Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron Scattering Theory

Identifieur interne : 001857 ( Istex/Corpus ); précédent : 001856; suivant : 001858

Electron Scattering Theory

Auteurs : Ray F. Egerton

Source :

RBID : ISTEX:BC1254598CB170C086CB71C1C6B594212ECF341D

Abstract

Abstract: It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.

Url:
DOI: 10.1007/978-1-4615-6887-2_3

Links to Exploration step

ISTEX:BC1254598CB170C086CB71C1C6B594212ECF341D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electron Scattering Theory</title>
<author>
<name sortKey="Egerton, Ray F" sort="Egerton, Ray F" uniqKey="Egerton R" first="Ray F." last="Egerton">Ray F. Egerton</name>
<affiliation>
<mods:affiliation>University of Alberta, Edmonton, Alberta, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BC1254598CB170C086CB71C1C6B594212ECF341D</idno>
<date when="1986" year="1986">1986</date>
<idno type="doi">10.1007/978-1-4615-6887-2_3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001857</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001857</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Electron Scattering Theory</title>
<author>
<name sortKey="Egerton, Ray F" sort="Egerton, Ray F" uniqKey="Egerton R" first="Ray F." last="Egerton">Ray F. Egerton</name>
<affiliation>
<mods:affiliation>University of Alberta, Edmonton, Alberta, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<keywords>
<teeft>
<json:string>plasmon</json:string>
<json:string>energy loss</json:string>
<json:string>inelastic</json:string>
<json:string>excitation</json:string>
<json:string>ionization</json:string>
<json:string>incident electron</json:string>
<json:string>bethe</json:string>
<json:string>free path</json:string>
<json:string>leapman</json:string>
<json:string>plural</json:string>
<json:string>valence</json:string>
<json:string>wave function</json:string>
<json:string>plasmons</json:string>
<json:string>incident energy</json:string>
<json:string>atomic electron</json:string>
<json:string>fine structure</json:string>
<json:string>photon</json:string>
<json:string>dielectric</json:string>
<json:string>atomic number</json:string>
<json:string>hydrogenic</json:string>
<json:string>binding energy</json:string>
<json:string>ionization edge</json:string>
<json:string>plasmon energy</json:string>
<json:string>raether</json:string>
<json:string>backscattering</json:string>
<json:string>final state</json:string>
<json:string>krivanek</json:string>
<json:string>angular distribution</json:string>
<json:string>inokuti</json:string>
<json:string>core hole</json:string>
<json:string>semiangle</json:string>
<json:string>valence electron</json:string>
<json:string>permittivity</json:string>
<json:string>energy dependence</json:string>
<json:string>lorentzian</json:string>
<json:string>exciton</json:string>
<json:string>bloch wave</json:string>
<json:string>wave vector</json:string>
<json:string>interband</json:string>
<json:string>unit volume</json:string>
<json:string>fermi</json:string>
<json:string>phonon</json:string>
<json:string>collection semiangle</json:string>
<json:string>interband transition</json:string>
<json:string>loss spectrum</json:string>
<json:string>generalized oscillator strength</json:string>
<json:string>exelfs</json:string>
<json:string>oscillator</json:string>
<json:string>datum</json:string>
<json:string>egerton</json:string>
<json:string>schrodinger</json:string>
<json:string>batson</json:string>
<json:string>spence</json:string>
<json:string>chemical shift</json:string>
<json:string>ionization threshold</json:string>
<json:string>bethe theory</json:string>
<json:string>excitons</json:string>
<json:string>dipole region</json:string>
<json:string>angular dependence</json:string>
<json:string>atomic model</json:string>
<json:string>incident beam</json:string>
<json:string>cutoff</json:string>
<json:string>plasma oscillation</json:string>
<json:string>experimental datum</json:string>
<json:string>fourier</json:string>
<json:string>plasmon peak</json:string>
<json:string>relative permittivity</json:string>
<json:string>small collection aperture</json:string>
<json:string>free electron</json:string>
<json:string>colliex</json:string>
<json:string>schrodinger equation</json:string>
<json:string>angular frequency</json:string>
<json:string>exafs</json:string>
<json:string>nuclear field</json:string>
<json:string>thin specimen</json:string>
<json:string>white line</json:string>
<json:string>silcox</json:string>
<json:string>good approximation</json:string>
<json:string>hydrogenic model</json:string>
<json:string>collective effect</json:string>
<json:string>characteristic angle</json:string>
<json:string>transition metal</json:string>
<json:string>other word</json:string>
<json:string>solid curve</json:string>
