Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands

Identifieur interne : 001377 ( Istex/Corpus ); précédent : 001376; suivant : 001378

Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands

Auteurs : Stephen M. Pugh ; Alexander J. Blake ; Lutz H. Gade ; Philip Mountford

Source :

RBID : ISTEX:D6A7FC5D2E9DFB03A59535075204206D6A350B5F

Abstract

Reaction of the vanadium(V) imide [V(NAr)Cl3(THF)] (Ar = 2,6-C6H3iPr2) with the diamino-pyridine derivative MeC(2-C5H4N)(CH2NHSiMe2tBu)2 (abbreviated as H2N‘2Npy) gave modest yields of the vanadium(IV) species [V(NAr)(H3N‘N‘ ‘Npy)Cl2] (1 where H3N‘N‘ ‘Npy = MeC(2- C5H4N)(CH2NH2)(CH2NHSiMe2tBu) in which the original H2N‘2Npy has effectively lost SiMe2tBu (as ClSiMe2tBu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl3(py)2] (M = Nb or Ta, R = tBu or Ar) and the dilithium salt Li2[N2Npy] (where H2N2Npy = MeC(2-C5H4N)(CH2NHSiMe3)2), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N2Npy)(py)] (M = Nb, R = tBu 2; M = Ta, R = tBu 3 or Ar 4). The compounds 2−4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N2Npy)]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(NtBu)Cl(N2Npy)] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.
New Group 5 imido complexes derived from the diamido-pyridine ligand MeC(2-C5H4N)(CH2CH2NSiMe3)2 (N2Npy) are described. Among those reported are products of the reactions of Li2[N2Npy] with [M(NR)Cl3(py)2] (M = Nb, Ta; R = tBu, Ar) which gave compounds of the type shown. The X-ray structures and solution dynamics of the new compounds are described.

Url:
DOI: 10.1021/ic0102541

Links to Exploration step

ISTEX:D6A7FC5D2E9DFB03A59535075204206D6A350B5F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
<author>
<name sortKey="Pugh, Stephen M" sort="Pugh, Stephen M" uniqKey="Pugh S" first="Stephen M." last="Pugh">Stephen M. Pugh</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Oxford.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blake, Alexander J" sort="Blake, Alexander J" uniqKey="Blake A" first="Alexander J." last="Blake">Alexander J. Blake</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Nottingham.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gade, Lutz H" sort="Gade, Lutz H" uniqKey="Gade L" first="Lutz H." last="Gade">Lutz H. Gade</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Université Louis Pasteur.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mountford, Philip" sort="Mountford, Philip" uniqKey="Mountford P" first="Philip" last="Mountford">Philip Mountford</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Oxford.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D6A7FC5D2E9DFB03A59535075204206D6A350B5F</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1021/ic0102541</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001377</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001377</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
<author>
<name sortKey="Pugh, Stephen M" sort="Pugh, Stephen M" uniqKey="Pugh S" first="Stephen M." last="Pugh">Stephen M. Pugh</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Oxford.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blake, Alexander J" sort="Blake, Alexander J" uniqKey="Blake A" first="Alexander J." last="Blake">Alexander J. Blake</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Nottingham.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gade, Lutz H" sort="Gade, Lutz H" uniqKey="Gade L" first="Lutz H." last="Gade">Lutz H. Gade</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Université Louis Pasteur.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mountford, Philip" sort="Mountford, Philip" uniqKey="Mountford P" first="Philip" last="Mountford">Philip Mountford</name>
<affiliation>
<mods:affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Oxford.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Inorganic Chemistry</title>
<title level="j" type="abbrev">Inorg. Chem.</title>
<idno type="ISSN">0020-1669</idno>
<idno type="eISSN">1520-510X</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2001-06-30">2001</date>
<date when="2001-07-30">2001</date>
<biblScope unit="vol">40</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3992">3992</biblScope>
<biblScope unit="page" to="4001">4001</biblScope>
</imprint>
<idno type="ISSN">0020-1669</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0020-1669</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Reaction of the vanadium(V) imide [V(NAr)Cl3(THF)] (Ar = 2,6-C6H3iPr2) with the diamino-pyridine derivative MeC(2-C5H4N)(CH2NHSiMe2tBu)2 (abbreviated as H2N‘2Npy) gave modest yields of the vanadium(IV) species [V(NAr)(H3N‘N‘ ‘Npy)Cl2] (1 where H3N‘N‘ ‘Npy = MeC(2- C5H4N)(CH2NH2)(CH2NHSiMe2tBu) in which the original H2N‘2Npy has effectively lost SiMe2tBu (as ClSiMe2tBu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl3(py)2] (M = Nb or Ta, R = tBu or Ar) and the dilithium salt Li2[N2Npy] (where H2N2Npy = MeC(2-C5H4N)(CH2NHSiMe3)2), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N2Npy)(py)] (M = Nb, R = tBu 2; M = Ta, R = tBu 3 or Ar 4). The compounds 2−4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N2Npy)]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(NtBu)Cl(N2Npy)] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.</div>
<div type="abstract">New Group 5 imido complexes derived from the diamido-pyridine ligand MeC(2-C5H4N)(CH2CH2NSiMe3)2 (N2Npy) are described. Among those reported are products of the reactions of Li2[N2Npy] with [M(NR)Cl3(py)2] (M = Nb, Ta; R = tBu, Ar) which gave compounds of the type shown. The X-ray structures and solution dynamics of the new compounds are described.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>chem</json:string>
<json:string>sime3</json:string>
<json:string>imido</json:string>
<json:string>n2npy</json:string>
<json:string>ligand</json:string>
<json:string>mountford</json:string>
<json:string>trans</json:string>
<json:string>bond length</json:string>
<json:string>commun</json:string>
<json:string>chme2</json:string>
<json:string>gade</json:string>
<json:string>room temperature</json:string>
<json:string>mmol</json:string>
<json:string>orbitals</json:string>
<json:string>equatorial plane</json:string>
<json:string>inorg</json:string>
<json:string>pyridyl</json:string>
<json:string>steric</json:string>
<json:string>pyridine</json:string>
<json:string>imido complex</json:string>
<json:string>polyhedron</json:string>
<json:string>dalton trans</json:string>
<json:string>inorganic chemistry</json:string>
<json:string>nujol</json:string>
<json:string>tantalum</json:string>
<json:string>amide</json:string>
<json:string>datum</json:string>
<json:string>equatorial</json:string>
<json:string>diethyl ether</json:string>
<json:string>eyring plot</json:string>
<json:string>pyridine ligand</json:string>
<json:string>amide nitrogen</json:string>
<json:string>sime3 group exchange</json:string>
<json:string>angle subtended</json:string>
<json:string>metal center</json:string>
<json:string>coalescence measurement</json:string>
<json:string>line shape analysis</json:string>
<json:string>csbr plate</json:string>
<json:string>activation parameter</json:string>
<json:string>pyridyl group</json:string>
<json:string>chloride ligand</json:string>
<json:string>imido group</json:string>
<json:string>imido ligand</json:string>
