Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes

Identifieur interne : 001720 ( Istex/Corpus ); précédent : 001719; suivant : 001721

A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes

Auteurs : Allison E. Howard ; Piotr Cieplak ; Peter A. Kollman

Source :

RBID : ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6

English descriptors

Abstract

We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.

Url:
DOI: 10.1002/jcc.540160211

Links to Exploration step

ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<author>
<name sortKey="Howard, Allison E" sort="Howard, Allison E" uniqKey="Howard A" first="Allison E." last="Howard">Allison E. Howard</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1002/jcc.540160211</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001720</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001720</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<author>
<name sortKey="Howard, Allison E" sort="Howard, Allison E" uniqKey="Howard A" first="Allison E." last="Howard">Allison E. Howard</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
<affiliation>
<mods:affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Computational Chemistry</title>
<title level="j" type="alt">JOURNAL OF COMPUTATIONAL CHEMISTRY</title>
<idno type="ISSN">0192-8651</idno>
<idno type="eISSN">1096-987X</idno>
<imprint>
<biblScope unit="vol">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="243">243</biblScope>
<biblScope unit="page" to="261">261</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1995-02">1995-02</date>
</imprint>
<idno type="ISSN">0192-8651</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0192-8651</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute agreement</term>
<term>Absolute energy differences</term>
<term>Additional torsional term</term>
<term>Amber</term>
<term>Angle parameters</term>
<term>Anomeric</term>
<term>Anomeric effect</term>
<term>Athe coefficient</term>
<term>Atom types</term>
<term>Average energy difference</term>
<term>Bond angles</term>
<term>Chair conformation</term>
<term>Chair conformations</term>
<term>Charge distribution</term>
<term>Charge model</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Cieplak</term>
<term>Coefficient</term>
<term>Computational</term>
<term>Computational chemistry</term>
<term>Computational methods</term>
<term>Conformation</term>
<term>Conformational</term>
<term>Conformational energies</term>
<term>Conformational energy</term>
<term>Conformer</term>
<term>Conformer energies</term>
<term>Conformers</term>
<term>Correlation coefficient</term>
<term>Dihedral</term>
<term>Dihedral angle</term>
<term>Dihedral angles</term>
<term>Dihedral parameters</term>
<term>Dioxanes</term>
<term>Electrostatic energies</term>
<term>Electrostatic energy</term>
<term>Electrostatic potentials</term>
<term>Energy components</term>
<term>Energy difference</term>
<term>Energy differences</term>
<term>Equivalencing</term>
<term>Error bars</term>
<term>Experimental data result</term>
<term>Experimentalor calculational method</term>
<term>Fitting process</term>
<term>Force field</term>
<term>Force field parameters</term>
<term>Force fields</term>
<term>Highest level</term>
<term>Hyperbolic penalty function</term>
<term>Initio</term>
<term>Initio calculations</term>
<term>Intermolecular interactions</term>
<term>John wiley sons</term>
<term>Kollman</term>
<term>Kollman table</term>
<term>Linear relationship</term>
<term>Mechanical model</term>
<term>Mechanical models</term>
<term>Mechanics calculations</term>
<term>Mechanics model</term>
<term>Mediocre correlation</term>
<term>Methyl</term>
<term>Methyl carbons</term>
<term>Methyl group</term>
<term>Methyl groups</term>
<term>Methyl substituent</term>
<term>Molecular mechanics</term>
<term>Molecular mechanics calculations</term>
<term>Molecular mechanics energy</term>
<term>Molecular mechanics force field</term>
<term>Molecular mechanics models</term>
<term>Molecule</term>
<term>Negative energy</term>
<term>Nonbonded parameters</term>
<term>Other terms</term>
<term>Parameter</term>
<term>Partial charges</term>
<term>Phase shift</term>
<term>Point charges</term>
<term>Poor correlation</term>
<term>Quantum mechanics</term>
<term>Reaction energies</term>
<term>Relative energies</term>
<term>Relative energies table</term>
<term>Resp</term>
<term>Ring atoms</term>
<term>Ring model</term>
<term>Rychnovsky</term>
<term>Scale factor</term>
<term>Simple regression</term>
<term>Standard model</term>
<term>Steric</term>
<term>Substituent</term>
<term>Table viii</term>
<term>Torsion</term>
