Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1

Identifieur interne : 000013 ( PascalFrancis/Corpus ); précédent : 000012; suivant : 000014

A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1

Auteurs : DUJUAN LI ; JIANPING WANG ; RONGHUI WANG ; YANBIN LI ; Daad Abi-Ghanem ; Luc Berghman ; Billy Hargis ; HUAGUANG LU

Source :

RBID : Pascal:11-0290321

Descripteurs français

English descriptors

Abstract

As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0956-5663
A03   1    @0 Biosens. bioelectron.
A05       @2 26
A06       @2 10
A08 01  1  ENG  @1 A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1
A11 01  1    @1 DUJUAN LI
A11 02  1    @1 JIANPING WANG
A11 03  1    @1 RONGHUI WANG
A11 04  1    @1 YANBIN LI
A11 05  1    @1 ABI-GHANEM (Daad)
A11 06  1    @1 BERGHMAN (Luc)
A11 07  1    @1 HARGIS (Billy)
A11 08  1    @1 HUAGUANG LU
A14 01      @1 College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road @2 Hangzhou 310058 @3 CHN @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Biological and Agricultural Engineering, University of Arkansas @2 Fayetteville, AR 72701 @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Center of Excellence for Poultry Science, University of Arkansas @2 Fayetteville, AR 72701 @3 USA @Z 4 aut. @Z 7 aut.
A14 04      @1 Department of Poultry Science and Veterinary Pathobiology, Texas A&M University @2 College Station, TX 77843 @3 USA @Z 5 aut. @Z 6 aut.
A14 05      @1 Animal Diagnostic Laboratory, Penn State University @2 State College, PA 16802 @3 USA @Z 8 aut.
A20       @1 4146-4154
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 20668 @5 354000190343220270
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0290321
A60       @1 P
A61       @0 A
A64 01  1    @0 Biosensors & bioelectronics
A66 01      @0 GBR
C01 01    ENG  @0 As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.
C02 01  X    @0 002A31C09B
C02 02  X    @0 215
C03 01  X  FRE  @0 Microbalance quartz @5 01
C03 01  X  ENG  @0 Quartz microbalance @5 01
C03 01  X  SPA  @0 Microbalanza cuarzo @5 01
C03 02  X  FRE  @0 Immunodétecteur @5 02
C03 02  X  ENG  @0 Immunosensor @5 02
C03 02  X  SPA  @0 Inmunodetector @5 02
C03 03  X  FRE  @0 Détection @5 10
C03 03  X  ENG  @0 Detection @5 10
C03 03  X  SPA  @0 Detección @5 10
C03 04  X  FRE  @0 Grippe aviaire @2 NM @5 11
C03 04  X  ENG  @0 Avian influenza @2 NM @5 11
C03 04  X  SPA  @0 Gripe aviar @2 NM @5 11
C03 05  X  FRE  @0 Magnétique @5 12
C03 05  X  ENG  @0 Magnetic @5 12
C03 05  X  SPA  @0 Magnético @5 12
C03 06  X  FRE  @0 Influenzavirus aviaire @2 NW @5 13
C03 06  X  ENG  @0 Avian influenzavirus @2 NW @5 13
C03 06  X  SPA  @0 Avian influenzavirus @2 NW @5 13
C03 07  X  FRE  @0 Cristal @5 19