<json:string>imido complex inorganic chemistry</json:string>
<json:string>brown solution</json:string>
<json:string>hydrogen atom</json:string>
<json:string>bond distance</json:string>
<json:string>crystal structure</json:string>
<json:string>imido nitrogen</json:string>
<json:string>n2npy pyridyl group</json:string>
<json:string>pugh</json:string>
<json:string>yellow crystal</json:string>
<json:string>slow cooling</json:string>
<json:string>symmetry operator</json:string>
<json:string>probability level</json:string>
<json:string>heavier group</json:string>
<json:string>ligand degradation</json:string>
<json:string>tantalum compound</json:string>
<json:string>mass spectrum</json:string>
<json:string>pale yellow crystal</json:string>
<json:string>metal complex</json:string>
<json:string>transition metal complex</json:string>
<json:string>broad septet</json:string>
<json:string>processing parameter</json:string>
<json:string>weak diffractor</json:string>
<json:string>similarity restraint</json:string>
<json:string>amide donor</json:string>
<json:string>datum collection</json:string>
<json:string>displacement parameter</json:string>
<json:string>sime3 resonance</json:string>
<json:string>transition metal imido complex</json:string>
<json:string>trigonal plane</json:string>
<json:string>louis pasteur</json:string>
<json:string>sime3 group</json:string>
<json:string>lone pair</json:string>
<json:string>amido group</json:string>
<json:string>electron donor</json:string>
<json:string>exchange process</json:string>
<json:string>trigonal bipyramidal structure</json:string>
<json:string>monomeric unit</json:string>
<json:string>sime2tbu substituent</json:string>
<json:string>further detail</json:string>
<json:string>nacl plate</json:string>
<json:string>diffraction quality crystal</json:string>
<json:string>pergamon press</json:string>
<json:string>largest peak</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>PUGH Stephen M.</name>
<affiliations>
<json:string>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</json:string>
<json:string>University of Oxford.</json:string>
</affiliations>
</json:item>
<json:item>
<name>BLAKE Alexander J.</name>
<affiliations>
<json:string>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</json:string>
<json:string>University of Nottingham.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GADE Lutz H.</name>
<affiliations>
<json:string>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</json:string>
<json:string>Université Louis Pasteur.</json:string>
<json:string>To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</json:string>
</affiliations>
</json:item>
<json:item>
<name>MOUNTFORD Philip</name>
<affiliations>
<json:string>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</json:string>
<json:string>University of Oxford.</json:string>
<json:string>To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-BHD9X61C-B</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Reaction of the vanadium(V) imide [V(NAr)Cl3(THF)] (Ar = 2,6-C6H3iPr2) with the diamino-pyridine derivative MeC(2-C5H4N)(CH2NHSiMe2tBu)2 (abbreviated as H2N‘2Npy) gave modest yields of the vanadium(IV) species [V(NAr)(H3N‘N‘ ‘Npy)Cl2] (1 where H3N‘N‘ ‘Npy = MeC(2- C5H4N)(CH2NH2)(CH2NHSiMe2tBu) in which the original H2N‘2Npy has effectively lost SiMe2tBu (as ClSiMe2tBu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl3(py)2] (M = Nb or Ta, R = tBu or Ar) and the dilithium salt Li2[N2Npy] (where H2N2Npy = MeC(2-C5H4N)(CH2NHSiMe3)2), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N2Npy)(py)] (M = Nb, R = tBu 2; M = Ta, R = tBu 3 or Ar 4). The compounds 2−4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N2Npy)]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(NtBu)Cl(N2Npy)] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.</abstract>
<qualityIndicators>
<score>8.944</score>
<pdfWordCount>7405</pdfWordCount>
<pdfCharCount>42191</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>741</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>162</abstractWordCount>
<abstractCharCount>1113</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Inorganic Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0020-1669</json:string>
</issn>
<eissn>
<json:string>1520-510X</json:string>
</eissn>
<volume>40</volume>
<issue>16</issue>
<pages>
<first>3992</first>
<last>4001</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-BHD9X61C-B</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, inorganic & nuclear</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - inorganic & nuclear chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Inorganic Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Physical and Theoretical Chemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - genetique des eucaryotes. evolution biologique et moleculaire</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1021/ic0102541</json:string>
</doi>
<id>D6A7FC5D2E9DFB03A59535075204206D6A350B5F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2001 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="e-published" when="2001-06-30">2001</date>
<date when="2001-07-30">2001</date>
<date type="Copyright" when="2001">2001</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
<author xml:id="author-0000">
<persName>
<surname>Pugh</surname>
<forename type="first">Stephen M.</forename>
</persName>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K., School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K., and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France </affiliation>
<note place="foot">
<ref></ref>
<p>  University of Oxford.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Blake</surname>
<forename type="first">Alexander J.</forename>
</persName>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K., School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K., and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France </affiliation>
<note place="foot">
<ref></ref>
<p>  University of Nottingham.</p>
</note>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<surname>Gade</surname>
<forename type="first">Lutz H.</forename>
</persName>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K., School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K., and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France </affiliation>
<note place="foot">
<ref>§</ref>
<p>  Université Louis Pasteur.</p>
</note>
<affiliation role="corresp"> To whom correspondence should be addressed. Lutz H. Gade e-mail:  gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@ chemistry.oxford.ac.uk. Fax:  +44 1865 272690</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<surname>Mountford</surname>
<forename type="first">Philip</forename>
</persName>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K., School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K., and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France </affiliation>
<note place="foot">
<ref></ref>
<p>  University of Oxford.</p>
</note>
<affiliation role="corresp"> To whom correspondence should be addressed. Lutz H. Gade e-mail:  gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@ chemistry.oxford.ac.uk. Fax:  +44 1865 272690</affiliation>
</author>
<idno type="istex">D6A7FC5D2E9DFB03A59535075204206D6A350B5F</idno>
<idno type="ark">ark:/67375/TPS-BHD9X61C-B</idno>
