thus, the aa exchanges of those genes can be considered an alternative set of
<italic>minor</italic>
virulence determinants among which a single exchange contributes to the virulence to only a minute extent. Therefore, HPAIV like R65 may contain at least two different sets of virulence determinants. Taken together, HPAIV require an adapted HA with polybasic HACS as
<italic>essential</italic>
plus either several adaptive aa changes in polymerase, NP, M, and NA genes as
<italic>minor</italic>
virulence determinants or an NA stalk deletion as
<italic>major</italic>
virulence determinant.</p>
</sec>
<sec disp-level="1">
<title>Methods</title>
<sec disp-level="2">
<title>Cells and recombinant viruses</title>
<p>Madin-Darby canine kidney (MDCK) cells were cultivated in minimal essential medium containing 10% fetal bovine serum. Plasmids encoding the gene segments of strains A/Swan/Germany/R65/2006 (H5N1) (R65) (Genbank accession numbers
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="DQ464354-DQ464361">DQ464354-DQ464361</ext-link>
) and A/Teal/Germany/Wv632/2005 (H5N1) (TG05) (Genbank accession numbers
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="CY061882-9">CY061882-9</ext-link>
) have been described
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b17">17</xref>
. To obtain specific reassortants (1 μg each plasmid) or mixtures of random reassortants (1 μg each TG05 plasmid and 0.1 μg each R65 plasmid
<xref ref-type="bibr" rid="b12">12</xref>
) by co-transfection, we rescued recombinant viruses as described and propagated them in 11-day-old embryonated chicken eggs or MDCK cells
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b13">13</xref>
. Gene composition of recombinant viruses was verified by Sanger-sequencing of RT-PCR amplicons obtained from viral RNA. Plaque assays were performed on MDCK cells in the presence of 2 μg/ml N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Sigma, Taufkirchen, Germany) or in the absence of any exogenous protease. All viruses were handled under BSL3+ conditions.</p>
</sec>
<sec disp-level="2">
<title>Mutagenesis of NA stalk</title>
<p>To generate a stalk deletion in the TG05 NA (Genbank accession number
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="CY061887">CY061887</ext-link>
) like that in the R65 NA (Genbank accession number
<ext-link ext-link-type="DDBJ/EMBL/GenBank" xlink:href="DQ464355">DQ464355</ext-link>
), we removed nucleotides 165–224 corresponding to aa 49–68. To elongate the stalk region of R65 NA, we inserted nucleotides 165–224 from the TG05 NA gene between nucleotides 164 and 165 of the R65 NA. Those modifications were introduced by site-directed QuikChange mutagenesis (primer sequences available on request).</p>
</sec>
<sec disp-level="2">
<title>Animal experiments</title>
<p>The animal experiments were evaluated by the responsible ethics committee of the State Office for Agriculture, Food Safety and Fishery in Mecklenburg-Western Pomerania (LALFF M-V) and gained governmental approval (registration number LALLF M-V/TSD/7221.3-1.1-018/07). Four- to eight-weeks-old White Leghorn specific-pathogen-free chickens (Lohmann, Cuxhaven, Germany) were infected oculonasally with 10
<sup>5</sup>
pfu virus, observed daily for clinical symptoms and classified according to the OIE guidelines
<xref ref-type="bibr" rid="b23">23</xref>
as healthy (0), ill (1) (exhibiting one of the following: respiratory symptoms, depression, diarrhea, cyanosis, edema, or central nervous symptoms), severely ill (2) (severe or more than one of the previously mentioned symptoms), or dead (3). The daily clinical score is the arithmetic mean of individual values. Moribund birds were euthanized according to
<xref ref-type="bibr" rid="b23">23</xref>
. The clinical score was calculated by dividing the sum of daily scores (arithmetic mean of the individual scores) by the number of the observation days (10 days). Oral swab samples taken on days 2–3 were subjected to plaque assay on MDCK cells
<xref ref-type="bibr" rid="b31">31</xref>
; from picked plaques, viral RNA was isolated and sequences were determined after RT-PCR. For transmission studies, six chickens were infected oculonasally on day 0. The birds were kept in cages of 123 cm length, 65 cm width, and 77 cm height; the bottom was cleaned daily.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>How to cite this article</bold>
: Stech, O.
<italic>et al.</italic>
The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken.
