Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution of the Scattering Intensity. General Aspects

Identifieur interne : 001847 ( Istex/Corpus ); précédent : 001846; suivant : 001848

Distribution of the Scattering Intensity. General Aspects

Auteurs : Mikhail A. Krivoglaz

Source :

RBID : ISTEX:40BD0EE7199B84A034EDCAB92ABC86F089027F63

Abstract

Abstract: X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the K α doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 102 – 103 Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.

Url:
DOI: 10.1007/978-3-642-74291-0_1

Links to Exploration step

ISTEX:40BD0EE7199B84A034EDCAB92ABC86F089027F63

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution of the Scattering Intensity. General Aspects</title>
<author>
<name sortKey="Krivoglaz, Mikhail A" sort="Krivoglaz, Mikhail A" uniqKey="Krivoglaz M" first="Mikhail A." last="Krivoglaz">Mikhail A. Krivoglaz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:40BD0EE7199B84A034EDCAB92ABC86F089027F63</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1007/978-3-642-74291-0_1</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001847</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001847</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Distribution of the Scattering Intensity. General Aspects</title>
<author>
<name sortKey="Krivoglaz, Mikhail A" sort="Krivoglaz, Mikhail A" uniqKey="Krivoglaz M" first="Mikhail A." last="Krivoglaz">Mikhail A. Krivoglaz</name>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the K α doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 102 – 103 Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<editor>
<json:item>
<name>Prof. V. G. Baryakhtar</name>
<affiliations>
<json:string>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. M. A. Ivanov</name>
<affiliations>
<json:string>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. S. C. Moss</name>
<affiliations>
<json:string>Department of Physics, University of Houston, 77204-5506, Houston, Texas, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. J. Peisl</name>
<affiliations>
<json:string>Sektion Physik, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, München, Germany</json:string>
</affiliations>
</json:item>
</editor>
<author>
<json:item>
<name>Professor Dr. Mikhail A. Krivoglaz</name>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-LB7PJ55Z-W</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>chapter</json:string>
</originalGenre>
<abstract>Abstract: X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the K α doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 102 – 103 Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.</abstract>
<qualityIndicators>
<score>9.22</score>
<pdfWordCount>28817</pdfWordCount>
<pdfCharCount>162540</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>73</pdfPageCount>
<pdfPageSize>439.37 x 666.142 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>185</abstractWordCount>
<abstractCharCount>1140</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Distribution of the Scattering Intensity. General Aspects</title>
<chapterId>
<json:string>1</json:string>
<json:string>Chap1</json:string>
</chapterId>
<genre>
<json:string>chapter</json:string>
</genre>
<host>
<title>X-Ray and Neutron Diffraction in Nonideal Crystals</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1007/978-3-642-74291-0</json:string>
</doi>
<eisbn>
<json:string>978-3-642-74291-0</json:string>
</eisbn>
<bookId>
<json:string>978-3-642-74291-0</json:string>
</bookId>
<isbn>
<json:string>978-3-642-74293-4</json:string>
</isbn>
<pages>
<first>1</first>
<last>73</last>
</pages>
<genre>
<json:string>book</json:string>
</genre>
<editor>
<json:item>
<name>Prof. V. G. Baryakhtar</name>
<affiliations>
<json:string>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. M. A. Ivanov</name>
<affiliations>
<json:string>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. S. C. Moss</name>
<affiliations>
<json:string>Department of Physics, University of Houston, 77204-5506, Houston, Texas, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. J. Peisl</name>
<affiliations>
<json:string>Sektion Physik, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, München, Germany</json:string>
</affiliations>
</json:item>
</editor>
<author>
<json:item>
<name>Professor Dr. Mikhail A. Krivoglaz</name>
</json:item>
</author>
<subject>
<json:item>
<value>Physics and Astronomy</value>
</json:item>
<json:item>
<value>Physics</value>
</json:item>
<json:item>
<value>Crystallography</value>
</json:item>
<json:item>
<value>Optics, Optoelectronics, Plasmonics and Optical Devices</value>
</json:item>
<json:item>
<value>Electronics and Microelectronics, Instrumentation</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-LB7PJ55Z-W</json:string>