<idno type="DOI">10.1021/ic0102541</idno>
</analytic>
<monogr>
<title level="j" type="main">Inorganic Chemistry</title>
<title level="j" type="abbrev">Inorg. Chem.</title>
<idno type="acspubs">ic</idno>
<idno type="coden">inocaj</idno>
<idno type="pISSN">0020-1669</idno>
<idno type="eISSN">1520-510X</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2001-06-30">2001</date>
<date when="2001-07-30">2001</date>
<biblScope unit="vol">40</biblScope>
<biblScope unit="issue">16</biblScope>
<biblScope unit="page" from="3992">3992</biblScope>
<biblScope unit="page" to="4001">4001</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract>
<graphic url="ic0102541n00001.tif"></graphic>
<p>Reaction of the vanadium(V) imide [V(NAr)Cl
<hi rend="subscript">3</hi>
(THF)] (Ar = 2,6-C
<hi rend="subscript">6</hi>
H
<hi rend="subscript">3</hi>
<hi rend="italic">
<hi rend="superscript">i</hi>
</hi>
Pr
<hi rend="subscript">2</hi>
) with the diamino-pyridine derivative MeC(2-C
<hi rend="subscript">5</hi>
H
<hi rend="subscript">4</hi>
N)(CH
<hi rend="subscript">2</hi>
NHSiMe
<hi rend="subscript">2</hi>
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu)
<hi rend="subscript">2</hi>
(abbreviated as H
<hi rend="subscript">2</hi>
N‘
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
) gave modest yields of the vanadium(IV) species [V(NAr)(H
<hi rend="subscript">3</hi>
N‘N‘ ‘N
<hi rend="subscript">py</hi>
)Cl
<hi rend="subscript">2</hi>
] (
<hi rend="bold">1</hi>
where H
<hi rend="subscript">3</hi>
N‘N‘ ‘N
<hi rend="subscript">py</hi>
= MeC(2- C
<hi rend="subscript">5</hi>
H
<hi rend="subscript">4</hi>
N)(CH
<hi rend="subscript">2</hi>
NH
<hi rend="subscript">2</hi>
)(CH
<hi rend="subscript">2</hi>
NHSiMe
<hi rend="subscript">2</hi>
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu) in which the original H
<hi rend="subscript">2</hi>
N‘
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
has effectively lost SiMe
<hi rend="subscript">2</hi>
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu (as ClSiMe
<hi rend="subscript">2</hi>
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl
<hi rend="subscript">3</hi>
(py)
<hi rend="subscript">2</hi>
] (M = Nb or Ta, R =
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu or Ar) and the dilithium salt Li
<hi rend="subscript">2</hi>
[N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
] (where H
<hi rend="subscript">2</hi>
N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
= MeC(2-C
<hi rend="subscript">5</hi>
H
<hi rend="subscript">4</hi>
N)(CH
<hi rend="subscript">2</hi>
NHSiMe
<hi rend="subscript">3</hi>
)
<hi rend="subscript">2</hi>
), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
)(py)] (M = Nb, R =
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu
<hi rend="bold">2</hi>
; M = Ta, R =
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu
<hi rend="bold">3</hi>
or Ar
<hi rend="bold">4</hi>
). The compounds
<hi rend="bold">2</hi>
<hi rend="bold">4</hi>
are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
)]. Activation parameters are reported for the complexes
<hi rend="bold">2</hi>
and
<hi rend="bold">3</hi>
. In the case of
<hi rend="bold">2</hi>
, high vacuum tube sublimation afforded modest quantities of [Nb(N
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu)Cl(N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
)] (
<hi rend="bold">5</hi>
). The X-ray crystal structures of the four compounds
<hi rend="bold">1</hi>
,
<hi rend="bold">2</hi>
,
<hi rend="bold">3</hi>
, and
<hi rend="bold">4</hi>
are reported. </p>
</abstract>
<abstract>
<p>New Group 5 imido complexes derived from the diamido-pyridine ligand MeC(2-C
<hi rend="subscript">5</hi>
H
<hi rend="subscript">4</hi>
N)(CH
<hi rend="subscript">2</hi>
CH
<hi rend="subscript">2</hi>
NSiMe
<hi rend="subscript">3</hi>
)
<hi rend="subscript">2</hi>
(N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
) are described. Among those reported are products of the reactions of Li
<hi rend="subscript">2</hi>
[N
<hi rend="subscript">2</hi>
N
<hi rend="subscript">py</hi>
] with [M(NR)Cl
<hi rend="subscript">3</hi>
(py)
<hi rend="subscript">2</hi>
] (M = Nb, Ta; R =
<hi rend="italic">
<hi rend="superscript">t</hi>
</hi>
Bu, Ar) which gave compounds of the type shown. The X-ray structures and solution dynamics of the new compounds are described.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="zxx"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">ic</journal-id>
<journal-id journal-id-type="coden">inocaj</journal-id>
<journal-title-group>
<journal-title>Inorganic Chemistry</journal-title>
<abbrev-journal-title>Inorg. Chem.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0020-1669</issn>
<issn pub-type="epub">1520-510X</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/IC</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/ic0102541</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Pugh</surname>
<given-names>Stephen M.</given-names>
</name>
<xref rid="ic0102541AF2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Blake</surname>
<given-names>Alexander J.</given-names>
</name>
<xref rid="ic0102541AF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Gade</surname>
<given-names>Lutz H.</given-names>
</name>
<xref rid="ic0102541AF1">*</xref>
<xref rid="ic0102541AF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Mountford</surname>
<given-names>Philip</given-names>
</name>
<xref rid="ic0102541AF1">*</xref>
<xref rid="ic0102541AF2">
<sup></sup>
</xref>
</contrib>
<aff>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K., School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K., and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France </aff>
</contrib-group>
<author-notes>
<fn id="ic0102541AF2">
<label></label>
<p>  University of Oxford.</p>
</fn>
<fn id="ic0102541AF3">
<label></label>
<p>  University of Nottingham.</p>
</fn>
<corresp id="ic0102541AF1">  To whom correspondence should be addressed. Lutz H. Gade e-mail:  gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@ chemistry.oxford.ac.uk. Fax:  +44 1865 272690</corresp>
<fn id="ic0102541AF4">
<label>§</label>
<p>  Université Louis Pasteur.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>06</month>
<year>2001</year>
</pub-date>
<pub-date pub-type="ppub">
<day>30</day>
<month>07</month>
<year>2001</year>
</pub-date>
<volume>40</volume>
<issue>16</issue>
<fpage>3992</fpage>
<lpage>4001</lpage>
<supplementary-material xlink:href="ic0102541.cif" orientation="portrait" position="float"></supplementary-material>
<history>
<date date-type="received">
<day>06</day>
<month>03</month>
<year>2001</year>
</date>
<date date-type="asap">
<day>30</day>
<month>06</month>
<year>2001</year>
</date>
<date date-type="issue-pub">
<day>30</day>
<month>07</month>
<year>2001</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2001 American Chemical Society</copyright-statement>
<copyright-year>2001</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<graphic content-type="abstract-graphic" xlink:href="ic0102541n00001.tif" orientation="portrait" position="float"></graphic>
<p>Reaction of the vanadium(V) imide [V(NAr)Cl
<sub>3</sub>
(THF)] (Ar = 2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
) with the diamino-pyridine derivative MeC(2-C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
NHSiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)