<italic>Sci. Rep.</italic>
<bold>5</bold>
, 13493; doi: 10.1038/srep13493 (2015).</p>
</sec>
</body>
<back>
<ack>
<p>We thank Timm Harder for providing A/Teal/Germany/Wv632/2005 (H5N1) and A/Swan/Germany/R65/2006 (H5N1). We are very grateful to Frank Klipp, Dajana Helke, Gerda Busch, Marcus Gräber, and Mandy Schmidt for skillful technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (DFG-STE 1957/1).</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Neumann</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Gao</surname>
<given-names>G. F.</given-names>
</name>
,
<name>
<surname>Shu</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Kawaoka</surname>
<given-names>Y.</given-names>
</name>
<article-title>H5N1 influenza viruses: outbreaks and biological properties</article-title>
.
<source>Cell Res</source>
<volume>20</volume>
,
<fpage>51</fpage>
<lpage>61</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">19884910</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Capua</surname>
<given-names>I.</given-names>
</name>
&
<name>
<surname>Marangon</surname>
<given-names>S.</given-names>
</name>
<article-title>The avian influenza epidemic in Italy, 1999–2000: a review</article-title>
.
<source>Avian Pathol</source>
<volume>29</volume>
,
<fpage>289</fpage>
<lpage>294</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">19184817</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Fouchier</surname>
<given-names>R. A.</given-names>
</name>
<italic>et al.</italic>
<article-title>Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>101</volume>
,
<fpage>1356</fpage>
<lpage>1361</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">14745020</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Kawaoka</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Webster</surname>
<given-names>R. G.</given-names>
</name>
<article-title>Evolution of the A/Chicken/Pennsylvania/83 (H5N2) influenza virus</article-title>
.
<source>Virology</source>
<volume>146</volume>
,
<fpage>130</fpage>
<lpage>137</lpage>
(
<year>1985</year>
).
<pub-id pub-id-type="pmid">4036005</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Suarez</surname>
<given-names>D. L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Recombination resulting in virulence shift in avian influenza outbreak, Chile</article-title>
.
<source>Emerg Infect Dis</source>
<volume>10</volume>
,
<fpage>693</fpage>
<lpage>699</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15200862</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Klenk</surname>
<given-names>H. D.</given-names>
</name>
&
<name>
<surname>Garten</surname>
<given-names>W.</given-names>
</name>
<article-title>Host cell proteases controlling virus pathogenicity</article-title>
.
<source>Trends Microbiol.</source>
<volume>2</volume>
,
<fpage>39</fpage>
<lpage>43</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8162439</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Aamir</surname>
<given-names>U. B.</given-names>
</name>
,
<name>
<surname>Wernery</surname>
<given-names>U.</given-names>
</name>
,
<name>
<surname>Ilyushina</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Webster</surname>
<given-names>R. G.</given-names>
</name>
<article-title>Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003</article-title>
.
<source>Virology</source>
<volume>361</volume>
,
<fpage>45</fpage>
<lpage>55</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17157891</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Cheng</surname>
<given-names>M. C.</given-names>
</name>
<italic>et al.</italic>
<article-title>Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008</article-title>
.
<source>Avian Dis</source>
<volume>54</volume>
,
<fpage>885</fpage>
<lpage>893</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20608534</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Gohrbandt</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5</article-title>
.
<source>J Gen Virol</source>
<volume>92</volume>
,
<fpage>51</fpage>
<lpage>59</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">20881092</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Guo</surname>
<given-names>Y. J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia</article-title>
.
<source>Virology</source>
<volume>267</volume>
,
<fpage>279</fpage>
<lpage>288</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">10662623</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Horimoto</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Kawaoka</surname>
<given-names>Y.</given-names>
</name>
<article-title>Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus</article-title>
.
<source>J Virol</source>
<volume>68</volume>
,
<fpage>3120</fpage>
<lpage>3128</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">8151777</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Bogs</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site</article-title>
.
<source>PLoS One</source>
<volume>5</volume>
,
<fpage>e11826</fpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20676399</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Gohrbandt</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken</article-title>
.
<source>J Gen Virol</source>
<volume>92</volume>
,
<fpage>1843</fpage>
<lpage>1853</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21525207</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Munster</surname>
<given-names>V. J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype</article-title>
.
<source>J Virol</source>
<volume>84</volume>
,
<fpage>7953</fpage>
<lpage>7960</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20519405</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Stech</surname>
<given-names>O.</given-names>
</name>
<italic>et al.</italic>
<article-title>Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain</article-title>
.