<json:string>backscattering atom</json:string>
<json:string>electrostatic field</json:string>
<json:string>specimen thickness</json:string>
<json:string>much less</json:string>
<json:string>threshold energy</json:string>
<json:string>bethe ridge</json:string>
<json:string>background intensity</json:string>
<json:string>unit cell</json:string>
<json:string>mrad</json:string>
<json:string>insulator</json:string>
<json:string>rutherford</json:string>
<json:string>electron</json:string>
<json:string>experimental value</json:string>
<json:string>surface plasmons</json:string>
<json:string>dielectric function</json:string>
<json:string>energy range</json:string>
<json:string>electron density</json:string>
<json:string>core electron</json:string>
<json:string>major contribution</json:string>
<json:string>normal incidence</json:string>
<json:string>direction perpendicular</json:string>
<json:string>carbon atom</json:string>
<json:string>imaginary part</json:string>
<json:string>dispersion relation</json:string>
<json:string>total inelastic</json:string>
<json:string>volume plasmons</json:string>
<json:string>high density</json:string>
<json:string>eel</json:string>
<json:string>bloch</json:string>
<json:string>lattice</json:string>
<json:string>figure angular dependence</json:string>
<json:string>solid line</json:string>
<json:string>lenz model</json:string>
<json:string>atomic plane</json:string>
<json:string>boron nitride</json:string>
<json:string>plasmon excitation</json:string>
<json:string>energy transfer</json:string>
<json:string>cutoff angle</json:string>
<json:string>effective mass</json:string>
<json:string>band structure</json:string>
<json:string>relaxation energy</json:string>
<json:string>lindhard model</json:string>
<json:string>dispersion coefficient</json:string>
<json:string>multiplet splitting</json:string>
<json:string>different value</json:string>
<json:string>plasmon model</json:string>
<json:string>unit solid angle</json:string>
<json:string>momentum transfer</json:string>
<json:string>conduction band</json:string>
<json:string>alkali halide</json:string>
<json:string>kinetic energy</json:string>
<json:string>photon energy</json:string>
<json:string>retardation effect</json:string>
<json:string>light element</json:string>
<json:string>surface plasmon</json:string>
<json:string>single interface</json:string>
<json:string>nuclear charge</json:string>
<json:string>surface excitation</json:string>
<json:string>sample thickness</json:string>
<json:string>bethe surface</json:string>
<json:string>atomic potential</json:string>
<json:string>dipole selection rule</json:string>
<json:string>bragg</json:string>
<json:string>median</json:string>
<json:string>boron</json:string>
<json:string>jellium model</json:string>
<json:string>rydberg energy</json:string>
<json:string>inverse measure</json:string>
<json:string>single atom</json:string>
<json:string>plane wave</json:string>
<json:string>square bracket</json:string>
<json:string>interatomic spacing</json:string>
<json:string>single electron</json:string>
<json:string>angle less</json:string>
<json:string>atomic nucleus</json:string>
<json:string>large energy loss</json:string>
<json:string>lower value</json:string>
<json:string>total intensity</json:string>
<json:string>other hand</json:string>
<json:string>collective excitation</json:string>
<json:string>bragg angle</json:string>
<json:string>first term</json:string>
<json:string>resonance energy</json:string>
<json:string>high energy loss</json:string>
<json:string>bragg reflection</json:string>
<json:string>plasma resonance</json:string>
<json:string>small value</json:string>
<json:string>peak position</json:string>
<json:string>minimum value</json:string>
<json:string>charge density</json:string>
<json:string>conduction electron</json:string>
<json:string>relaxation effect</json:string>
<json:string>orientation dependence</json:string>
<json:string>lorentzian angular distribution</json:string>
<json:string>inelastic collision</json:string>
<json:string>effective charge</json:string>
<json:string>bohr radius</json:string>
<json:string>total energy</json:string>
<json:string>such calculation</json:string>
<json:string>atomic calculation</json:string>
<json:string>drude theory</json:string>
<json:string>overall shape</json:string>
<json:string>absorption edge</json:string>
<json:string>absorption threshold</json:string>
<json:string>edge shape</json:string>
<json:string>collection aperture</json:string>
<json:string>fano plot</json:string>
<json:string>relaxation time</json:string>
<json:string>phase difference</json:string>
<json:string>jump ratio</json:string>
<json:string>initial state</json:string>
<json:string>background subtraction</json:string>
<json:string>centrifugal barrier</json:string>