C03 07  X  ENG  @0 Crystals @5 19
C03 07  X  SPA  @0 Cristal @5 19
C03 08  X  FRE  @0 Anticorps @5 20
C03 08  X  ENG  @0 Antibody @5 20
C03 08  X  SPA  @0 Anticuerpo @5 20
C03 09  X  FRE  @0 Souche H5N1 @4 CD @5 96
C03 09  X  ENG  @0 H5N1 @4 CD @5 96
C03 10  X  FRE  @0 Influenzavirus A(H5N1) @4 CD @5 97
C03 10  X  ENG  @0 Influenzavirus A(H5N1) @4 CD @5 97
C07 01  X  FRE  @0 Biodétecteur
C07 01  X  ENG  @0 Biosensor
C07 01  X  SPA  @0 Biodetector
C07 02  X  FRE  @0 Virose
C07 02  X  ENG  @0 Viral disease
C07 02  X  SPA  @0 Virosis
C07 03  X  FRE  @0 Infection
C07 03  X  ENG  @0 Infection
C07 03  X  SPA  @0 Infección
C07 04  X  FRE  @0 Influenzavirus A @2 NW
C07 04  X  ENG  @0 Influenzavirus A @2 NW
C07 04  X  SPA  @0 Influenzavirus A @2 NW
C07 05  X  FRE  @0 Orthomyxoviridae @2 NW
C07 05  X  ENG  @0 Orthomyxoviridae @2 NW
C07 05  X  SPA  @0 Orthomyxoviridae @2 NW
C07 06  X  FRE  @0 Virus @2 NW
C07 06  X  ENG  @0 Virus @2 NW
C07 06  X  SPA  @0 Virus @2 NW
N21       @1 192
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0290321 INIST
ET : A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1
AU : DUJUAN LI; JIANPING WANG; RONGHUI WANG; YANBIN LI; ABI-GHANEM (Daad); BERGHMAN (Luc); HARGIS (Billy); HUAGUANG LU
AF : College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road/Hangzhou 310058/Chine (1 aut., 2 aut.); Department of Biological and Agricultural Engineering, University of Arkansas/Fayetteville, AR 72701/Etats-Unis (1 aut., 3 aut., 4 aut.); Center of Excellence for Poultry Science, University of Arkansas/Fayetteville, AR 72701/Etats-Unis (4 aut., 7 aut.); Department of Poultry Science and Veterinary Pathobiology, Texas A&M University/College Station, TX 77843/Etats-Unis (5 aut., 6 aut.); Animal Diagnostic Laboratory, Penn State University/State College, PA 16802/Etats-Unis (8 aut.)
DT : Publication en série; Niveau analytique
SO : Biosensors & bioelectronics; ISSN 0956-5663; Royaume-Uni; Da. 2011; Vol. 26; No. 10; Pp. 4146-4154; Bibl. 3/4 p.
LA : Anglais
EA : As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.
CC : 002A31C09B; 215
FD : Microbalance quartz; Immunodétecteur; Détection; Grippe aviaire; Magnétique; Influenzavirus aviaire; Cristal; Anticorps; Souche H5N1; Influenzavirus A(H5N1)
FG : Biodétecteur; Virose; Infection; Influenzavirus A; Orthomyxoviridae; Virus
ED : Quartz microbalance; Immunosensor; Detection; Avian influenza; Magnetic; Avian influenzavirus; Crystals; Antibody; H5N1; Influenzavirus A(H5N1)
EG : Biosensor; Viral disease; Infection; Influenzavirus A; Orthomyxoviridae; Virus
SD : Microbalanza cuarzo; Inmunodetector; Detección; Gripe aviar; Magnético; Avian influenzavirus; Cristal; Anticuerpo
LO : INIST-20668.354000190343220270
ID : 11-0290321