<source>J Virol</source>
<volume>83</volume>
,
<fpage>5864</fpage>
<lpage>5868</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19297482</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Londt</surname>
<given-names>B. Z.</given-names>
</name>
,
<name>
<surname>Banks</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Alexander</surname>
<given-names>D. J.</given-names>
</name>
<article-title>Highly pathogenic avian influenza viruses with low virulence for chickens in
<italic>in vivo</italic>
tests</article-title>
.
<source>Avian Pathol</source>
<volume>36</volume>
,
<fpage>347</fpage>
<lpage>350</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17899457</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Veits</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>109</volume>
,
<fpage>2579</fpage>
<lpage>2584</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22308331</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Wasilenko</surname>
<given-names>J. L.</given-names>
</name>
<italic>et al.</italic>
<article-title>NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens</article-title>
.
<source>J Virol</source>
<volume>82</volume>
,
<fpage>4544</fpage>
<lpage>4553</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18305037</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Gabriel</surname>
<given-names>G.</given-names>
</name>
<italic>et al.</italic>
<article-title>The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<volume>102</volume>
,
<fpage>18590</fpage>
<lpage>18595</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16339318</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
<italic>et al.</italic>
<article-title>The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus</article-title>
.
<source>PLoS One</source>
<volume>4</volume>
,
<fpage>e6277</fpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19609439</pub-id>
</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Kilbourne</surname>
<given-names>E. D.</given-names>
</name>
<article-title>Future influenza vaccines and the use of genetic recombinants</article-title>
.
<source>Bulletin of the World Health Organization</source>
<volume>41</volume>
,
<fpage>643</fpage>
<lpage>645</lpage>
(
<year>1969</year>
).
<pub-id pub-id-type="pmid">5309489</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Scholtissek</surname>
<given-names>C.</given-names>
</name>
<article-title>The genome of the influenza virus</article-title>
.
<source>Current topics in microbiology and immunology</source>
<volume>80</volume>
,
<fpage>139</fpage>
<lpage>169</lpage>
(
<year>1978</year>
).
<pub-id pub-id-type="pmid">668407</pub-id>
</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Alexander</surname>
<given-names>D. J.</given-names>
</name>
<article-title>Manual of Diagnostic Tests & Vaccines for Terrestrial Animals</article-title>
in
<source>Avian influenza.</source>
Vol. 6th Ed (ed.
<name>
<surname>Vallat</surname>
<given-names>B.</given-names>
</name>
)
<fpage>465</fpage>
<lpage>481</lpage>
(Office International des Epizooties, Paris,
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Abolnik</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Bisschop</surname>
<given-names>S. P.</given-names>
</name>
,
<name>
<surname>Gerdes</surname>
<given-names>G. H.</given-names>
</name>
,
<name>
<surname>Olivier</surname>
<given-names>A. J.</given-names>
</name>
&
<name>
<surname>Horner</surname>
<given-names>R. F.</given-names>
</name>
<article-title>Phylogenetic analysis of low-pathogenicity avian influenza H6N2 viruses from chicken outbreaks (2001–2005) suggest that they are reassortants of historic ostrich low-pathogenicity avian influenza H9N2 and H6N8 viruses</article-title>
.
<source>Avian Dis</source>
<volume>51</volume>
,
<fpage>279</fpage>
<lpage>284</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17494567</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Deshpande</surname>
<given-names>K. L.</given-names>
</name>
,
<name>
<surname>Naeve</surname>
<given-names>C. W.</given-names>
</name>
&
<name>
<surname>Webster</surname>
<given-names>R. G.</given-names>
</name>
<article-title>The neuraminidases of the virulent and avirulent A/Chicken/Pennsylvania/83 (H5N2) influenza A viruses: sequence and antigenic analyses</article-title>
.
<source>Virology</source>
<volume>147</volume>
,
<fpage>49</fpage>
<lpage>60</lpage>
(
<year>1985</year>
).
<pub-id pub-id-type="pmid">2414922</pub-id>
</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Munier</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens</article-title>
.
<source>J Virol</source>
<volume>84</volume>
,
<fpage>940</fpage>
<lpage>952</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">19889765</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Sorrell</surname>
<given-names>E. M.</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Pena</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Perez</surname>
<given-names>D. R.</given-names>
</name>
<article-title>A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens</article-title>
.