<term>Torsional</term>
<term>Torsional parameter</term>
<term>Torsional parameters</term>
<term>Total energies</term>
<term>Unsubstituted compound</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>initio</json:string>
<json:string>torsional</json:string>
<json:string>kollman</json:string>
<json:string>chem</json:string>
<json:string>conformational energies</json:string>
<json:string>relative energies</json:string>
<json:string>molecular mechanics</json:string>
<json:string>dioxanes</json:string>
<json:string>dihedral</json:string>
<json:string>rychnovsky</json:string>
<json:string>cieplak</json:string>
<json:string>conformation</json:string>
<json:string>equivalencing</json:string>
<json:string>initio calculations</json:string>
<json:string>resp</json:string>
<json:string>anomeric</json:string>
<json:string>point charges</json:string>
<json:string>phase shift</json:string>
<json:string>conformers</json:string>
<json:string>substituent</json:string>
<json:string>conformer</json:string>
<json:string>simple regression</json:string>
<json:string>force field</json:string>
<json:string>steric</json:string>
<json:string>conformational</json:string>
<json:string>reaction energies</json:string>
<json:string>chair conformation</json:string>
<json:string>computational</json:string>
<json:string>amber</json:string>
<json:string>anomeric effect</json:string>
<json:string>computational chemistry</json:string>
<json:string>conformational energy</json:string>
<json:string>molecular mechanics calculations</json:string>
<json:string>correlation coefficient</json:string>
<json:string>additional torsional term</json:string>
<json:string>chair conformations</json:string>
<json:string>table viii</json:string>
<json:string>mechanics calculations</json:string>
<json:string>poor correlation</json:string>
<json:string>average energy difference</json:string>
<json:string>electrostatic energies</json:string>
<json:string>torsional parameters</json:string>
<json:string>molecule</json:string>
<json:string>coefficient</json:string>
<json:string>torsion</json:string>
<json:string>energy components</json:string>
<json:string>unsubstituted compound</json:string>
<json:string>linear relationship</json:string>
<json:string>charge model</json:string>
<json:string>electrostatic energy</json:string>
<json:string>mechanical model</json:string>
<json:string>absolute energy differences</json:string>
<json:string>partial charges</json:string>
<json:string>dihedral parameters</json:string>
<json:string>energy difference</json:string>
<json:string>highest level</json:string>
<json:string>mechanics model</json:string>
<json:string>negative energy</json:string>
<json:string>mechanical models</json:string>
<json:string>force fields</json:string>
<json:string>energy differences</json:string>
<json:string>methyl</json:string>
<json:string>parameter</json:string>
<json:string>athe coefficient</json:string>
<json:string>standard model</json:string>
<json:string>ring atoms</json:string>
<json:string>angle parameters</json:string>
<json:string>molecular mechanics force field</json:string>
<json:string>molecular mechanics models</json:string>
<json:string>intermolecular interactions</json:string>
<json:string>methyl carbons</json:string>
<json:string>ring model</json:string>
<json:string>kollman table</json:string>
<json:string>electrostatic potentials</json:string>
<json:string>methyl substituent</json:string>
<json:string>methyl groups</json:string>
<json:string>chemical shifts</json:string>
<json:string>total energies</json:string>
<json:string>methyl group</json:string>
<json:string>experimental data result</json:string>
<json:string>error bars</json:string>
<json:string>dihedral angle</json:string>
<json:string>molecular mechanics energy</json:string>
<json:string>fitting process</json:string>
<json:string>hyperbolic penalty function</json:string>
<json:string>scale factor</json:string>
<json:string>absolute agreement</json:string>
<json:string>experimentalor calculational method</json:string>
<json:string>computational methods</json:string>
<json:string>relative energies table</json:string>
<json:string>mediocre correlation</json:string>
<json:string>dihedral angles</json:string>
<json:string>bond angles</json:string>
<json:string>quantum mechanics</json:string>
<json:string>conformer energies</json:string>
<json:string>torsional parameter</json:string>
<json:string>charge distribution</json:string>
<json:string>john wiley sons</json:string>
<json:string>nonbonded parameters</json:string>
<json:string>other terms</json:string>
<json:string>force field parameters</json:string>