<json:string>excitonic effect</json:string>
<json:string>crystal orientation</json:string>
<json:string>current density</json:string>
<json:string>absorption spectrum</json:string>
<json:string>threshold peak</json:string>
<json:string>momentum exchange</json:string>
<json:string>fermi level</json:string>
<json:string>bond length</json:string>
<json:string>elastic</json:string>
<json:string>dispersion</json:string>
<json:string>conduction</json:string>
<json:string>peak</json:string>
<json:string>oscillation</json:string>
<json:string>spectrum</json:string>
<json:string>splitting</json:string>
<json:string>many atom</json:string>
<json:string>iterative solution</json:string>
<json:string>more sophisticated calculation</json:string>
<json:string>alternative approach</json:string>
<json:string>critical wave vector</json:string>
<json:string>inelastic form factor</json:string>
<json:string>fermi surface</json:string>
<json:string>square root</json:string>
<json:string>wentzel potential</json:string>
<json:string>electrostatic potential</json:string>
<json:string>alkali metal</json:string>
<json:string>extinction distance</json:string>
<json:string>single atomic electron</json:string>
<json:string>electron exchange</json:string>
<json:string>same equation</json:string>
<json:string>dielectric theory</json:string>
<json:string>amorphous carbon</json:string>
<json:string>crystal thickness</json:string>
<json:string>small impact parameter</json:string>
<json:string>horizontal arrow</json:string>
<json:string>lattice constant</json:string>
<json:string>large value</json:string>
<json:string>angular range</json:string>
<json:string>joint density</json:string>
<json:string>optical value</json:string>
<json:string>electromagnetic radiation</json:string>
<json:string>diffraction pattern</json:string>
<json:string>screening radius</json:string>
<json:string>photographic plate</json:string>
<json:string>different energy</json:string>
<json:string>such behavior</json:string>
<json:string>small collection angle</json:string>
<json:string>large impact parameter</json:string>
<json:string>exciton binding energy</json:string>
<json:string>reasonable approximation</json:string>
<json:string>frenkel excitons</json:string>
<json:string>electron orbit</json:string>
<json:string>anion site</json:string>
<json:string>exciton state</json:string>
<json:string>resonance peak</json:string>
<json:string>horizontal axis</json:string>
<json:string>figure spectrum</json:string>
<json:string>exciton peak</json:string>
<json:string>radiation loss</json:string>
<json:string>cerenkov radiation</json:string>
<json:string>electric field</json:string>
<json:string>account retardation</json:string>
<json:string>corresponding formula</json:string>
<json:string>phase change</json:string>
<json:string>total number</json:string>
<json:string>oscillator strength</json:string>
<json:string>higher energy loss</json:string>
<json:string>classical mechanic</json:string>
<json:string>figure energy</json:string>
<json:string>heavier element</json:string>
<json:string>lower energy</json:string>
<json:string>in atomic shell</json:string>
<json:string>total probability</json:string>
<json:string>thin film</json:string>
<json:string>symmetric mode</json:string>
<json:string>appreciable influence</json:string>
<json:string>imaginary potential</json:string>
<json:string>small angle</json:string>
<json:string>clean surface</json:string>
<json:string>incident photon</json:string>
<json:string>short distance</json:string>
<json:string>surface peak</json:string>
<json:string>incident velocity</json:string>
<json:string>bulk plasmons</json:string>
<json:string>energy gain</json:string>
<json:string>spherical particle</json:string>
<json:string>spherical bessel function</json:string>
<json:string>poisson statistic</json:string>
<json:string>different order</json:string>
<json:string>large binding energy</json:string>
<json:string>form factor</json:string>
<json:string>hydrogen atom</json:string>
<json:string>bragg beam</json:string>
<json:string>screening effect</json:string>
<json:string>anomalous absorption</json:string>
<json:string>experimental point</json:string>
<json:string>out shell</json:string>
<json:string>radial component</json:string>
<json:string>appropriate inelastic</json:string>
<json:string>elastic form factor</json:string>
<json:string>typical value</json:string>
<json:string>lattice potential</json:string>
<json:string>lower binding energy</json:string>
<json:string>second term</json:string>
<json:string>absolute value</json:string>
<json:string>photo absorption</json:string>
<json:string>bragg orientation</json:string>
<json:string>effective potential</json:string>
<json:string>rest mass</json:string>
<json:string>hydrogenic calculation</json:string>
<json:string>experimental datum point</json:string>
