Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.

Identifieur interne : 000C96 ( Ncbi/Merge ); précédent : 000C95; suivant : 000C97

The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.

Auteurs : Joshua C D. Long [Royaume-Uni] ; Ervin Fodor [Royaume-Uni]

Source :

RBID : pubmed:27440905

Descripteurs français

English descriptors

Abstract

The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria.

DOI: 10.1128/JVI.01384-16
PubMed: 27440905

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27440905

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.</title>
<author>
<name sortKey="Long, Joshua C D" sort="Long, Joshua C D" uniqKey="Long J" first="Joshua C D" last="Long">Joshua C D. Long</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fodor, Ervin" sort="Fodor, Ervin" uniqKey="Fodor E" first="Ervin" last="Fodor">Ervin Fodor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom ervin.fodor@path.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27440905</idno>
<idno type="pmid">27440905</idno>
<idno type="doi">10.1128/JVI.01384-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000046</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000046</idno>
<idno type="wicri:Area/PubMed/Curation">000046</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000046</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000041</idno>
<idno type="wicri:Area/Ncbi/Merge">000C96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.</title>
<author>
<name sortKey="Long, Joshua C D" sort="Long, Joshua C D" uniqKey="Long J" first="Joshua C D" last="Long">Joshua C D. Long</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fodor, Ervin" sort="Fodor, Ervin" uniqKey="Fodor E" first="Ervin" last="Fodor">Ervin Fodor</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom ervin.fodor@path.ox.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (deficiency)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Animals</term>
<term>Fibroblasts</term>
<term>Influenza A Virus, H1N1 Subtype (enzymology)</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Microscopy, Electron</term>
<term>Mitochondria (chemistry)</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>Viral Proteins (analysis)</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Fibroblastes</term>
<term>Microscopie électronique</term>
<term>Mitochondries ()</term>
<term>Protéines adaptatrices de la transduction du signal (déficit)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines virales (analyse)</term>
<term>Protéines virales (génétique)</term>
<term>Signaux de triage des protéines</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Sous-type H1N1 du virus de la grippe A (enzymologie)</term>
<term>Transport de protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Fibroblasts</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Microscopy, Electron</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Fibroblastes</term>
<term>Microscopie électronique</term>
<term>Mitochondries</term>
<term>Signaux de triage des protéines</term>
<term>Souris</term>
<term>Souris knockout</term>
<term>Transport de protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27440905</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>90</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2016</Year>
<Month>10</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.</ArticleTitle>
<Pagination>
<MedlinePgn>8729-38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01384-16</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria.</AbstractText>
<AbstractText Label="IMPORTANCE">The PB2 subunit of the influenza virus RNA polymerase is a major determinant of viral pathogenicity. However, the molecular mechanisms of how PB2 determines pathogenicity remain poorly understood. PB2 associates with mitochondria and inhibits the function of the mitochondrial antiviral signaling protein MAVS, implicating PB2 in the regulation of innate immune responses. We found that PB2 is imported into the mitochondrial matrix and showed that amino acid residue 9 is a determinant of mitochondrial import. The presence of asparagine or threonine in over 99% of all human seasonal influenza virus pre-2009 H1N1, H2N2, and H3N2 strains is compatible with mitochondrial import, whereas the presence of an aspartic acid in over 95% of all avian influenza viruses is not, resulting in a clear distinction between human-adapted and avian influenza viruses. These findings provide insights into the interplay between influenza virus and mitochondria and suggest mechanisms by which PB2 could affect pathogenicity.</AbstractText>
<CopyrightInformation>Copyright © 2016 Long and Fodor.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Long</LastName>
<ForeName>Joshua C D</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fodor</LastName>
<ForeName>Ervin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom ervin.fodor@path.ox.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/K000241/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C512612">IPS-1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502893">PB2 protein, influenza virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27440905</ArticleId>
<ArticleId IdType="pii">JVI.01384-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01384-16</ArticleId>
<ArticleId IdType="pmc">PMC5021425</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2010 Feb 5;140(3):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Sep 16;19(6):727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Mar 3;61(5):695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26942674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Mar 25;291(13):6664-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26742848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9 Suppl 1:S18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1993 Nov 1;306(2):427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8215446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Dec 17;578(3):331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Jun 29;36(6):933-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2011 May;200(2):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20953627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26747646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Oct;6(10 ):981-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16127453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Aug 5;146(3):448-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9144-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6782-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 May;25(5):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Oct 21;90(1):444-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26491155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Nov;30(11):1143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Jun;11(6):389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21597473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Nov;88(22):13284-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 May;479-480:532-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25824479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Sep;1(1):e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16201016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 29;11(5):e1004924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2822-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25595529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 18;459(7249):931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2013 Mar;172(1-2):75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23246644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jul;6(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10949027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011 Feb 01;4(158):ra7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21285412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 16;505(7483):335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24429632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2015 Mar 17;42(3):406-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25786173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2013 Oct 02;5(10):2424-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24104053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jun;5(6):1335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3015599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(17):8433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7599-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Aug;86(16):8359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 May;91(Pt 5):1284-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20016035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micron. 2000 Jan;31(1):97-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10568232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 9;122(5):669-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virol. 2013;2013:738794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jul;79(13):8669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jan 20;344(2):492-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2001 Dec;7(12):1306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14 (8):479-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27396566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Sep;76(18):8989-9001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2013;57(2):138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23600872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Mar;14(3):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11758-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 15;285(42):32064-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Long, Joshua C D" sort="Long, Joshua C D" uniqKey="Long J" first="Joshua C D" last="Long">Joshua C D. Long</name>
</region>
<name sortKey="Fodor, Ervin" sort="Fodor, Ervin" uniqKey="Fodor E" first="Ervin" last="Fodor">Ervin Fodor</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000C96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:27440905
   |texte=   The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:27440905" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021