<sub>2</sub>
(abbreviated as H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
) gave modest yields of the vanadium(IV) species [V(NAr)(H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
)Cl
<sub>2</sub>
] (
<bold>1</bold>
where H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
= MeC(2- C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
NH
<sub>2</sub>
)(CH
<sub>2</sub>
NHSiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu) in which the original H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
has effectively lost SiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu (as ClSiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (M = Nb or Ta, R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu or Ar) and the dilithium salt Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
] (where H
<sub>2</sub>
N
<sub>2</sub>
N
<sub>py</sub>
= MeC(2-C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
NHSiMe
<sub>3</sub>
)
<sub>2</sub>
), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (M = Nb, R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu
<bold>2</bold>
; M = Ta, R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu
<bold>3</bold>
or Ar
<bold>4</bold>
). The compounds
<bold>2</bold>
<bold>4</bold>
are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)]. Activation parameters are reported for the complexes
<bold>2</bold>
and
<bold>3</bold>
. In the case of
<bold>2</bold>
, high vacuum tube sublimation afforded modest quantities of [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)] (
<bold>5</bold>
). The X-ray crystal structures of the four compounds
<bold>1</bold>
,
<bold>2</bold>
,
<bold>3</bold>
, and
<bold>4</bold>
are reported. </p>
</abstract>
<abstract abstract-type="short">
<p>New Group 5 imido complexes derived from the diamido-pyridine ligand MeC(2-C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
(N
<sub>2</sub>
N
<sub>py</sub>
) are described. Among those reported are products of the reactions of Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
] with [M(NR)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (M = Nb, Ta; R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu, Ar) which gave compounds of the type shown. The X-ray structures and solution dynamics of the new compounds are described.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>ic0102541</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="d7e427">
<title>Introduction</title>
<p>The chemistry of transition metal imido complexes (containing the NR ligand, where R is typically a hydrocarbyl group) has continued to attract considerable attention, particularly over the last 15 years.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00001" ref-type="bibr"></xref>
<xref rid="ic0102541b00002" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00003" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00004" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00005" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00006" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00007" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00008" ref-type="bibr"></xref>
</named-content>
The syntheses, reactivity, and bonding of such complexes in a wide variety of supporting ligand environments continues to be explored. In our groups we have recently been interested in using the diamido-pyridine and diamido-amine ligands MeC(2-C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
NSiMe
<sub>2</sub>
R)
<sub>2</sub>
(abbreviated as N
<sub>2</sub>
N
<sub>py</sub>
for R = Me or N‘
<sub>2</sub>
N
<sub>py</sub>
for R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)
<named-content content-type="bibref-group">
<xref rid="ic0102541b00009" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00010" ref-type="bibr"></xref>
</named-content>
and Me
<sub>3</sub>
SiN(CH
<sub>2</sub>
CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
(abbreviated as N
<sub>2</sub>
N
<sub>am</sub>
)
<named-content content-type="bibref-group">
<xref rid="ic0102541b00011" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00012" ref-type="bibr"></xref>
</named-content>
as flexible and versatile supporting environments in imido chemistry.
<xref rid="ic0102541b00008" ref-type="bibr"></xref>
Employing these hemi-labile ligands we have reported on the synthesis and structures of a family of Group 4 complexes of the types
<bold>I</bold>
,
<bold>II</bold>
, and
<bold>III</bold>
as shown in Chart
<xref rid="ic0102541c00001"></xref>
.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00013" ref-type="bibr"></xref>
<xref rid="ic0102541b00014" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00015" ref-type="bibr"></xref>
</named-content>
These have reactive MNR linkages which undergo a wide range of coupling reactions with many unsaturated organic substrates including the following:  RNC, MeCN,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
BuCP, ArNCO, RC
<sub>2</sub>
Me, and RCHCCH
<sub>2</sub>
.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00013" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00016" ref-type="bibr"></xref>
<xref rid="ic0102541b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00018" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00019" ref-type="bibr"></xref>
</named-content>
Many of these transformations were the first, or among the first, of their type in transition metal imido chemistry.
<fig id="ic0102541c00001" position="float" fig-type="chart" orientation="portrait">
<label>1</label>
<graphic xlink:href="ic0102541c00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To develop this successful area of work, we recently described attempts to use the diamido-amine ligand N
<sub>2</sub>
N
<sub>am</sub>
in Group 5 imido chemistry,
<xref rid="ic0102541b00015" ref-type="bibr"></xref>
but in our efforts to prepare Group 5 analogues of the compounds
<bold>III</bold>
(Chart
<xref rid="ic0102541c00001"></xref>
), we obtained mixtures of ill-behaved oils and ligand decomposition products (
<bold>IV</bold>
and
<bold>V</bold>
). In a more recently initiated project we found that well-defined Group 5 imides could be obtained using a chelating diamido-amine-pyridine ligand as shown in
<bold>VI</bold>
.
<xref rid="ic0102541b00020" ref-type="bibr"></xref>
Here we report the synthesis of Group 5 imido complexes of the diamido-pyridine ligand N
<sub>2</sub>
N
<sub>py</sub>
and its
<italic toggle="yes">tert</italic>
-butyl homologue N‘
<sub>2</sub>
N
<sub>py</sub>
. </p>
</sec>
<sec id="d7e585">
<title>Experimental Section</title>
<p>
<bold>General Methods and Instrumentation.</bold>
All manipulations were carried out using standard Schlenk line or drybox techniques under an atmosphere of argon or of dinitrogen. Solvents were predried over activated 4A molecular sieves and were refluxed over appropriate drying agents under a dinitrogen atmosphere and collected by distillation. Deuterated solvents were dried over potassium (C
<sub>6</sub>
D
<sub>6</sub>
) or calcium hydride (CD
<sub>2</sub>
Cl
<sub>2</sub>
), distilled under reduced pressure, and stored under dinitrogen in Teflon valve ampules. NMR samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves.
<sup>1</sup>
H,
<sup>13</sup>
C-{
<sup>1</sup>
H}, and
<sup>13</sup>
C NMR spectra were recorded on Bruker AM 300 and DPX 300 and Varian Unity Plus 500 spectrometers.