</ark>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1007/978-3-642-74291-0_1</json:string>
</doi>
<id>40BD0EE7199B84A034EDCAB92ABC86F089027F63</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="m" type="main">X-Ray and Neutron Diffraction in Nonideal Crystals</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer Berlin Heidelberg</publisher>
<pubPlace>Berlin, Heidelberg</pubPlace>
<availability>
<licence>Springer-Verlag Berlin Heidelberg</licence>
</availability>
<date when="1996">1996</date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="other" source="Monograph" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-7474895G-0">other</note>
<note type="publication-type" subtype="book" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Distribution of the Scattering Intensity. General Aspects</title>
<author>
<persName>
<forename type="first">Mikhail</forename>
<forename type="first">A.</forename>
<surname>Krivoglaz</surname>
</persName>
</author>
<idno type="istex">40BD0EE7199B84A034EDCAB92ABC86F089027F63</idno>
<idno type="ark">ark:/67375/HCB-LB7PJ55Z-W</idno>
<idno type="DOI">10.1007/978-3-642-74291-0_1</idno>
</analytic>
<monogr>
<title level="m" type="main">X-Ray and Neutron Diffraction in Nonideal Crystals</title>
<idno type="DOI">10.1007/978-3-642-74291-0</idno>
<idno type="book-id">978-3-642-74291-0</idno>
<idno type="ISBN">978-3-642-74293-4</idno>
<idno type="eISBN">978-3-642-74291-0</idno>
<idno type="chapter-id">Chap1</idno>
<author>
<persName>
<forename type="first">Mikhail</forename>
<forename type="first">A.</forename>
<surname>Krivoglaz</surname>
</persName>
</author>
<editor>
<persName>
<forename type="first">V.</forename>
<forename type="first">G.</forename>
<surname>Baryakhtar</surname>
</persName>
<affiliation>
<orgName type="department">Institute of Metal Physics</orgName>
<orgName type="institution">Ukrainian Academy of Sciences</orgName>
<address>
<street>pr. Vernadskogo 36</street>
<postCode>252680</postCode>
<settlement>Kiev</settlement>
<country key="UA">UKRAINE</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">M.</forename>
<forename type="first">A.</forename>
<surname>Ivanov</surname>
</persName>
<affiliation>
<orgName type="department">Institute of Metal Physics</orgName>
<orgName type="institution">Ukrainian Academy of Sciences</orgName>
<address>
<street>pr. Vernadskogo 36</street>
<postCode>252680</postCode>
<settlement>Kiev</settlement>
<country key="UA">UKRAINE</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">S.</forename>
<forename type="first">C.</forename>
<surname>Moss</surname>
</persName>
<affiliation>
<orgName type="department">Department of Physics</orgName>
<orgName type="institution">University of Houston</orgName>
<address>
<postCode>77204-5506</postCode>
<settlement>Houston</settlement>
<region>Texas</region>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">J.</forename>
<surname>Peisl</surname>
</persName>
<affiliation>
<orgName type="department">Sektion Physik</orgName>
<orgName type="institution">Ludwig-Maximilians-Universität München</orgName>
<address>
<street>Geschwister-Scholl-Platz 1</street>
<postCode>D-80539</postCode>
<settlement>München</settlement>
<country key="DE">GERMANY</country>
</address>
</affiliation>
</editor>
<imprint>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="73">73</biblScope>
<biblScope unit="chapter-count">5</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the
<hi rend="italic">K</hi>
<hi rend="subscript">α</hi>
doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 10
<hi rend="superscript">2</hi>
– 10
<hi rend="superscript">3</hi>
Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11651</label>
<item>
<term>Physics and Astronomy</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>P</label>
<item>
<term type="Primary">Physics</term>
</item>
<label>P25056</label>
<item>
<term type="Secondary" subtype="priority-1">Crystallography</term>
</item>
<label>P31060</label>
<item>
<term type="Secondary" subtype="priority-2">Optics, Optoelectronics, Plasmonics and Optical Devices</term>
</item>
<label>T24027</label>
<item>
<term type="Secondary" subtype="priority-3">Electronics and Microelectronics, Instrumentation</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer Berlin Heidelberg</PublisherName>
<PublisherLocation>Berlin, Heidelberg</PublisherLocation>
</PublisherInfo>
<Book Language="En">
<BookInfo BookProductType="Monograph" ContainsESM="No" Language="En" MediaType="eBook" NumberingStyle="ChapterOnly" OutputMedium="All" TocLevels="0">
<BookID>978-3-642-74291-0</BookID>
<BookTitle>X-Ray and Neutron Diffraction in Nonideal Crystals</BookTitle>
<BookDOI>10.1007/978-3-642-74291-0</BookDOI>
<BookTitleID>21765</BookTitleID>
<BookPrintISBN>978-3-642-74293-4</BookPrintISBN>
<BookElectronicISBN>978-3-642-74291-0</BookElectronicISBN>