<json:string>atom types</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Allison E. Howard</name>
<affiliations>
<json:string>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</json:string>
</affiliations>
</json:item>
<json:item>
<name>Piotr Cieplak</name>
<affiliations>
<json:string>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</json:string>
<json:string>Current Address: Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw, Poland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter A. Kollman</name>
<affiliations>
<json:string>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</json:string>
<json:string>Correspondence address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JCC540160211</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-RH4J0MK9-G</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>7168</pdfWordCount>
<pdfCharCount>50730</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>19</pdfPageCount>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<pdfWordsPerPage>377</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>354</abstractWordCount>
<abstractCharCount>2565</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Computational Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1096-987X</json:string>
</doi>
<issn>
<json:string>0192-8651</json:string>
</issn>
<eissn>
<json:string>1096-987X</json:string>
</eissn>
<publisherId>
<json:string>JCC</json:string>
</publisherId>
<volume>16</volume>
<issue>2</issue>
<pages>
<first>243</first>
<last>261</last>
<total>19</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
<json:item>
<value>Articles</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2/6-31</json:string>
<json:string>2-1-6</json:string>
<json:string>1995</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Sons, Inc.</json:string>
<json:string>SDSC</json:string>
<json:string>San Diego Supercomputing Center</json:string>
<json:string>Polish Committee for Scientific Research</json:string>
<json:string>Department of Chemistry, University of Warsaw, Pasteur</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>M. A. Murcko</json:string>
<json:string>E. Astrup</json:string>
<json:string>John Wiley</json:string>
<json:string>B. Wiberg</json:string>
<json:string>Atom Charge</json:string>
<json:string>Atom Type</json:string>
<json:string>Atom Types</json:string>
<json:string>Scott D. Rychnovsky</json:string>
<json:string>Bert Thomas</json:string>
<json:string>Per-Ola Norrby</json:string>
<json:string>Jerry Greenberg</json:string>
<json:string>K. B. Wiberg</json:string>
<json:string>Atom Atom</json:string>
<json:string>Danish School</json:string>
<json:string>Wendy Cornell</json:string>
</persName>
<placeName>
<json:string>Poland</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Jorgensen et al.</json:string>
<json:string>Reynolds et al.</json:string>
<json:string>Cornell et al.</json:string>
<json:string>Cornell et aL</json:string>
<json:string>Rychnovsky et al.</json:string>
<json:string>Weiner et al.</json:string>
<json:string>Harmony et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-RH4J0MK9-G</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - chemical physics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Computational Mathematics</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - General Chemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1002/jcc.540160211</json:string>
</doi>
<id>8032DE42E773AF2512AD1CD390CDF1760AD72FF6</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<title level="a" type="short" xml:lang="en">REPRODUCING RELATIVE ENERGIES</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 1995 John Wiley & Sons, Inc.</licence>
</availability>
<date type="published" when="1995-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<title level="a" type="short" xml:lang="en">REPRODUCING RELATIVE ENERGIES</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Allison E.</forename>
<surname>Howard</surname>
</persName>
<affiliation>
<orgName type="division">Department of Pharmaceutical Chemistry</orgName>
<orgName type="department">School of Pharmacy</orgName>
<orgName type="institution">University of California</orgName>
<address>
<addrLine>San Francisco</addrLine>
<addrLine>California 94143</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Piotr</forename>
<surname>Cieplak</surname>
</persName>
<affiliation>
<orgName type="division">Department of Pharmaceutical Chemistry</orgName>
<orgName type="department">School of Pharmacy</orgName>
<orgName type="institution">University of California</orgName>
<address>
<addrLine>San Francisco</addrLine>