<sup>1</sup>
H and
<sup>13</sup>
C assignments were confirmed when necessary with the use of DEPT-135, DEPT-90, and two-dimensional
<sup>1</sup>
H-
<sup>1</sup>
H and
<sup>13</sup>
C-
<sup>1</sup>
H NMR experiments. All spectra were referenced internally to residual protio-solvent (
<sup>1</sup>
H) or solvent (
<sup>13</sup>
C) resonances and are reported relative to tetramethylsilane (
<italic toggle="yes">δ</italic>
= 0 ppm). Chemical shifts are quoted in δ (ppm) and coupling constants in Hertz. Infrared spectra were prepared as Nujol mulls between CsBr or NaCl plates and were recorded on Perkin-Elmer 1600 and 1710 series, Nicolet Avatar 360, or Mattson Polaris FTIR spectrometers. Infrared data are quoted in wavenumbers (cm
<sup>-1</sup>
). EPR spectra were recorded at room temperature on a Bruker EMX 6/1 RES EPR spectrometer. Mass spectra were recorded on an AEI MS902 mass spectrometer. Elemental analyses were carried out by the analysis laboratories of these departments. NMR assignments for
<bold>2</bold>
<bold>5 </bold>
assume the following numbering scheme for the pyridyl group of N
<sub>2</sub>
N
<sub>py</sub>
:
<fig id="ic0102541f1" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="ic0102541f1.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Literature Preparations. </bold>
H
<sub>2</sub>
N
<sub>2</sub>
N
<sub>py</sub>
,
<xref rid="ic0102541b00009" ref-type="bibr"></xref>
H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
,
<xref rid="ic0102541b00010" ref-type="bibr"></xref>
Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
],
<xref rid="ic0102541b00010" ref-type="bibr"></xref>
[M(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (M = Nb, Ta),
<xref rid="ic0102541b00021" ref-type="bibr"></xref>
[Ta(NAr)Cl
<sub>3</sub>
(py)
<sub>2</sub>
],
<xref rid="ic0102541b00022" ref-type="bibr"></xref>
and [V(NAr)Cl
<sub>3</sub>
(thf)]
<xref rid="ic0102541b00023" ref-type="bibr"></xref>
were prepared according to literature methods. </p>
<p>
<bold>[V(NAr)Cl</bold>
<bold>
<sub>2</sub>
</bold>
<bold>(H</bold>
<bold>
<sub>3</sub>
</bold>
<bold>N</bold>
<bold>N</bold>
‘ ‘
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)] (1). </bold>
A solution of H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
(0.296 g, 0.75 mmol) and Et
<sub>3</sub>
N (0.196 g, 1.94 mmol) in diethyl ether (3 mL) was added to a solution of [V(N-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
)Cl
<sub>3</sub>
(thf)] (0.304 g, 0.75 mmol) in diethyl ether (10 mL) at −45 °C. The resulting brown solution was allowed to warm slowly to room temperature and was stirred for 5 h. It was then filtered and the residues were washed with diethyl ether (3 × 10 mL), the washings being added to the reaction solution. After standing at room temperature for 48 h, red-brown X-ray diffraction quality crystals of [V(NAr)Cl
<sub>2</sub>
(HN‘N‘ ‘N
<sub>py</sub>
)] (
<bold>1</bold>
) formed from the solution. These were filtered off and dried under reduced pressure. Yield:  0.050 g (12%). EPR:
<italic toggle="yes">g</italic>
-factor = 1.982, hyperfine coupling = 90.9091 G (thf, 298 K). EI mass spectrum: 
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
= 177 [M
<sup>+</sup>
− V(N-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
)Cl
<sub>2</sub>
CH
<sub>2</sub>
NH
<sub>2</sub>
Me
<sub>2</sub>
],
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
= 162 [M
<sup>+</sup>
− V(N-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
)Cl
<sub>2</sub>
CH
<sub>2</sub>
NH
<sub>2</sub>
Me
<sub>3</sub>
]. IR (CsBr plates, Nujol, cm
<sup>-1</sup>
):  3349 (w), 3236 (m), 3158 (w), 1731 (w), 1603 (s), 1572 (w), 1323 (w), 1257 (s), 1096 (m), 1035 (s), 934 (w), 860 (m), 829 (s), 798 (w), 780 (m), 754 (s), 712 (m), 660 (w), 635 (w), 610 (w), 552 (w), 465 (w), 436 (w), 417 (w) cm
<sup>-1</sup>
. Anal. Found (calculated for C
<sub>27</sub>
H
<sub>46</sub>
Cl
<sub>2</sub>
N
<sub>4</sub>
SiV):  C 56.1 (56.2), H 8.4 (8.0), N 9.5 (9.7)%. </p>
<p>
<bold>[Nb(N</bold>
<bold>
<italic toggle="yes">
<sup>t</sup>
</italic>
</bold>
<sup></sup>
<bold>Bu)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)] (2). </bold>
To a mixture of solid [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (1.568 g, 3.66 mmol) and solid Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
] (1.176 g, 3.66 mmol) was added cold (7 °C) benzene (30 mL). The resulting brown solution was stirred at room temperature for 4 h before being filtered. The insolubles were dried under reduced pressure and extracted into dichloromethane (2 × 20 mL) to provide a red-brown solution. This was filtered and the volatiles removed under reduced pressure leaving a yellow-brown solid. The solid was washed with diethyl ether (3 × 5 mL) and dried under reduced pressure to provide [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>2</bold>
) as a yellow powder. Yield:  1.328 g (62%). Yellow crystals of
<bold>2 </bold>
suitable for X-ray diffraction were prepared by slow cooling of a saturated solution of
<bold>2 </bold>
in toluene from 100 °C to room temperature over 10 h.
<sup>1</sup>
H NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 298 K):  8.77 (2 H, dt,
<sup>3</sup>
J (
<italic toggle="yes">o</italic>
-H
<italic toggle="yes">m</italic>
-H) = 4.8 Hz,
<sup>4</sup>
J (
<italic toggle="yes">o</italic>
-H
<italic toggle="yes">p</italic>
-H) = 1.8 Hz,
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 8.18 (1 H, dd,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.7 Hz,
<sup>4</sup>
J (H
<sup>6</sup>
H
<sup>4</sup>
) = 1.5 Hz, H
<sup>6</sup>
), 7.74 (2 × 1 H, 2 × overlapping m, H
<sup>4</sup>
, and
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.47 (1 H, dt,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.1 Hz,
<sup>4</sup>
J (H
<sup>3</sup>
H
<sup>5</sup>
) = 0.9 Hz, H
<sup>3</sup>
), 7.21 (2 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 5.0 Hz,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 6.92 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.9 Hz, H
<sup>5</sup>
), 3.62 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.7 Hz, CH
<sub>2</sub>
), 3.45 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.7 Hz, CH
<sub>2</sub>
), 1.52 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.45 (9 H, s,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu), 0.12 (18 H, s, SiMe
<sub>3</sub>
.
<sup>1</sup>
H NMR: (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 218 K):  8.06 (1 H, dd,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.7 Hz,
<sup>4</sup>
J (H
<sup>6</sup>
H
<sup>4</sup>
) = 1.5 Hz, H
<sup>6</sup>
), 7.73 (2 × 1 H, 2 × overlapping m, H
<sup>4</sup>
and
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.46 (1 H, d,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.1 Hz, H
<sup>3</sup>
), 7.21 (2 H, broad s,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 6.91 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.5 Hz, H
<sup>5</sup>
), 3.57 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 13.2 Hz, CH
<sub>2</sub>
), 3.54 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 13.4 Hz, CH
<sub>2</sub>
), 3.42 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 13.2 Hz, CH
<sub>2</sub>
), 3.36 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 13.2 Hz, CH
<sub>2</sub>
), 1.48 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.39 9 H, s,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu), 0.21 (9 H, s, SiMe
<sub>3</sub>
), −0.09 (9 H, s, SiMe
<sub>3</sub>
), not observed: 
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
.