<BookChapterCount>5</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>1996</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="P" Type="Primary">Physics</BookSubject>
<BookSubject Code="P25056" Priority="1" Type="Secondary">Crystallography</BookSubject>
<BookSubject Code="P31060" Priority="2" Type="Secondary">Optics, Optoelectronics, Plasmonics and Optical Devices</BookSubject>
<BookSubject Code="T24027" Priority="3" Type="Secondary">Electronics and Microelectronics, Instrumentation</BookSubject>
<SubjectCollection Code="SUCO11651">Physics and Astronomy</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<AuthorGroup>
<Author>
<AuthorName DisplayOrder="Western">
<Prefix>Professor Dr.</Prefix>
<GivenName>Mikhail</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Krivoglaz</FamilyName>
</AuthorName>
</Author>
</AuthorGroup>
<EditorGroup>
<Editor AffiliationIDS="Aff1">
<EditorName DisplayOrder="Western">
<Prefix>Prof.</Prefix>
<GivenName>V.</GivenName>
<GivenName>G.</GivenName>
<FamilyName>Baryakhtar</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff1">
<EditorName DisplayOrder="Western">
<Prefix>Prof.</Prefix>
<GivenName>M.</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Ivanov</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff2">
<EditorName DisplayOrder="Western">
<Prefix>Prof.</Prefix>
<GivenName>S.</GivenName>
<GivenName>C.</GivenName>
<FamilyName>Moss</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff3">
<EditorName DisplayOrder="Western">
<Prefix>Prof.</Prefix>
<GivenName>J.</GivenName>
<FamilyName>Peisl</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff1">
<OrgDivision>Institute of Metal Physics</OrgDivision>
<OrgName>Ukrainian Academy of Sciences</OrgName>
<OrgAddress>
<Street>pr. Vernadskogo 36</Street>
<Postcode>252680</Postcode>
<City>Kiev</City>
<Country>Ukraine</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Department of Physics</OrgDivision>
<OrgName>University of Houston</OrgName>
<OrgAddress>
<Postcode>77204-5506</Postcode>
<City>Houston</City>
<State>Texas</State>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgDivision>Sektion Physik</OrgDivision>
<OrgName>Ludwig-Maximilians-Universität München</OrgName>
<OrgAddress>
<Street>Geschwister-Scholl-Platz 1</Street>
<Postcode>D-80539</Postcode>
<City>München</City>
<Country>Germany</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Chapter ID="Chap1" Language="En">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="ChapterOnly" OutputMedium="All" TocLevels="0">
<ChapterID>1</ChapterID>
<ChapterNumber>1</ChapterNumber>
<ChapterDOI>10.1007/978-3-642-74291-0_1</ChapterDOI>
<ChapterSequenceNumber>1</ChapterSequenceNumber>
<ChapterTitle Language="En">Distribution of the Scattering Intensity. General Aspects</ChapterTitle>
<ChapterFirstPage>1</ChapterFirstPage>
<ChapterLastPage>73</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>1996</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2011</Year>
<Month>11</Month>
<Day>29</Day>
</RegistrationDate>
</ChapterHistory>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<BookID>978-3-642-74291-0</BookID>
<BookTitle>X-Ray and Neutron Diffraction in Nonideal Crystals</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author>
<AuthorName DisplayOrder="Western">
<Prefix>Professor Dr.</Prefix>
<GivenName>Mikhail</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Krivoglaz</FamilyName>
</AuthorName>
</Author>
</AuthorGroup>
<Abstract ID="Abs1" Language="En" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para>X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the
<Emphasis Type="Italic">K</Emphasis>
<Subscript>α</Subscript>
doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 10
<Superscript>2</Superscript>
– 10
<Superscript>3</Superscript>
Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Distribution of the Scattering Intensity. General Aspects</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Distribution of the Scattering Intensity. General Aspects</title>
</titleInfo>
<name type="personal">
<namePart type="termsOfAddress">Professor Dr.</namePart>
<namePart type="given">Mikhail</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Krivoglaz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">V.</namePart>
<namePart type="given">G.</namePart>
<namePart type="family">Baryakhtar</namePart>
<affiliation>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">M.</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Ivanov</namePart>
<affiliation>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">S.</namePart>
<namePart type="given">C.</namePart>
<namePart type="family">Moss</namePart>
<affiliation>Department of Physics, University of Houston, 77204-5506, Houston, Texas, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">J.</namePart>