<addrLine>California 94143</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="division">Department of Chemistry</orgName>
<orgName type="institution">University of Warsaw</orgName>
<orgName type="institution">Pasteur 1</orgName>
<address>
<addrLine>02‐093 Warsaw</addrLine>
<addrLine>Poland</addrLine>
<country key="PL" xml:lang="en">POLAND</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">Peter A.</forename>
<surname>Kollman</surname>
</persName>
<affiliation>
<orgName type="division">Department of Pharmaceutical Chemistry</orgName>
<orgName type="department">School of Pharmacy</orgName>
<orgName type="institution">University of California</orgName>
<address>
<addrLine>San Francisco</addrLine>
<addrLine>California 94143</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<idno type="istex">8032DE42E773AF2512AD1CD390CDF1760AD72FF6</idno>
<idno type="ark">ark:/67375/WNG-RH4J0MK9-G</idno>
<idno type="DOI">10.1002/jcc.540160211</idno>
<idno type="unit">JCC540160211</idno>
<idno type="toTypesetVersion">file:JCC.JCC540160211.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Computational Chemistry</title>
<title level="j" type="alt">JOURNAL OF COMPUTATIONAL CHEMISTRY</title>
<idno type="pISSN">0192-8651</idno>
<idno type="eISSN">1096-987X</idno>
<idno type="book-DOI">10.1002/(ISSN)1096-987X</idno>
<idno type="book-part-DOI">10.1002/jcc.v16:2</idno>
<idno type="product">JCC</idno>
<imprint>
<biblScope unit="vol">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="243">243</biblScope>
<biblScope unit="page" to="261">261</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1995-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="fr" style="main">
<head>Abstract</head>
<p>We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐
<hi rend="italic">trans</hi>
‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.
<hi rend="superscript">1</hi>
have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel
<hi rend="superscript">2</hi>
implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single
<hi rend="italic">V</hi>
<hi rend="subscript">1</hi>
(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing
<hi rend="italic">ab initio</hi>
and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best
<hi rend="italic">ab initio</hi>
data compared to MM2* but is still significantly worse than that found with lower‐level
<hi rend="italic">ab initio</hi>
or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-987X</doi>
<issn type="print">0192-8651</issn>
<issn type="electronic">1096-987X</issn>
<idGroup>
<id type="product" value="JCC"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF COMPUTATIONAL CHEMISTRY">Journal of Computational Chemistry</title>
<title type="short">J. Comput. Chem.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/jcc.v16:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="16">16</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="1995-02">February 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="11" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jcc.540160211</doi>
<idGroup>
<id type="unit" value="JCC540160211"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1995 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-05-24"></event>
<event type="manuscriptAccepted" date="1994-05-25"></event>
<event type="firstOnline" date="2004-09-07"></event>
<event type="publishedOnlineFinalForm" date="2004-09-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">243</numbering>
<numbering type="pageLast">261</numbering>
</numberingGroup>
<correspondenceTo>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JCC.JCC540160211.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="9"></count>
<count type="referenceTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<title type="short" xml:lang="en">REPRODUCING RELATIVE ENERGIES</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Allison E.</givenNames>
<familyName>Howard</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" currentRef="#curr1">
<personName>
<givenNames>Piotr</givenNames>
<familyName>Cieplak</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Peter A.</givenNames>
<familyName>Kollman</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</unparsedAffiliation>
</affiliation>
<affiliation xml:id="curr1" countryCode="PL">
<unparsedAffiliation>Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw, Poland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="fr">
<title type="main">Abstract</title>
<p>We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐
<i>trans</i>
‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.