<sup>13</sup>
C-{
<sup>1</sup>
H} NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 75.5 MHz, 218 K):  163.6 (C
<sup>2</sup>
), 153.3 (
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 149.4 (C
<sup>6</sup>
), 139.0 (C
<sup>4</sup>
), 138.3 (
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 123.3 (
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 121.1 (C
<sup>5</sup>
), 119.4 (C
<sup>3</sup>
), 66.9 (N
<italic toggle="yes">C</italic>
Me
<sub>3</sub>
), 62.7 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 62.5 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 50.0 (
<italic toggle="yes">C</italic>
(CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
), 32.0 (NC
<italic toggle="yes">Me</italic>
<sub>3</sub>
), 24.6 (Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.8 (Si
<italic toggle="yes">Me</italic>
<sub>3</sub>
), 1.6 (Si
<italic toggle="yes">Me</italic>
<sub>3</sub>
). IR (CsBr plates, Nujol, cm
<sup>-1</sup>
):  1601 (s), 1571 (w), 1483 (m), 1398 (w), 1294 (w), 1243 (s), 1216 (m), 1163 (w), 1161 (w), 1137 (w), 1116 (m), 1089 (m), 1075 (w), 1061 (m), 1046 (s), 1015 (m), 1008 (w), 961 (m), 910 (s), 841 (s), 809 (s), 785 (s), 756 (s), 704 (m), 641 (w), 628 (w), 599 (m), 558 (w), 535 (w), 486 (m), 446 (w), 430 (w) cm
<sup>-1</sup>
. Anal. Found (calculated for C
<sub>24</sub>
H
<sub>43</sub>
ClN
<sub>5</sub>
NbSi
<sub>2</sub>
):  C 49.0 (49.2), H 7.7 (7.4), N 12.4 (12.0)%. </p>
<p>
<bold>[Ta(N</bold>
<bold>
<italic toggle="yes">
<sup>t</sup>
</italic>
</bold>
<sup></sup>
<bold>Bu)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)] (3). </bold>
To a mixture of solid [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (0.500 g, 0.96 mmol) and solid Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
] (0.310 g, 0.96 mmol) was added cold (7 °C) benzene (25 mL). The resulting brown solution was stirred at room temperature for 5 h before being filtered. The insolubles were dried under reduced pressure and extracted into dichloromethane (2 × 15 mL) to provide a pale yellow solution. This was filtered and the volatiles removed under reduced pressure leaving a pale orange solid. The solid was washed with diethyl ether (2 × 3 mL) and dried under reduced pressure to provide
<bold>3</bold>
as a white powder. Yield:  0.215 g (33%). Pale yellow crystals of
<bold>3 </bold>
suitable for X-ray diffraction were prepared by slow cooling of a saturated solution of
<bold>3</bold>
in toluene from 120 °C to room temperature over 72 h.
<sup>1</sup>
H NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 298 K):  8.84 (2 H, d,
<sup>3</sup>
J (
<italic toggle="yes">o</italic>
-H
<italic toggle="yes">m</italic>
-H) = 5.0 Hz,
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 8.26 (1 H, dd,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.7 Hz,
<sup>4</sup>
J (H
<sup>6</sup>
H
<sup>4</sup>
) = 1.8 Hz, H
<sup>6</sup>
), 7.77 (2 × 1 H, 2 × overlapping m, H
<sup>4</sup>
and
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.48 (1 H, dt,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 7.9 Hz,
<sup>4</sup>
J (H
<sup>3</sup>
H
<sup>5</sup>
) = 1.1 Hz, H
<sup>3</sup>
), 7.24 (2 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 5.0 Hz,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 6.94 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.0 Hz, H
<sup>5</sup>
), 3.70 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.1 Hz, CH
<sub>2</sub>
), 3.59 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5 Hz, CH
<sub>2</sub>
), 1.47 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.39 (9 H, s,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu), 0.07 (18 H, broad s, SiMe
<sub>3</sub>
).
<sup>1</sup>
H NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 223 K):  8.17 (1 H, d,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.5 Hz, H
<sup>6</sup>
), 7.77 (1 H, overlapping m, H
<sup>4</sup>
), 7.77 (1 H, overlapping m,
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.48 (1 H, d,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.1 Hz, H
<sup>3</sup>
), 7.25 (2 H, broad s,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 6.96 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.2 Hz, H
<sup>5</sup>
), 3.67 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5 Hz, CH
<sub>2</sub>
), 3.64 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.3 Hz, CH
<sub>2</sub>
), 3.55 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.9 Hz, CH
<sub>2</sub>
), 3.50 (1 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.7 Hz, CH
<sub>2</sub>
), 1.44 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.34 (9 H, s,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu), 0.21 (9 H, s, SiMe
<sub>3</sub>
), −0.11 (9 H, s, SiMe
<sub>3</sub>
), not observed: 
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
.
<sup>13</sup>
C-{
<sup>1</sup>
H} NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 75.5 MHz, 223 K):  164.2 (C
<sup>2</sup>
), 154.0 (
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 149.7 (C
<sup>6</sup>
), 139.3 (C
<sup>4</sup>
), 138.6 (
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 123.6 (
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 121.5 (C
<sup>5</sup>
), 119.5 (C
<sup>3</sup>
), 65.0 (N
<italic toggle="yes">C</italic>
Me
<sub>3</sub>
), 61.8 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 61.7 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 49.8 (
<italic toggle="yes">C</italic>
(CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
), 33.4 (NC
<italic toggle="yes">Me</italic>
<sub>3</sub>
), 24.3 (Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.9 (SiMe
<sub>3</sub>
), 1.8 (SiMe
<sub>3</sub>
). IR: (CsBr plates, Nujol, cm
<sup>-1</sup>
):  1603 (s), 1571 (w), 1483 (m), 1385 (w), 1295 (w), 1253 (s), 1217 (m), 1160 (w), 1155 (w), 1134 (w), 1091 (w), 1076 (w), 1062 (w), 1047 (s), 1016 (m), 1009 (w), 962 (m), 918 (s), 848 (s), 782 (m), 757 (m), 703 (m), 642 (w), 630 (w), 599 (m), 560 (w), 532 (w), 488 (m), 445 (w), 431 (w) cm
<sup>-1</sup>
. Anal. Found (calculated for C
<sub>24</sub>
H
<sub>43</sub>
ClN
<sub>5</sub>
Si
<sub>2</sub>
Ta):  C 42.3 (42.8), H 7.0 (6.4), N 9.4 (10.4)%. </p>
<p>
<bold>[Ta(NAr)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)] (4). </bold>
To a mixture of solid [Ta(N-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (0.414 g, 0.67 mmol) and solid Li
<sub>2</sub>
[N
<sub>2</sub>
N
<sub>py</sub>
] (0.220 g, 0.68 mmol) was added cold (7 °C) benzene (30 mL). The resulting yellow-brown solution was stirred at room temperature for 2 h, becoming dark green during this time. The solution was filtered and the volatiles removed under reduced pressure to leave a green-brown solid. The solid was dissolved in diethyl ether (5 mL) and recrystallized at room temperature over 4 days to provide yellow crystals of
<bold>4</bold>
. Yield:  0.235 g (45%). Pale yellow crystals of
<bold>4 </bold>
suitable for X-ray diffraction were prepared by recrystallization from a 1:1 hexane/toluene solution at −25 °C over 2 weeks.
