Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ground-State Potential Surfaces and Thermochemistry

Identifieur interne : 001678 ( Istex/Corpus ); précédent : 001677; suivant : 001679

Ground-State Potential Surfaces and Thermochemistry

Auteurs : Marie C. Flanigan ; Andrew Komornicki ; James W. Mciver Jr.

Source :

RBID : ISTEX:28A2AE43380F0202581380E744DB91A09C78659E

Abstract

Abstract: It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques(1) they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.

Url:
DOI: 10.1007/978-1-4684-2559-8_1

Links to Exploration step

ISTEX:28A2AE43380F0202581380E744DB91A09C78659E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ground-State Potential Surfaces and Thermochemistry</title>
<author>
<name sortKey="Flanigan, Marie C" sort="Flanigan, Marie C" uniqKey="Flanigan M" first="Marie C." last="Flanigan">Marie C. Flanigan</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komornicki, Andrew" sort="Komornicki, Andrew" uniqKey="Komornicki A" first="Andrew" last="Komornicki">Andrew Komornicki</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mciver Jr, James W" sort="Mciver Jr, James W" uniqKey="Mciver Jr J" first="James W." last="Mciver Jr.">James W. Mciver Jr.</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:28A2AE43380F0202581380E744DB91A09C78659E</idno>
<date when="1977" year="1977">1977</date>
<idno type="doi">10.1007/978-1-4684-2559-8_1</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001678</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001678</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ground-State Potential Surfaces and Thermochemistry</title>
<author>
<name sortKey="Flanigan, Marie C" sort="Flanigan, Marie C" uniqKey="Flanigan M" first="Marie C." last="Flanigan">Marie C. Flanigan</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komornicki, Andrew" sort="Komornicki, Andrew" uniqKey="Komornicki A" first="Andrew" last="Komornicki">Andrew Komornicki</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mciver Jr, James W" sort="Mciver Jr, James W" uniqKey="Mciver Jr J" first="James W." last="Mciver Jr.">James W. Mciver Jr.</name>
<affiliation>
<mods:affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s" type="main" xml:lang="en">Modern Theoretical Chemistry</title>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques(1) they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<author>
<json:item>
<name>Marie C. Flanigan</name>
<affiliations>
<json:string>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrew Komornicki</name>
<affiliations>
<json:string>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>James W. McIver Jr.</name>
<affiliations>
<json:string>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-4KQ2RM8X-G</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques(1) they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>168</abstractWordCount>
<abstractCharCount>1112</abstractCharCount>
<keywordCount>0</keywordCount>
<score>9.016</score>
<pdfWordCount>14242</pdfWordCount>
<pdfCharCount>88897</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>47</pdfPageCount>
<pdfPageSize>482 x 692 pts</pdfPageSize>
</qualityIndicators>
<title>Ground-State Potential Surfaces and Thermochemistry</title>
<chapterId>
<json:string>1</json:string>
<json:string>Chap1</json:string>
</chapterId>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Modern Theoretical Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1977</copyrightDate>
<editor>
<json:item>
<name>William H. Miller</name>
<affiliations>
<json:string>University of California, Berkeley, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Henry F. Schaefer III</name>
<affiliations>
<json:string>University of California, Berkeley, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bruce J. Berne</name>
<affiliations>
<json:string>Columbia University, New York, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gerald A. Segal</name>
<affiliations>
<json:string>University of Southern California, Los Angeles, USA</json:string>
</affiliations>
</json:item>
</editor>
</serie>
<host>
<title>Semiempirical Methods of Electronic Structure Calculation</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1977</copyrightDate>
<doi>
<json:string>10.1007/978-1-4684-2559-8</json:string>
</doi>
<eisbn>
<json:string>978-1-4684-2559-8</json:string>
</eisbn>
<bookId>
<json:string>978-1-4684-2559-8</json:string>
</bookId>
<isbn>
<json:string>978-1-4684-2561-1</json:string>
</isbn>
<volume>8</volume>
<pages>
<first>1</first>
<last>47</last>
</pages>
<genre>
<json:string>book-series</json:string>
</genre>
<editor>
<json:item>
<name>Gerald A. Segal</name>
<affiliations>