<sup>1</sup>
have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel
<sup>2</sup>
implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single
<i>V</i>
<sub>1</sub>
(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing
<i>ab initio</i>
and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best
<i>ab initio</i>
data compared to MM2* but is still significantly worse than that found with lower‐level
<i>ab initio</i>
or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>REPRODUCING RELATIVE ENERGIES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Allison E.</namePart>
<namePart type="family">Howard</namePart>
<affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Cieplak</namePart>
<affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</affiliation>
<affiliation>Current Address: Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw, Poland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter A.</namePart>
<namePart type="family">Kollman</namePart>
<affiliation>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</affiliation>
<affiliation>Correspondence address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1995-02</dateIssued>
<dateCaptured encoding="w3cdtf">1994-05-24</dateCaptured>
<dateValid encoding="w3cdtf">1994-05-25</dateValid>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">9</extent>
<extent unit="references">19</extent>
</physicalDescription>
<abstract lang="fr">We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Computational Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comput. Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
<topic>Articles</topic>
</subject>
<identifier type="ISSN">0192-8651</identifier>
<identifier type="eISSN">1096-987X</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-987X</identifier>
<identifier type="PublisherID">JCC</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>243</start>
<end>261</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit1">
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">S. D. Rychovsky, G. Yang and J. P. Powers, J. Org. Chem., 58, 5251 (1993).</note>
<name type="personal">
<namePart type="given">S. D.</namePart>
<namePart type="family">Rychovsky</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. P.</namePart>
<namePart type="family">Powers</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>5251</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit2">
<titleInfo>
<title>J. Comp. Chem.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W. C. Still, J. Comp. Chem., 11, 440 (1990).</note>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Mohamadi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. G. J.</namePart>
<namePart type="family">Richards</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. C.</namePart>
<namePart type="family">Guida</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Liskamp</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Lipton</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Caufield</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Hendrickson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. C.</namePart>
<namePart type="family">Still</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>440</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit3">
<titleInfo>
<title>U. Burkert andN. L. Allinger,Molecular Mechanics,vol. 177,American Chemical Society, Washington, DC,1982.</title>
</titleInfo>
<note type="citation/reference">U. Burkert and N. L. Allinger, Molecular Mechanics, vol. 177, American Chemical Society, Washington, DC, 1982.</note>
<name type="personal">
<namePart type="given">U.</namePart>
<namePart type="family">Burkert</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. L.</namePart>
<namePart type="family">Allinger</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<place>
<placeTerm type="text">Washington, DC</placeTerm>
</place>
</originInfo>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>177</number>
</detail>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit4">
<titleInfo>
<title>Accounts Chem. Res.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">P. A. Kollman and K. M. Merz, Accounts Chem. Res., 23, 246 (1990).</note>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K. M.</namePart>
<namePart type="family">Merz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>246</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit5">
<titleInfo>
<title>J. A. McCammon andS. C. Harvey,Dynamics of Proteins and Nucleic Acids,Cambridge University Press, New York,1987.</title>
</titleInfo>
<note type="citation/reference">J. A. McCammon and S. C. Harvey, Dynamics of Proteins and Nucleic Acids, Cambridge University Press, New York, 1987.</note>
<name type="personal">
<namePart type="given">J. A.</namePart>
<namePart type="family">McCammon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S. C.</namePart>
<namePart type="family">Harvey</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>Cambridge University Press</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
</originInfo>
<part>
<date>1987</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit6">
<titleInfo>
<title>J. Phys. Chem.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, J. Phys. Chem., 97, 10269 (1993).</note>
<name type="personal">
<namePart type="given">C. I.</namePart>
<namePart type="family">Bayly</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Cieplak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. D.</namePart>