<sup>1</sup>
H NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 298 K):  8.84 (2 H, dt,
<sup>3</sup>
J (
<italic toggle="yes">o</italic>
-H
<italic toggle="yes">m</italic>
-H) = 5.0 Hz,
<sup>4</sup>
J (
<italic toggle="yes">o</italic>
-H
<italic toggle="yes">p</italic>
-H) = 1.5 Hz,
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 8.51 (1 H, d,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.7 Hz, H
<sup>6</sup>
), 7.85 (2 × 1 H, 2 × overlapping m, H
<sup>4</sup>
and
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.58 (1 H, d,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.1 Hz, H
<sup>3</sup>
), 7.32 (H, apparent t, apparent
<italic toggle="yes">J</italic>
= 5.0 Hz,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.08 (H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.0 Hz, H
<sup>5</sup>
), 7.06 (2 H, d,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 7.5 Hz,
<italic toggle="yes">m</italic>
-C
<sub>6</sub>
<italic toggle="yes">H</italic>
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 6.69 (1 H, t,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 7.5 Hz,
<italic toggle="yes">p</italic>
-C
<sub>6</sub>
<italic toggle="yes">H</italic>
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 4.50 (H, broad s, C
<italic toggle="yes">H</italic>
Me
<sub>2</sub>
), 3.84 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5 Hz, CH
<sub>2</sub>
), 3.71 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5 Hz, CH
<sub>2</sub>
), 1.58 (H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.28 (12 H, d,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 6.8 Hz, CH
<italic toggle="yes">Me</italic>
<sub>2</sub>
), −0.10 (18 H, s, SiMe
<sub>3</sub>
).
<sup>1</sup>
H NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 300.1 MHz, 223 K):  8.69 (2 H, broad s,
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 8.42 (1 H, dd,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.7 Hz,
<sup>4</sup>
J (H
<sup>6</sup>
H
<sup>4</sup>
) = 1.5 Hz, H
<sup>6</sup>
), 7.87 (1 H, overlapping m, H
<sup>4</sup>
), 7.83 (1 H, overlapping t,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 7.7 Hz,
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.58 (1 H, d,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.1 Hz, H
<sup>3</sup>
), 7.31 (2 H, broad s,
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 7.10 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.0 Hz, H
<sup>5</sup>
), 7.03 (2 H, d,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 5.7 Hz,
<italic toggle="yes">m</italic>
-C
<sub>6</sub>
<italic toggle="yes">H</italic>
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 6.68 (1 H, t,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 7.7 Hz,
<italic toggle="yes">p</italic>
-C
<sub>6</sub>
<italic toggle="yes">H</italic>
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 4.96 (1 H, broad septet,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 6.7 Hz, C
<italic toggle="yes">H</italic>
Me
<sub>2</sub>
), 4.01 (1 H, broad septet,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 6.6 Hz, C
<italic toggle="yes">H</italic>
Me
<sub>2</sub>
), 3.74 (4 H, 4 x overlapping d, 2 x CH
<sub>2</sub>
), 1.55 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 1.30 (6 H, 2 x broad overlapping d, CH
<italic toggle="yes">Me</italic>
<sub>2</sub>
), 1.20 (3 H, d,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 6.6 Hz, CH
<italic toggle="yes">Me</italic>
<sub>2</sub>
), 1.13 (3 H, d,
<sup>3</sup>
<italic toggle="yes">J</italic>
= 6.8 Hz, CH
<italic toggle="yes">Me</italic>
<sub>2</sub>
), −0.12 (9 H, s, Si
<italic toggle="yes">Me</italic>
<sub>3</sub>
), −0.21 (9 H, s, SiMe
<sub>3</sub>
).
<sup>13</sup>
C-{
<sup>1</sup>
H} NMR (CD
<sub>2</sub>
Cl
<sub>2</sub>
, 75.5 MHz, 223 K):  164.2 (C
<sup>2</sup>
), 153.6 (
<italic toggle="yes">o</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 153.0 (
<italic toggle="yes">ipso</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 150.0 (C
<sup>6</sup>
), 145.5 (
<italic toggle="yes">o</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 142.8 (
<italic toggle="yes">o</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 139.3 (C
<sup>4</sup>
), 139.3 (
<italic toggle="yes">p</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 124.4 (
<italic toggle="yes">m</italic>
-NC
<sub>5</sub>
H
<sub>5</sub>
), 123.2 (
<italic toggle="yes">m</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 122.3 (
<italic toggle="yes">m</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 121.6 (C
<sup>5</sup>
), 120.3 (
<italic toggle="yes">p</italic>
-2,6-C
<sub>6</sub>
H
<sub>3</sub>
<italic toggle="yes">
<sup>i</sup>
</italic>
<sup></sup>
Pr
<sub>2</sub>
), 119.4 (C
<sup>3</sup>
), 62.4 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 61.0 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 50.7 (
<italic toggle="yes">C</italic>
(CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
, 27.2 (
<italic toggle="yes">C</italic>
HMe
<sub>2</sub>
), 26.3 (
<italic toggle="yes">C</italic>
HMe
<sub>2</sub>
), 26.3 (CH
<italic toggle="yes">Me</italic>
<italic toggle="yes">
<sub>2</sub>
</italic>
), 26.1 (CH
<italic toggle="yes">Me</italic>
<italic toggle="yes">
<sub>2</sub>
</italic>
), 25.1 (CH
<italic toggle="yes">Me</italic>
<italic toggle="yes">
<sub>2</sub>
</italic>
), 24.0 (Me of N
<sub>2</sub>
N
<sub>py</sub>
), 23.7 (CH
<italic toggle="yes">Me</italic>
<italic toggle="yes">
<sub>2</sub>
</italic>
), 0.6 (SiMe
<sub>3</sub>
), 0.3 (SiMe
<sub>3</sub>
). IR (CsBr plates, Nujol, cm
<sup>-1</sup>
):  1615 (m), 1604 (m), 1590 (m), 1574 (w), 1295 (m), 1246 (s), 1156 (w), 1042 (m), 1016 (m), 960 (m), 922 (s), 841 (s), 787 (m), 752 (m), 701 (w), 429 (w), 410 (w) cm
<sup>-1</sup>
. Anal. Found (calculated for C
<sub>32</sub>
H
<sub>51</sub>
ClN
<sub>5</sub>
Si
<sub>2</sub>
Ta):  C 48.8 (49.4), H 7.0 (6.6), N 8.8 (9.0)%. </p>
<p>
<bold>[Nb(N</bold>
<bold>
<italic toggle="yes">
<sup>t</sup>
</italic>
</bold>
<sup></sup>
<bold>Bu)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)] (5). </bold>
[Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>2</bold>
) (0.310 g, 0.53 mmol) was sublimed at 125 °C and 9 × 10
<sup>-6</sup>
mbar over 6 h to provide analytically pure [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)] (
<bold>5</bold>
) as a pale yellow solid. Yield:  0.078 g (25%).