<json:string>broad peak</json:string>
<json:string>lorentzian function</json:string>
<json:string>energy loss spectrum</json:string>
<json:string>hydrogenic wave function</json:string>
<json:string>edge energy</json:string>
<json:string>volume element</json:string>
<json:string>collective oscillation</json:string>
<json:string>characteristic angular frequency</json:string>
<json:string>collection angle</json:string>
<json:string>plasmon event</json:string>
<json:string>vertical scale</json:string>
<json:string>angular width</json:string>
<json:string>slope parameter</json:string>
<json:string>positive slope</json:string>
<json:string>simplified model</json:string>
<json:string>collection semi angle</json:string>
<json:string>collection semiangles</json:string>
<json:string>structure factor</json:string>
<json:string>accurate value</json:string>
<json:string>dipole oscillator strength</json:string>
<json:string>equivalent explanation</json:string>
<json:string>delta function</json:string>
<json:string>crystalline material</json:string>
<json:string>intensity exhibit</json:string>
<json:string>electron spectroscopy</json:string>
<json:string>metallic copper</json:string>
<json:string>intensity maximum</json:string>
<json:string>relative amplitude</json:string>
<json:string>core level</json:string>
<json:string>energy level</json:string>
<json:string>chemical environment</json:string>
<json:string>photoelectron spectroscopy</json:string>
<json:string>dielectric formulation</json:string>
<json:string>vacuum level</json:string>
<json:string>elastic collision</json:string>
<json:string>metal atom</json:string>
<json:string>absorption spectroscopy</json:string>
<json:string>amount equal</json:string>
<json:string>experimental measurement</json:string>
<json:string>bragg diffraction</json:string>
<json:string>vertical arrow</json:string>
<json:string>chromite spinel</json:string>
<json:string>octahedral site</json:string>
<json:string>tetrahedral site</json:string>
<json:string>plasmon dispersion curve</json:string>
<json:string>good agreement</json:string>
<json:string>electron velocity</json:string>
<json:string>exelfs region</json:string>
<json:string>crystalline solid</json:string>
<json:string>angular momentum</json:string>
<json:string>unfilled shell</json:string>
<json:string>separate peak</json:string>
<json:string>xanes theory</json:string>
<json:string>energy resolution</json:string>
<json:string>exafs theory</json:string>
<json:string>impact parameter</json:string>
<json:string>central atom</json:string>
<json:string>electron microscope</json:string>
<json:string>outgoing wave</json:string>
<json:string>shell radius</json:string>
<json:string>interatomic distance</json:string>
<json:string>perpendicular</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Ray F. Egerton</name>
<affiliations>
<json:string>University of Alberta, Edmonton, Alberta, Canada</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-V13SH8PR-S</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>chapter</json:string>
</originalGenre>
<abstract>Abstract: It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>84</abstractWordCount>
<abstractCharCount>541</abstractCharCount>
<keywordCount>0</keywordCount>
<score>8.008</score>
<pdfWordCount>26600</pdfWordCount>
<pdfCharCount>155307</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>100</pdfPageCount>
<pdfPageSize>430.866 x 649.134 pts</pdfPageSize>
</qualityIndicators>
<title>Electron Scattering Theory</title>
<chapterId>
<json:string>3</json:string>
<json:string>Chap3</json:string>
</chapterId>
<genre>
<json:string>chapter</json:string>
</genre>
<host>
<title>Electron Energy-Loss Spectroscopy in the Electron Microscope</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1007/978-1-4615-6887-2</json:string>
</doi>
<eisbn>
<json:string>978-1-4615-6887-2</json:string>
</eisbn>
<bookId>
<json:string>978-1-4615-6887-2</json:string>
</bookId>
<isbn>
<json:string>978-1-4615-6889-6</json:string>
</isbn>
<pages>
<first>129</first>
<last>228</last>
</pages>
<genre>
<json:string>book</json:string>
</genre>
<author>
<json:item>
<name>Ray F. Egerton</name>
<affiliations>
<json:string>University of Alberta, Edmonton, Alberta, Canada</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<value>Chemistry and Materials Science</value>
</json:item>
<json:item>
<value>Chemistry</value>
</json:item>
<json:item>
<value>Spectroscopy/Spectrometry</value>
</json:item>
<json:item>
<value>Spectroscopy and Microscopy</value>
</json:item>
<json:item>
<value>Atomic, Molecular, Optical and Plasma Physics</value>
</json:item>
<json:item>
<value>Analytical Chemistry</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-V13SH8PR-S</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - physique</json:string>