<json:string>University of Southern California, Los Angeles, USA</json:string>
</affiliations>
</json:item>
</editor>
<subject>
<json:item>
<value>Chemistry and Materials Science</value>
</json:item>
<json:item>
<value>Chemistry</value>
</json:item>
<json:item>
<value>Physical Chemistry</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-4KQ2RM8X-G</json:string>
</ark>
<publicationDate>1977</publicationDate>
<copyrightDate>1977</copyrightDate>
<doi>
<json:string>10.1007/978-1-4684-2559-8_1</json:string>
</doi>
<id>28A2AE43380F0202581380E744DB91A09C78659E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Ground-State Potential Surfaces and Thermochemistry</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<availability>
<licence>Plenum Press, New York</licence>
</availability>
<date when="1977">1977</date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="research-article" source="OriginalPaper" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" subtype="book-series" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ground-State Potential Surfaces and Thermochemistry</title>
<author>
<persName>
<forename type="first">Marie</forename>
<forename type="first">C.</forename>
<surname>Flanigan</surname>
</persName>
<affiliation>
<orgName type="department">Department of Chemistry</orgName>
<orgName type="institution">State University of New York at Buffalo</orgName>
<address>
<settlement>Buffalo</settlement>
<region>New York</region>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">Andrew</forename>
<surname>Komornicki</surname>
</persName>
<affiliation>
<orgName type="department">Department of Chemistry</orgName>
<orgName type="institution">State University of New York at Buffalo</orgName>
<address>
<settlement>Buffalo</settlement>
<region>New York</region>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</author>
<author>
<persName>
<forename type="first">James</forename>
<forename type="first">W.</forename>
<surname>McIver</surname>
<genName>Jr.</genName>
</persName>
<affiliation>
<orgName type="department">Department of Chemistry</orgName>
<orgName type="institution">State University of New York at Buffalo</orgName>
<address>
<settlement>Buffalo</settlement>
<region>New York</region>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</author>
<idno type="istex">28A2AE43380F0202581380E744DB91A09C78659E</idno>
<idno type="ark">ark:/67375/HCB-4KQ2RM8X-G</idno>
<idno type="DOI">10.1007/978-1-4684-2559-8_1</idno>
</analytic>
<monogr>
<title level="m" type="main">Semiempirical Methods of Electronic Structure Calculation</title>
<title level="m" type="sub">Part B: Applications</title>
<idno type="DOI">10.1007/978-1-4684-2559-8</idno>
<idno type="book-id">978-1-4684-2559-8</idno>
<idno type="ISBN">978-1-4684-2561-1</idno>
<idno type="eISBN">978-1-4684-2559-8</idno>
<idno type="chapter-id">Chap1</idno>
<editor>
<persName>
<forename type="first">Gerald</forename>
<forename type="first">A.</forename>
<surname>Segal</surname>
</persName>
<affiliation>
<orgName type="institution">University of Southern California</orgName>
<address>
<settlement>Los Angeles</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<imprint>
<biblScope unit="vol">8</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="47">47</biblScope>
<biblScope unit="chapter-count">7</biblScope>
</imprint>
</monogr>
<series>
<title level="s" type="main" xml:lang="en">Modern Theoretical Chemistry</title>
<editor>
<persName>
<forename type="first">William</forename>
<forename type="first">H.</forename>
<surname>Miller</surname>
</persName>
<affiliation>
<orgName type="institution">University of California</orgName>
<address>
<settlement>Berkeley</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">Henry</forename>
<forename type="first">F.</forename>
<surname>Schaefer</surname>
<genName>III</genName>
</persName>
<affiliation>
<orgName type="institution">University of California</orgName>
<address>
<settlement>Berkeley</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">Bruce</forename>
<forename type="first">J.</forename>
<surname>Berne</surname>
</persName>
<affiliation>
<orgName type="institution">Columbia University</orgName>
<address>
<settlement>New York</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">Gerald</forename>
<forename type="first">A.</forename>
<surname>Segal</surname>
</persName>
<affiliation>
<orgName type="institution">University of Southern California</orgName>
<address>
<settlement>Los Angeles</settlement>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<idno type="seriesID">10920</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques
<hi rend="superscript">(1)</hi>
they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11644</label>
<item>