Links to Exploration step

Pascal:11-0290321

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1</title>
<author>
<name sortKey="Dujuan Li" sort="Dujuan Li" uniqKey="Dujuan Li" last="Dujuan Li">DUJUAN LI</name>
<affiliation>
<inist:fA14 i1="01">
<s1>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianping Wang" sort="Jianping Wang" uniqKey="Jianping Wang" last="Jianping Wang">JIANPING WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ronghui Wang" sort="Ronghui Wang" uniqKey="Ronghui Wang" last="Ronghui Wang">RONGHUI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yanbin Li" sort="Yanbin Li" uniqKey="Yanbin Li" last="Yanbin Li">YANBIN LI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Center of Excellence for Poultry Science, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abi Ghanem, Daad" sort="Abi Ghanem, Daad" uniqKey="Abi Ghanem D" first="Daad" last="Abi-Ghanem">Daad Abi-Ghanem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Poultry Science and Veterinary Pathobiology, Texas A&M University</s1>
<s2>College Station, TX 77843</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Berghman, Luc" sort="Berghman, Luc" uniqKey="Berghman L" first="Luc" last="Berghman">Luc Berghman</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Poultry Science and Veterinary Pathobiology, Texas A&M University</s1>
<s2>College Station, TX 77843</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hargis, Billy" sort="Hargis, Billy" uniqKey="Hargis B" first="Billy" last="Hargis">Billy Hargis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center of Excellence for Poultry Science, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huaguang Lu" sort="Huaguang Lu" uniqKey="Huaguang Lu" last="Huaguang Lu">HUAGUANG LU</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Animal Diagnostic Laboratory, Penn State University</s1>
<s2>State College, PA 16802</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0290321</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0290321 INIST</idno>
<idno type="RBID">Pascal:11-0290321</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000013</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1</title>
<author>
<name sortKey="Dujuan Li" sort="Dujuan Li" uniqKey="Dujuan Li" last="Dujuan Li">DUJUAN LI</name>
<affiliation>
<inist:fA14 i1="01">
<s1>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianping Wang" sort="Jianping Wang" uniqKey="Jianping Wang" last="Jianping Wang">JIANPING WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ronghui Wang" sort="Ronghui Wang" uniqKey="Ronghui Wang" last="Ronghui Wang">RONGHUI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yanbin Li" sort="Yanbin Li" uniqKey="Yanbin Li" last="Yanbin Li">YANBIN LI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Center of Excellence for Poultry Science, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abi Ghanem, Daad" sort="Abi Ghanem, Daad" uniqKey="Abi Ghanem D" first="Daad" last="Abi-Ghanem">Daad Abi-Ghanem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Poultry Science and Veterinary Pathobiology, Texas A&M University</s1>
<s2>College Station, TX 77843</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Berghman, Luc" sort="Berghman, Luc" uniqKey="Berghman L" first="Luc" last="Berghman">Luc Berghman</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Poultry Science and Veterinary Pathobiology, Texas A&M University</s1>
<s2>College Station, TX 77843</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hargis, Billy" sort="Hargis, Billy" uniqKey="Hargis B" first="Billy" last="Hargis">Billy Hargis</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Center of Excellence for Poultry Science, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huaguang Lu" sort="Huaguang Lu" uniqKey="Huaguang Lu" last="Huaguang Lu">HUAGUANG LU</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Animal Diagnostic Laboratory, Penn State University</s1>
<s2>State College, PA 16802</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Biosensors & bioelectronics</title>
<title level="j" type="abbreviated">Biosens. bioelectron.</title>
<idno type="ISSN">0956-5663</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Biosensors & bioelectronics</title>
<title level="j" type="abbreviated">Biosens. bioelectron.</title>
<idno type="ISSN">0956-5663</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibody</term>
<term>Avian influenza</term>
<term>Avian influenzavirus</term>
<term>Crystals</term>
<term>Detection</term>
<term>H5N1</term>
<term>Immunosensor</term>
<term>Influenzavirus A(H5N1)</term>
<term>Magnetic</term>
<term>Quartz microbalance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microbalance quartz</term>
<term>Immunodétecteur</term>
<term>Détection</term>
<term>Grippe aviaire</term>
<term>Magnétique</term>
<term>Influenzavirus aviaire</term>
<term>Cristal</term>
<term>Anticorps</term>
<term>Souche H5N1</term>
<term>Influenzavirus A(H5N1)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0956-5663</s0>
</fA01>
<fA03 i2="1">
<s0>Biosens. bioelectron.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DUJUAN LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIANPING WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RONGHUI WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YANBIN LI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ABI-GHANEM (Daad)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BERGHMAN (Luc)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HARGIS (Billy)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HUAGUANG LU</s1>
</fA11>
<fA14 i1="01">
<s1>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biological and Agricultural Engineering, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center of Excellence for Poultry Science, University of Arkansas</s1>
<s2>Fayetteville, AR 72701</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Poultry Science and Veterinary Pathobiology, Texas A&M University</s1>
<s2>College Station, TX 77843</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Animal Diagnostic Laboratory, Penn State University</s1>
<s2>State College, PA 16802</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>4146-4154</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20668</s2>