</inist>
</categories>
<publicationDate>1986</publicationDate>
<copyrightDate>1986</copyrightDate>
<doi>
<json:string>10.1007/978-1-4615-6887-2_3</json:string>
</doi>
<id>BC1254598CB170C086CB71C1C6B594212ECF341D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="m" type="main">Electron Energy-Loss Spectroscopy in the Electron Microscope</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer US</publisher>
<pubPlace>Boston, MA</pubPlace>
<availability>
<licence>Plenum Press, New York</licence>
</availability>
<date when="1986">1986</date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="other" source="Contributed volume" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-7474895G-0">other</note>
<note type="publication-type" subtype="book" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Electron Scattering Theory</title>
<author>
<persName>
<forename type="first">Ray</forename>
<forename type="first">F.</forename>
<surname>Egerton</surname>
</persName>
<affiliation>
<orgName type="institution">University of Alberta</orgName>
<address>
<settlement>Edmonton</settlement>
<region>Alberta</region>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<idno type="istex">BC1254598CB170C086CB71C1C6B594212ECF341D</idno>
<idno type="ark">ark:/67375/HCB-V13SH8PR-S</idno>
<idno type="DOI">10.1007/978-1-4615-6887-2_3</idno>
</analytic>
<monogr>
<title level="m" type="main">Electron Energy-Loss Spectroscopy in the Electron Microscope</title>
<idno type="DOI">10.1007/978-1-4615-6887-2</idno>
<idno type="book-id">978-1-4615-6887-2</idno>
<idno type="ISBN">978-1-4615-6889-6</idno>
<idno type="eISBN">978-1-4615-6887-2</idno>
<idno type="chapter-id">Chap3</idno>
<author>
<persName>
<forename type="first">Ray</forename>
<forename type="first">F.</forename>
<surname>Egerton</surname>
</persName>
<affiliation>
<orgName type="institution">University of Alberta</orgName>
<address>
<settlement>Edmonton</settlement>
<region>Alberta</region>
<country key="CA">CANADA</country>
</address>
</affiliation>
</author>
<imprint>
<biblScope unit="page" from="129">129</biblScope>
<biblScope unit="page" to="228">228</biblScope>
<biblScope unit="chapter-count">5</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11644</label>
<item>
<term>Chemistry and Materials Science</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>SCC</label>
<item>
<term type="Primary">Chemistry</term>
</item>
<label>C11020</label>
<item>
<term type="Secondary" subtype="priority-1">Spectroscopy/Spectrometry</term>
</item>
<label>P31090</label>
<item>
<term type="Secondary" subtype="priority-2">Spectroscopy and Microscopy</term>
</item>
<label>P24009</label>
<item>
<term type="Secondary" subtype="priority-3">Atomic, Molecular, Optical and Plasma Physics</term>
</item>
<label>C11006</label>
<item>
<term type="Secondary" subtype="priority-4">Analytical Chemistry</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer US</PublisherName>
<PublisherLocation>Boston, MA</PublisherLocation>
</PublisherInfo>
<Book Language="En">
<BookInfo Language="En" TocLevels="0" NumberingStyle="ChapterOnly" OutputMedium="All" ContainsESM="No" BookProductType="Contributed volume" MediaType="eBook">
<BookID>978-1-4615-6887-2</BookID>
<BookTitle>Electron Energy-Loss Spectroscopy in the Electron Microscope</BookTitle>
<BookDOI>10.1007/978-1-4615-6887-2</BookDOI>
<BookTitleID>120031</BookTitleID>
<BookPrintISBN>978-1-4615-6889-6</BookPrintISBN>
<BookElectronicISBN>978-1-4615-6887-2</BookElectronicISBN>
<BookChapterCount>5</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag US</CopyrightHolderName>
<CopyrightYear>1995</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="SCC" Type="Primary">Chemistry</BookSubject>
<BookSubject Code="C11020" Type="Secondary" Priority="1">Spectroscopy/Spectrometry</BookSubject>
<BookSubject Code="P31090" Type="Secondary" Priority="2">Spectroscopy and Microscopy</BookSubject>
<BookSubject Code="P24009" Type="Secondary" Priority="3">Atomic, Molecular, Optical and Plasma Physics</BookSubject>
<BookSubject Code="C11006" Type="Secondary" Priority="4">Analytical Chemistry</BookSubject>
<SubjectCollection Code="SUCO11644">Chemistry and Materials Science</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Ray</GivenName>
<GivenName>F.</GivenName>
<FamilyName>Egerton</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>University of Alberta</OrgName>
<OrgAddress>
<City>Edmonton</City>
<State>Alberta</State>
<Country>Canada</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
</BookHeader>
<Chapter Language="En" ID="Chap3">
<ChapterInfo Language="En" ChapterType="OriginalPaper" NumberingStyle="ChapterOnly" TocLevels="0" OutputMedium="All" ContainsESM="No">
<ChapterID>3</ChapterID>
<ChapterNumber>3</ChapterNumber>
<ChapterDOI>10.1007/978-1-4615-6887-2_3</ChapterDOI>