<term>Chemistry and Materials Science</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>C</label>
<item>
<term type="Primary">Chemistry</term>
</item>
<label>C21001</label>
<item>
<term type="Secondary" subtype="priority-1">Physical Chemistry</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer US</PublisherName>
<PublisherLocation>Boston, MA</PublisherLocation>
</PublisherInfo>
<Series>
<SeriesInfo SeriesType="Series" TocLevels="0">
<SeriesID>10920</SeriesID>
<SeriesTitle Language="En">Modern Theoretical Chemistry</SeriesTitle>
</SeriesInfo>
<SeriesHeader>
<EditorGroup>
<Editor AffiliationIDS="Aff1">
<EditorName DisplayOrder="Western">
<GivenName>William</GivenName>
<GivenName>H.</GivenName>
<FamilyName>Miller</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff1">
<EditorName DisplayOrder="Western">
<GivenName>Henry</GivenName>
<GivenName>F.</GivenName>
<FamilyName>Schaefer</FamilyName>
<Suffix>III</Suffix>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff2">
<EditorName DisplayOrder="Western">
<GivenName>Bruce</GivenName>
<GivenName>J.</GivenName>
<FamilyName>Berne</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff3">
<EditorName DisplayOrder="Western">
<GivenName>Gerald</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Segal</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff1">
<OrgName>University of California</OrgName>
<OrgAddress>
<City>Berkeley</City>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgName>Columbia University</OrgName>
<OrgAddress>
<City>New York</City>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgName>University of Southern California</OrgName>
<OrgAddress>
<City>Los Angeles</City>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</SeriesHeader>
<Book Language="En">
<BookInfo BookProductType="Contributed volume" ContainsESM="No" Language="En" MediaType="eBook" NumberingStyle="ChapterOnly" OutputMedium="All" TocLevels="0">
<BookID>978-1-4684-2559-8</BookID>
<BookTitle>Semiempirical Methods of Electronic Structure Calculation</BookTitle>
<BookSubTitle>Part B: Applications</BookSubTitle>
<BookVolumeNumber>8</BookVolumeNumber>
<BookSequenceNumber>0</BookSequenceNumber>
<BookDOI>10.1007/978-1-4684-2559-8</BookDOI>
<BookTitleID>119095</BookTitleID>
<BookPrintISBN>978-1-4684-2561-1</BookPrintISBN>
<BookElectronicISBN>978-1-4684-2559-8</BookElectronicISBN>
<BookChapterCount>7</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag US</CopyrightHolderName>
<CopyrightYear>1977</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="C" Type="Primary">Chemistry</BookSubject>
<BookSubject Code="C21001" Priority="1" Type="Secondary">Physical Chemistry</BookSubject>
<SubjectCollection Code="SUCO11644">Chemistry and Materials Science</SubjectCollection>
</BookSubjectGroup>
<BookContext>
<SeriesID>10920</SeriesID>
</BookContext>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor AffiliationIDS="Aff4">
<EditorName DisplayOrder="Western">
<GivenName>Gerald</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Segal</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff4">
<OrgName>University of Southern California</OrgName>
<OrgAddress>
<City>Los Angeles</City>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Chapter ID="Chap1" Language="En">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="ChapterOnly" OutputMedium="All" TocLevels="0">
<ChapterID>1</ChapterID>
<ChapterNumber>1</ChapterNumber>
<ChapterDOI>10.1007/978-1-4684-2559-8_1</ChapterDOI>
<ChapterSequenceNumber>1</ChapterSequenceNumber>
<ChapterTitle Language="En">Ground-State Potential Surfaces and Thermochemistry</ChapterTitle>
<ChapterFirstPage>1</ChapterFirstPage>
<ChapterLastPage>47</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Plenum Press, New York</CopyrightHolderName>
<CopyrightYear>1977</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2012</Year>
<Month>3</Month>
<Day>2</Day>
</RegistrationDate>
</ChapterHistory>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<SeriesID>10920</SeriesID>
<BookID>978-1-4684-2559-8</BookID>
<BookTitle>Semiempirical Methods of Electronic Structure Calculation</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff5">
<AuthorName DisplayOrder="Western">
<GivenName>Marie</GivenName>
<GivenName>C.</GivenName>
<FamilyName>Flanigan</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff5">
<AuthorName DisplayOrder="Western">
<GivenName>Andrew</GivenName>
<FamilyName>Komornicki</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff5">
<AuthorName DisplayOrder="Western">
<GivenName>James</GivenName>
<GivenName>W.</GivenName>
<FamilyName>McIver</FamilyName>
<Suffix>Jr.</Suffix>
</AuthorName>
</Author>
<Affiliation ID="Aff5">
<OrgDivision>Department of Chemistry</OrgDivision>