<namePart type="family">Cornell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>97</number>
</detail>
<extent unit="pages">
<start>10269</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit7">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">W. D. Cornell, P. Cieplak, C. I. Bayly, and P. A. Kollman, J. Am. Chem. Soc., 115, 9620 (1993).</note>
<name type="personal">
<namePart type="given">W. D.</namePart>
<namePart type="family">Cornell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Cieplak</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C. I.</namePart>
<namePart type="family">Bayly</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>115</number>
</detail>
<extent unit="pages">
<start>9620</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit8">
<titleInfo>
<title>M. J. Frisch,M. Head‐Gordon,G. W. Trucks,J. B. Foresman,H. B. Schlegel,K. Raghavachari,M. Robb,J. S. Binkley,C. Gonzalez,D. J. Defrees,D. J. Fox,R. A. Whiteside,R. Seeger,C. F. Melius,J. Baker,R. L. Martin,L. R. Kahn,J. J. P. Stewart,S. Topiol, andJ. A. Pople,Gaussian 90, Revision J,Gaussian, Inc., Pittsburgh, PA,1990.</title>
</titleInfo>
<note type="citation/reference">M. J. Frisch, M. Head‐Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, Gaussian 90, Revision J, Gaussian, Inc., Pittsburgh, PA, 1990.</note>
<name type="personal">
<namePart type="given">M. J.</namePart>
<namePart type="family">Frisch</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Head‐Gordon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. W.</namePart>
<namePart type="family">Trucks</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. B.</namePart>
<namePart type="family">Foresman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H. B.</namePart>
<namePart type="family">Schlegel</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Raghavachari</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Robb</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. S.</namePart>
<namePart type="family">Binkley</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Gonzalez</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. J.</namePart>
<namePart type="family">Defrees</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. J.</namePart>
<namePart type="family">Fox</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. A.</namePart>
<namePart type="family">Whiteside</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Seeger</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C. F.</namePart>
<namePart type="family">Melius</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Baker</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. L.</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L. R.</namePart>
<namePart type="family">Kahn</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. J. P.</namePart>
<namePart type="family">Stewart</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Topiol</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. A.</namePart>
<namePart type="family">Pople</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>Gaussian, Inc.</publisher>
<place>
<placeTerm type="text">Pittsburgh, PA</placeTerm>
</place>
</originInfo>
<part>
<date>1990</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit9">
<titleInfo>
<title>J. Comp. Chem.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">U. C. Singh and P. A. Kollman, J. Comp. Chem., 5, 129 (1984).</note>
<name type="personal">
<namePart type="given">U. C.</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>129</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit10">
<titleInfo>
<title>D. A. Pearlman,D. A. Case,J. C. Caldwell,G. L. Seibel,U. C. Singh,P. Weiner, andP. A. Kollman,AMBER 4.0,University of California, San Francisco,1991.</title>
</titleInfo>
<note type="citation/reference">D. A. Pearlman, D. A. Case, J. C. Caldwell, G. L. Seibel, U. C. Singh, P. Weiner, and P. A. Kollman, AMBER 4.0, University of California, San Francisco, 1991.</note>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Pearlman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Case</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. C.</namePart>
<namePart type="family">Caldwell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. L.</namePart>
<namePart type="family">Seibel</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U. C.</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Weiner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>University of California</publisher>
<place>
<placeTerm type="text">San Francisco</placeTerm>
</place>
</originInfo>
<part>
<date>1991</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit11">
<titleInfo>
<title>J. Comp. Chem.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comp. Chem., 7, 203 (1986).</note>
<name type="personal">
<namePart type="given">S. J.</namePart>
<namePart type="family">Weiner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. T.</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Case</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>203</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit12">
<titleInfo>
<title>J. Phys. Chem. Ref. Data</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H., Schwendeman; D. A. Ramsay, F. J. Lovas, W. J. Lafferty, and A. G. Maki, J. Phys. Chem. Ref. Data, 8, 619 (1979).</note>
<name type="personal">
<namePart type="given">M. D.</namePart>