<source>J Virol</source>
<volume>84</volume>
,
<fpage>11831</fpage>
<lpage>11840</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20826691</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Matsuoka</surname>
<given-names>Y.</given-names>
</name>
<italic>et al.</italic>
<article-title>Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice</article-title>
.
<source>J Virol</source>
<volume>83</volume>
,
<fpage>4704</fpage>
<lpage>4708</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19225004</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Blumenkrantz</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Roberts</surname>
<given-names>K. L.</given-names>
</name>
,
<name>
<surname>Shelton</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Lycett</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Barclay</surname>
<given-names>W. S.</given-names>
</name>
<article-title>The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets</article-title>
.
<source>J Virol</source>
<volume>87</volume>
,
<fpage>10539</fpage>
<lpage>10551</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23864615</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Hoffmann</surname>
<given-names>T. W.</given-names>
</name>
<italic>et al.</italic>
<article-title>Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks</article-title>
.
<source>J Virol</source>
<volume>86</volume>
,
<fpage>584</fpage>
<lpage>588</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22013034</pub-id>
</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Stech</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Xiong</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Scholtissek</surname>
<given-names>C.</given-names>
</name>
&
<name>
<surname>Webster</surname>
<given-names>R. G.</given-names>
</name>
<article-title>Independence of evolutionary and mutational rates after transmission of avian influenza viruses to swine</article-title>
.
<source>J Virol</source>
<volume>73</volume>
,
<fpage>1878</fpage>
<lpage>1884</lpage>
(
<year>1999</year>
).
<pub-id pub-id-type="pmid">9971766</pub-id>
</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn fn-type="COI-statement">
<p>The authors declare no competing financial interests.</p>
</fn>
<fn>
<p>
<bold>Author Contributions</bold>
O.S., J.V., E.M.A. and U.W. performed the experiments. O.S. and J.S. designed the experiments and the study. T.C.M. and J.S. wrote the manuscript.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Simultaneous presence of TG05 and R65 genes determined by Sanger sequencing of supernatants following plasmid co-transfection to obtain mixtures of random reassortants.</title>
<p>(
<bold>A</bold>
) The TG05 polymerase gene plasmids (PB2, PB1, PA, NP) and the R65 HA plasmid were co-transfected together with mixtures of the NA, M, and NS plasmids originating both from TG05 and R65. (
<bold>B</bold>
) The TG05 plasmids except the HA plasmid were co-transfected together with all eight R65 plasmids.</p>
</caption>
<graphic xlink:href="srep13493-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>High lethality following oculonasal infection of chickens with 600 μl co-transfection supernatants.</title>
<p>Daily clinical score: 0: healthy, 1: ill, 2: severely ill or 3: dead. (
<bold>A</bold>
) Birds infected with supernatant from co-transfection of the TG05 polymerase gene plasmids (PB2, PB1, PA, NP), the R65 HA plasmid and mixtures of the NA, M, and NS plasmids originating both from TG05 and R65. (
<bold>B</bold>
) Birds infected with supernatant from co-transfection of the TG05 plasmids except the HA plasmid and all eight R65 plasmids.</p>
</caption>
<graphic xlink:href="srep13493-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Minimal R65 gene constellations sufficient for a lethal phenotype and transmission in chicken.</title>
<p>We infected the birds oculonasally with 10
<sup>5</sup>
pfu virus and added bystander animals on day 1 p. i. Daily clinical score: 0: healthy, 1: ill, 2: severely ill or 3: dead.</p>
</caption>
<graphic xlink:href="srep13493-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>NA stalk deletion is crucial for transmission among chickens.</title>
<p>We infected chickens oculonasally with 10
<sup>5</sup>
pfu virus and added bystander animals on day 1 p. i. Daily clinical score: 0: healthy, 1: ill, 2: severely ill or 3: dead.</p>
</caption>
<graphic xlink:href="srep13493-f4"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>Virulence of parent viruses, TG05/R65 reassortants, and NA stalk variants in chicken.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
<col align="center"></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Virus</th>
<th align="center" valign="top" charoff="50">Morbidity</th>
<th align="center" valign="top" charoff="50">Mortality</th>