<s5>354000190343220270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0290321</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Biosensors & bioelectronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A31C09B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>215</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Microbalance quartz</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quartz microbalance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Microbalanza cuarzo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Immunodétecteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Immunosensor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Inmunodetector</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Détection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Detection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Detección</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Grippe aviaire</s0>
<s2>NM</s2>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Avian influenza</s0>
<s2>NM</s2>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Gripe aviar</s0>
<s2>NM</s2>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Magnétique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Magnetic</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Magnético</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Influenzavirus aviaire</s0>
<s2>NW</s2>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Avian influenzavirus</s0>
<s2>NW</s2>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Avian influenzavirus</s0>
<s2>NW</s2>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cristal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Crystals</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Cristal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Anticorps</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Antibody</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Anticuerpo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Souche H5N1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>H5N1</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Influenzavirus A(H5N1)</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Influenzavirus A(H5N1)</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Biodétecteur</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Biosensor</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Biodetector</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Infection</s0>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Infection</s0>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Infección</s0>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Influenzavirus A</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Influenzavirus A</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Influenzavirus A</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Orthomyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Orthomyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Orthomyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>192</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0290321 INIST</NO>
<ET>A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1</ET>
<AU>DUJUAN LI; JIANPING WANG; RONGHUI WANG; YANBIN LI; ABI-GHANEM (Daad); BERGHMAN (Luc); HARGIS (Billy); HUAGUANG LU</AU>
<AF>College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road/Hangzhou 310058/Chine (1 aut., 2 aut.); Department of Biological and Agricultural Engineering, University of Arkansas/Fayetteville, AR 72701/Etats-Unis (1 aut., 3 aut., 4 aut.); Center of Excellence for Poultry Science, University of Arkansas/Fayetteville, AR 72701/Etats-Unis (4 aut., 7 aut.); Department of Poultry Science and Veterinary Pathobiology, Texas A&M University/College Station, TX 77843/Etats-Unis (5 aut., 6 aut.); Animal Diagnostic Laboratory, Penn State University/State College, PA 16802/Etats-Unis (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Biosensors & bioelectronics; ISSN 0956-5663; Royaume-Uni; Da. 2011; Vol. 26; No. 10; Pp. 4146-4154; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>As a potential pandemic threat to human health, there has been an urgent need for rapid detection of the highly pathogenic avian influenza (AI) H5N1 virus. In this study, magnetic nanobeads amplification based quartz crystal microbalance (QCM) immunosensor was developed as a new method and application for AI H5N1 virus detection. Polyclonal antibodies against AI H5N1 virus surface antigen HA (Hemagglutinin) were immobilized on the gold surface of the QCM crystal through self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA). Target H5N1 viruses were then captured by the immobilized antibodies, resulting in a change in the frequency. Magnetic nanobeads (diameter, 30 nm) coated with anti-H5 antibodies were used for further amplification of the binding reaction between antibody and antigen (virus). Both bindings of target H5N1 viruses and magnetic nanobeads onto the crystal surface were further confirmed by environmental scanning electron microscopy (ESEM). The QCM immunosensor could detect the H5N1 virus at a titer higher than 0.0128 HA unit within 2 h. The nanobeads amplification resulted in much better detection signal for target virus with lower titers. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear correlation between the logarithmic number of H5N1 virus titers and frequency shift was found from 0.128 to 12.8 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. The immunosensor was evaluated using chicken tracheal swab samples. This research demonstrated that the magnetic nanobeads amplification based QCM immunosensor has a great potential to be an alternative method for rapid, sensitive, and specific detection of AI virus H5N1 in agricultural, food, environmental and clinical samples.</EA>
<CC>002A31C09B; 215</CC>
<FD>Microbalance quartz; Immunodétecteur; Détection; Grippe aviaire; Magnétique; Influenzavirus aviaire; Cristal; Anticorps; Souche H5N1; Influenzavirus A(H5N1)</FD>
<FG>Biodétecteur; Virose; Infection; Influenzavirus A; Orthomyxoviridae; Virus</FG>
<ED>Quartz microbalance; Immunosensor; Detection; Avian influenza; Magnetic; Avian influenzavirus; Crystals; Antibody; H5N1; Influenzavirus A(H5N1)</ED>
<EG>Biosensor; Viral disease; Infection; Influenzavirus A; Orthomyxoviridae; Virus</EG>
<SD>Microbalanza cuarzo; Inmunodetector; Detección; Gripe aviar; Magnético; Avian influenzavirus; Cristal; Anticuerpo</SD>
<LO>INIST-20668.354000190343220270</LO>
<ID>11-0290321</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0290321
   |texte=   A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021