<namePart type="family">Harmony</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V. W.</namePart>
<namePart type="family">Laurie</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. L.</namePart>
<namePart type="family">Kuczkowski</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. H.</namePart>
<namePart type="family">Schwendeman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Ramsay</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F. J.</namePart>
<namePart type="family">Lovas</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. J.</namePart>
<namePart type="family">Lafferty</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A. G.</namePart>
<namePart type="family">Maki</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1979</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>619</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit13">
<titleInfo>
<title>N. L. Allinger,MM2 (77‐Force Field) [written byY. H. Yuh;February 25,1980],Department of Chemistry, University of Georgia,1980.</title>
</titleInfo>
<genre>book</genre>
<originInfo>
<publisher>Department of Chemistry</publisher>
</originInfo>
<part>
<date>1980</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit14">
<titleInfo>
<title>N. L. Allinger,MM3 (87‐Force Field) [programming responsibility—MM3:Y. H. Yuh;Molecular Vibration:R. Lii;June 27,1989],Department of Chemistry, University of Georgia,1989.</title>
</titleInfo>
<note type="citation/reference">N. L. Allinger, MM3 (87‐Force Field) [programming responsibility—MM3: Y. H. Yuh; Molecular Vibration: R. Lii; June 27, 1989], Department of Chemistry, University of Georgia, 1989.</note>
<name type="personal">
<namePart type="given">N. L.</namePart>
<namePart type="family">Allinger</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y. H.</namePart>
<namePart type="family">Yuh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Lii</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>Department of Chemistry</publisher>
<place>
<placeTerm type="text">University of Georgia</placeTerm>
</place>
</originInfo>
<part>
<date>1989</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit15">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">C. A. Reynolds, J. W. Essex, and W. G. Richards, J. Am. Chem. Soc., 114, 9075 (1992).</note>
<name type="personal">
<namePart type="given">C. A.</namePart>
<namePart type="family">Reynolds</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. W.</namePart>
<namePart type="family">Essex</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. G.</namePart>
<namePart type="family">Richards</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>114</number>
</detail>
<extent unit="pages">
<start>9075</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit16">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">K. B. Wiberg and M. A. Murcko, J. Am. Chem. Soc., 111, 4821 (1989).</note>
<name type="personal">
<namePart type="given">K. B.</namePart>
<namePart type="family">Wiberg</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. A.</namePart>
<namePart type="family">Murcko</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>111</number>
</detail>
<extent unit="pages">
<start>4821</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit17">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr., and P. Weiner, J. Am. Chem. Soc., 106, 765 (1984).</note>
<name type="personal">
<namePart type="given">S. J.</namePart>
<namePart type="family">Weiner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. A.</namePart>
<namePart type="family">Kollman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Case</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U. C.</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Ghio</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Alagona</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Profeta Jr.</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Weiner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<extent unit="pages">
<start>765</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit18">
<titleInfo>
<title>Y.‐D. Wu andK. N. Houk,to be submitted.</title>
</titleInfo>
<genre>other</genre>
</relatedItem>
<relatedItem type="references" displayLabel="cit19">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">W. L. Jorgensen, P. I. Morales de Tirado, and D. L. Severance, J. Am. Chem. Soc., 116, 2199 (1994).</note>
<name type="personal">
<namePart type="given">W. L.</namePart>
<namePart type="family">Jorgensen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. I. Morales</namePart>
<namePart type="family">de Tirado</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. L.</namePart>
<namePart type="family">Severance</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<extent unit="pages">
<start>2199</start>
</extent>
</part>
</relatedItem>
<identifier type="istex">8032DE42E773AF2512AD1CD390CDF1760AD72FF6</identifier>
<identifier type="ark">ark:/67375/WNG-RH4J0MK9-G</identifier>
<identifier type="DOI">10.1002/jcc.540160211</identifier>
<identifier type="ArticleID">JCC540160211</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1995 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-15</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001720 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001720 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6
   |texte=   A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021