<th align="center" valign="top" charoff="50">MDT (d) and Range</th>
<th align="center" valign="top" charoff="50">Clinical Score</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="5" align="left" valign="top" charoff="50">
<italic>Parent Viruses</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05
<xref ref-type="fn" rid="t1-fn1">1</xref>
</td>
<td align="center" valign="top" charoff="50">0/10</td>
<td align="center" valign="top" charoff="50">0/10</td>
<td align="center" valign="top" charoff="50">n/a</td>
<td align="center" valign="top" charoff="50">0.00</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05-HA
<sub>R65</sub>
<xref ref-type="fn" rid="t1-fn1">1</xref>
</td>
<td align="center" valign="top" charoff="50">8/10</td>
<td align="center" valign="top" charoff="50">3/10</td>
<td align="center" valign="top" charoff="50">n/a</td>
<td align="center" valign="top" charoff="50">0.90</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">R65
<xref ref-type="fn" rid="t1-fn2">2</xref>
</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">3.8 (3–5)</td>
<td align="center" valign="top" charoff="50">2.20</td>
</tr>
<tr>
<td colspan="5" align="left" valign="top" charoff="50">
<italic>Selected Reassortant</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05-HA/PB2/NP/M/NA
<sub>R65</sub>
<xref ref-type="fn" rid="t1-fn2">2</xref>
</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">3.5 (3–4)</td>
<td align="center" valign="top" charoff="50">2.26</td>
</tr>
<tr>
<td colspan="5" align="left" valign="top" charoff="50">
<italic>Tailored Reassortants</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05-HA/PB2/PB1/PA/NP
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">4/8</td>
<td align="center" valign="top" charoff="50">3/8</td>
<td align="center" valign="top" charoff="50">7.3 (6–8)</td>
<td align="center" valign="top" charoff="50">0.62</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05/HA/NA/M/NS
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">2.9 (2–3)</td>
<td align="center" valign="top" charoff="50">2.54</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05/HA/NA/M
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">3.6 (3–4)</td>
<td align="center" valign="top" charoff="50">2.43</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05/HA/NA/NS
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">10/10</td>
<td align="center" valign="top" charoff="50">5.2 (4–6)</td>
<td align="center" valign="top" charoff="50">1.80</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05/HA
<sub>R65</sub>
NA
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">8/8</td>
<td align="center" valign="top" charoff="50">8/8</td>
<td align="center" valign="top" charoff="50">5.9 (5–7)</td>
<td align="center" valign="top" charoff="50">1.67</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05/HA/M/NS
<sub>R65</sub>
</td>
<td align="center" valign="top" charoff="50">4/8</td>
<td align="center" valign="top" charoff="50">3/8</td>
<td align="center" valign="top" charoff="50">7.0 (6–9)</td>
<td align="center" valign="top" charoff="50">0.51</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">R65-NA
<sub>TG05</sub>
<xref ref-type="fn" rid="t1-fn2">2</xref>
</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">6.2 (4–8)</td>
<td align="center" valign="top" charoff="50">1.73</td>
</tr>
<tr>
<td colspan="5" align="left" valign="top" charoff="50">
<italic>NA Stalk Variants</italic>
</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05-HA
<sub>R65</sub>
NA
<sub>long-R65</sub>
<xref ref-type="fn" rid="t1-fn3">3</xref>
</td>
<td align="center" valign="top" charoff="50">5/6</td>
<td align="center" valign="top" charoff="50">4/6</td>
<td align="center" valign="top" charoff="50">5.5 (5–6)</td>
<td align="center" valign="top" charoff="50">1.32</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">TG05-HA
<sub>R65</sub>
NA
<sub>short-TG05</sub>
<xref ref-type="fn" rid="t1-fn3">3</xref>
</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">6/6</td>
<td align="center" valign="top" charoff="50">4.2 (3–5)</td>
<td align="center" valign="top" charoff="50">2.22</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1-fn1">
<p>Morbidity, mortality and overall clinical score after oculonasal infection with 10
<sup>5</sup>
 pfu.</p>
</fn>
<fn id="t1-fn2">
<p>
<sup>1</sup>
Data of this group from previous study
<xref ref-type="bibr" rid="b12">12</xref>
.</p>
</fn>
<fn id="t1-fn3">
<p>
<sup>2</sup>
Identical group as in
<xref ref-type="fig" rid="f3">Fig. 3</xref>
.</p>
</fn>
<fn id="t1-fn4">
<p>
<sup>3</sup>
Identical group as in
<xref ref-type="fig" rid="f4">Fig. 4</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4549673
   |texte=   The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26306544" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021