<ChapterSequenceNumber>3</ChapterSequenceNumber>
<ChapterTitle Language="En">Electron Scattering Theory</ChapterTitle>
<ChapterFirstPage>129</ChapterFirstPage>
<ChapterLastPage>228</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Plenum Press, New York</CopyrightHolderName>
<CopyrightYear>1986</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2012</Year>
<Month>4</Month>
<Day>21</Day>
</RegistrationDate>
</ChapterHistory>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<BookID>978-1-4615-6887-2</BookID>
<BookTitle>Electron Energy-Loss Spectroscopy in the Electron Microscope</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Ray</GivenName>
<GivenName>F.</GivenName>
<FamilyName>Egerton</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff2">
<OrgName>University of Alberta</OrgName>
<OrgAddress>
<City>Edmonton</City>
<State>Alberta</State>
<Country>Canada</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract Language="En" ID="Abs1" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para>It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Electron Scattering Theory</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Electron Scattering Theory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ray</namePart>
<namePart type="given">F.</namePart>
<namePart type="family">Egerton</namePart>
<affiliation>University of Alberta, Edmonton, Alberta, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="chapter" displayLabel="chapter" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6"></genre>
<originInfo>
<publisher>Springer US</publisher>
<place>
<placeTerm type="text">Boston, MA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1986</dateIssued>
<copyrightDate encoding="w3cdtf">1986</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: It is convenient to divide the scattering of fast electrons into elastic and inelastic components. An experimentalist can distinguish between the two on an empirical basis, the term “elastic” being taken to mean that the energy loss to the sample is less than some experimental resolution limit Such a criterion results in electron scattering by phonon excitation being classified as elastic (or quasielastic) if measurements have been made using an electron microscope, where the energy resolution is usually not better than 1 eV.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Electron Energy-Loss Spectroscopy in the Electron Microscope</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ray</namePart>
<namePart type="given">F.</namePart>
<namePart type="family">Egerton</namePart>
<affiliation>University of Alberta, Edmonton, Alberta, Canada</affiliation>
</name>
<genre type="book" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11644">Chemistry and Materials Science</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SCC">Chemistry</topic>
<topic authority="SpringerSubjectCodes" authorityURI="C11020">Spectroscopy/Spectrometry</topic>
<topic authority="SpringerSubjectCodes" authorityURI="P31090">Spectroscopy and Microscopy</topic>
<topic authority="SpringerSubjectCodes" authorityURI="P24009">Atomic, Molecular, Optical and Plasma Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="C11006">Analytical Chemistry</topic>
</subject>
<identifier type="DOI">10.1007/978-1-4615-6887-2</identifier>
<identifier type="ISBN">978-1-4615-6889-6</identifier>
<identifier type="eISBN">978-1-4615-6887-2</identifier>
<identifier type="BookTitleID">120031</identifier>
<identifier type="BookID">978-1-4615-6887-2</identifier>
<identifier type="BookChapterCount">5</identifier>
<part>
<date>1995</date>
<detail type="chapter">
<number>3</number>
<caption>chapter</caption>
</detail>
<extent unit="pages">
<start>129</start>
<end>228</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag US, 1995</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">BC1254598CB170C086CB71C1C6B594212ECF341D</identifier>
<identifier type="ark">ark:/67375/HCB-V13SH8PR-S</identifier>
<identifier type="DOI">10.1007/978-1-4615-6887-2_3</identifier>
<identifier type="ChapterID">3</identifier>
<identifier type="ChapterID">Chap3</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag US, 1986</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Plenum Press, New York, 1986</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>xml</extension>
<original>true</original>
<mimetype>application/xml</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-V13SH8PR-S/annexes.xml</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001857 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001857 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BC1254598CB170C086CB71C1C6B594212ECF341D
   |texte=   Electron Scattering Theory
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021