<namePart type="family">Peisl</namePart>
<affiliation>Sektion Physik, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, München, Germany</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="chapter" displayLabel="chapter" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6"></genre>
<originInfo>
<publisher>Springer Berlin Heidelberg</publisher>
<place>
<placeTerm type="text">Berlin, Heidelberg</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1996</dateIssued>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: X-ray and neutron diffraction techniques occupy a prominent position among various methods for studying imperfections in crystals. Their main advantages are explained by the fact that the characteristic wavelengths of X-rays and thermal neutrons are comparable with the interatomic distances. For instance, the wavelength of the X-rays corresponding to the K α doublet of copper is 1.54 Å, in silver it is 0.56 Å and in tungsten 0.21 Å. The mean energy of thermal neutrons at 300 K is 0.026 eV corresponding to a wavelength of 1.8 Å. When radiation with such a short wavelength is scattered, the resulting interference pattern is related to the details of the arrangement of atoms in the crystal at distance of the interatomic spacing. Therefore analysis of the pattern allows us to study the violations of the crystal perfection on this scale and determine atomic displacements of the order of 0.1 Å. When necessary, we can study crystal inhomogeneities on a considerably larger scale (up to 102 – 103 Å) by using small-angle scattering in the vicinities of the reciprocal lattice points, or cold neutrons with large wavelengths.</abstract>
<relatedItem type="host">
<titleInfo>
<title>X-Ray and Neutron Diffraction in Nonideal Crystals</title>
</titleInfo>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">V.</namePart>
<namePart type="given">G.</namePart>
<namePart type="family">Baryakhtar</namePart>
<affiliation>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">M.</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Ivanov</namePart>
<affiliation>Institute of Metal Physics, Ukrainian Academy of Sciences, pr. Vernadskogo 36, 252680, Kiev, Ukraine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">S.</namePart>
<namePart type="given">C.</namePart>
<namePart type="family">Moss</namePart>
<affiliation>Department of Physics, University of Houston, 77204-5506, Houston, Texas, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">J.</namePart>
<namePart type="family">Peisl</namePart>
<affiliation>Sektion Physik, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539, München, Germany</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Professor Dr.</namePart>
<namePart type="given">Mikhail</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Krivoglaz</namePart>
</name>
<genre type="book" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11651">Physics and Astronomy</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="P">Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="P25056">Crystallography</topic>
<topic authority="SpringerSubjectCodes" authorityURI="P31060">Optics, Optoelectronics, Plasmonics and Optical Devices</topic>
<topic authority="SpringerSubjectCodes" authorityURI="T24027">Electronics and Microelectronics, Instrumentation</topic>
</subject>
<identifier type="DOI">10.1007/978-3-642-74291-0</identifier>
<identifier type="ISBN">978-3-642-74293-4</identifier>
<identifier type="eISBN">978-3-642-74291-0</identifier>
<identifier type="BookTitleID">21765</identifier>
<identifier type="BookID">978-3-642-74291-0</identifier>
<identifier type="BookChapterCount">5</identifier>
<part>
<date>1996</date>
<detail type="chapter">
<number>1</number>
<caption>chapter</caption>
</detail>
<extent unit="pages">
<start>1</start>
<end>73</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 1996</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">40BD0EE7199B84A034EDCAB92ABC86F089027F63</identifier>
<identifier type="ark">ark:/67375/HCB-LB7PJ55Z-W</identifier>
<identifier type="DOI">10.1007/978-3-642-74291-0_1</identifier>
<identifier type="ChapterID">1</identifier>
<identifier type="ChapterID">Chap1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag Berlin Heidelberg, 1996</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 1996</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>txt</extension>
<original>true</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-LB7PJ55Z-W/annexes.txt</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001847 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001847 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:40BD0EE7199B84A034EDCAB92ABC86F089027F63
   |texte=   Distribution of the Scattering Intensity. General Aspects
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021