<OrgName>State University of New York at Buffalo</OrgName>
<OrgAddress>
<City>Buffalo</City>
<State>New York</State>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para>It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques
<Superscript>(1)</Superscript>
they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Series>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Ground-State Potential Surfaces and Thermochemistry</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Ground-State Potential Surfaces and Thermochemistry</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="given">C.</namePart>
<namePart type="family">Flanigan</namePart>
<affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Komornicki</namePart>
<affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">W.</namePart>
<namePart type="family">McIver Jr.</namePart>
<affiliation>Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" type="research-article" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer US</publisher>
<place>
<placeTerm type="text">Boston, MA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1977</dateIssued>
<copyrightDate encoding="w3cdtf">1977</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques(1) they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Semiempirical Methods of Electronic Structure Calculation</title>
<subTitle>Part B: Applications</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Segal</namePart>
<affiliation>University of Southern California, Los Angeles, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book-series" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1977</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11644">Chemistry and Materials Science</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="C">Chemistry</topic>
<topic authority="SpringerSubjectCodes" authorityURI="C21001">Physical Chemistry</topic>
</subject>
<identifier type="DOI">10.1007/978-1-4684-2559-8</identifier>
<identifier type="ISBN">978-1-4684-2561-1</identifier>
<identifier type="eISBN">978-1-4684-2559-8</identifier>
<identifier type="BookTitleID">119095</identifier>
<identifier type="BookID">978-1-4684-2559-8</identifier>
<identifier type="BookChapterCount">7</identifier>
<identifier type="BookVolumeNumber">8</identifier>
<identifier type="BookSequenceNumber">0</identifier>
<part>
<date>1977</date>
<detail type="volume">
<number>8</number>
<caption>vol.</caption>
</detail>
<detail type="chapter">
<number>1</number>
<caption>chapter</caption>
</detail>
<extent unit="pages">
<start>1</start>
<end>47</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag US, 1977</recordOrigin>
</recordInfo>
</relatedItem>
<relatedItem type="series">
<titleInfo>
<title>Modern Theoretical Chemistry</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="given">H.</namePart>
<namePart type="family">Miller</namePart>
<affiliation>University of California, Berkeley, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Henry</namePart>
<namePart type="given">F.</namePart>
<namePart type="family">Schaefer III</namePart>
<affiliation>University of California, Berkeley, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruce</namePart>
<namePart type="given">J.</namePart>
<namePart type="family">Berne</namePart>
<affiliation>Columbia University, New York, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Segal</namePart>
<affiliation>University of Southern California, Los Angeles, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1977</copyrightDate>
<issuance>serial</issuance>
</originInfo>
<identifier type="SeriesID">10920</identifier>
<part>
<detail type="chapter">
<number>1</number>
</detail>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag US, 1977</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">28A2AE43380F0202581380E744DB91A09C78659E</identifier>
<identifier type="ark">ark:/67375/HCB-4KQ2RM8X-G</identifier>
<identifier type="DOI">10.1007/978-1-4684-2559-8_1</identifier>
<identifier type="ChapterID">1</identifier>
<identifier type="ChapterID">Chap1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag US, 1977</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Plenum Press, New York, 1977</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>xml</extension>
<original>true</original>
<mimetype>application/xml</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-4KQ2RM8X-G/annexes.xml</uri>
</json:item>
</annexes>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001678 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001678 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:28A2AE43380F0202581380E744DB91A09C78659E
   |texte=   Ground-State Potential Surfaces and Thermochemistry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021