<sup>1</sup>
H NMR (C
<sub>6</sub>
D
<sub>6</sub>
, 500.0 MHz, 298 K):  8.92 (1 H, dd,
<sup>3</sup>
J (H
<sup>6</sup>
H
<sup>5</sup>
) = 5.5 Hz,
<sup>4</sup>
J (H
<sup>6</sup>
H
<sup>4</sup>
) = 1.0 Hz, H
<sup>6</sup>
), 7.08 (1 H, dd,
<sup>3</sup>
J (H
<sup>4</sup>
H
<sup>5</sup>
) = 8.0 Hz,
<sup>3</sup>
J (H
<sup>4</sup>
H
<sup>3</sup>
) = 8.0 Hz, H
<sup>4</sup>
), 6.71 (1 H, d,
<sup>3</sup>
J (H
<sup>3</sup>
H
<sup>4</sup>
) = 8.0 Hz, H
<sup>3</sup>
), 6.51 (1 H, apparent t, apparent
<italic toggle="yes">J</italic>
= 6.7 Hz, H
<sup>5</sup>
), 4.13 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5 Hz, CH
<sub>2</sub>
), 3.23 (2 H, d,
<sup>2</sup>
<italic toggle="yes">J</italic>
= 12.5, CH
<sub>2</sub>
), 1.59 (9 H, s,
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu), 0.91 (3 H, s, Me of N
<sub>2</sub>
N
<sub>py</sub>
), 0.07 (18 H, s, SiMe
<sub>3</sub>
).
<sup>13</sup>
C-{
<sup>1</sup>
H} NMR (C
<sub>6</sub>
D
<sub>6</sub>
, 125.7 MHz, 298 K):  159.8 (C
<sup>2</sup>
), 149.1 (C
<sup>6</sup>
), 138.2 (C
<sup>4</sup>
), 121.2 (C
<sup>5</sup>
), 120.7 (C
<sup>3</sup>
), 63.1 (
<italic toggle="yes">C</italic>
H
<sub>2</sub>
NSiMe
<sub>3</sub>
), 46.8 (
<italic toggle="yes">C</italic>
(CH
<sub>2</sub>
NSiMe
<sub>3</sub>
)
<sub>2</sub>
), 33.3 (NC
<italic toggle="yes">Me</italic>
<sub>3</sub>
), 23.8 (Me of N
<sub>2</sub>
N
<sub>py</sub>
), 0.5 (SiMe
<sub>3</sub>
), not observed:  N
<italic toggle="yes">C</italic>
Me
<sub>3</sub>
. IR (NaCl plates, Nujol, cm
<sup>-1</sup>
):  1600 (s), 1572 (w), 1358 (s), 1341 (m), 1281 (m), 1245 (s), 1233 (s), 1213 (s), 1157 (w), 1142 (m), 1132 (m), 1116 (m), 1084 (w), 1052 (s), 1048 (s), 1033 (s), 1001 (m), 951 (m), 899 (s), 874 (s), 838 (s), 800 (m), 778 (s), 725 (w), 686 (w), 599 (m), 520 (w), 493 (w), 439 (w) cm
<sup>-1</sup>
. Anal. Found (calculated for C
<sub>19</sub>
H
<sub>38</sub>
ClN
<sub>4</sub>
NbSi
<sub>2</sub>
):  C 45.0 (45.0), H 7.6 (7.6), N 11.1 (11.1)%. </p>
<p>
<bold>Crystal structure determination of V(NAr)Cl</bold>
<bold>
<sub>2</sub>
</bold>
<bold>(H</bold>
<bold>
<sub>3</sub>
</bold>
<bold>N</bold>
<bold>N</bold>
‘ ‘
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)] (1), [Nb(N</bold>
<bold>
<italic toggle="yes">
<sup>t</sup>
</italic>
</bold>
<sup></sup>
<bold>Bu)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)] </bold>
<bold>(2), [Ta(N</bold>
<bold>
<italic toggle="yes">
<sup>t</sup>
</italic>
</bold>
<sup></sup>
<bold>Bu)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)]</bold>
<bold></bold>
<bold>(3), and [Ta(NAr)Cl(N</bold>
<bold>
<sub>2</sub>
</bold>
<bold>N</bold>
<bold>
<sub>py</sub>
</bold>
<bold>)(py)] </bold>
<bold></bold>
<bold>(4). </bold>
Crystal data collection and processing parameters are given in Table
<xref rid="ic0102541t00001"></xref>
. Crystals were mounted in a film of RS3000 perfluoropolyether oil (Hoechst) on a glass fiber and transferred to a Stoë Stadi-4 four-circle diffractometer equipped with an Oxford Cryosystems low-temperature device.
<xref rid="ic0102541b00024" ref-type="bibr"></xref>
Data were collected using ω−θ scans with Mo Kα radiation (
<italic toggle="yes">λ</italic>
= 0.71073 Å), and absorption and decay corrections were applied to the data as appropriate. Data for
<bold>3</bold>
were collected on two individual crystals and were scaled and combined. Equivalent reflections were merged, and the structures were solved by direct methods (SIR92
<xref rid="ic0102541b00025" ref-type="bibr"></xref>
or SHELXS-96
<xref rid="ic0102541b00026" ref-type="bibr"></xref>
). Subsequent difference Fourier syntheses revealed the positions of all other non-hydrogen atoms. Structures were refined against
<italic toggle="yes">F</italic>
or
<italic toggle="yes">F</italic>
<sup>2</sup>
using a weighting scheme where appropriate. Corrections for secondary extinction effects were made as necessary.
<table-wrap id="ic0102541t00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>X-ray Data Collection and Processing Parameters for [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>P</sub>
<sub>y</sub>
) (
<bold>1</bold>
), [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>2</bold>
), [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>3</bold>
), and [Ta(NAr)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>4</bold>
)</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="5">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1"></oasis:entry>
<oasis:entry namest="2" nameend="2">
<bold>1</bold>
</oasis:entry>
<oasis:entry namest="3" nameend="3">
<bold>2</bold>
</oasis:entry>
<oasis:entry namest="4" nameend="4">
<bold>3</bold>
</oasis:entry>
<oasis:entry namest="5" nameend="5">
<bold>4</bold>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">empirical formula </oasis:entry>
<oasis:entry colname="2">C
<sub>27</sub>
H
<sub>46</sub>
Cl
<sub>2</sub>
N
<sub>4</sub>
SiV </oasis:entry>
<oasis:entry colname="3">C
<sub>24</sub>
H
<sub>43</sub>
ClN
<sub>5</sub>
NbSi
<sub>2</sub>
</oasis:entry>
<oasis:entry colname="4">C
<sub>24</sub>
H
<sub>43</sub>
ClN
<sub>5</sub>
Si
<sub>2</sub>
Ta </oasis:entry>
<oasis:entry colname="5">C
<sub>32</sub>
H
<sub>51</sub>
ClN
<sub>5</sub>
Si
<sub>2</sub>
Ta </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">fw </oasis:entry>
<oasis:entry colname="2">576.63 </oasis:entry>
<oasis:entry colname="3">586.17 </oasis:entry>
<oasis:entry colname="4">674.21 </oasis:entry>
<oasis:entry colname="5">778.37 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">temp/°C </oasis:entry>
<oasis:entry colname="2">−123(2) </oasis:entry>
<oasis:entry colname="3">−123(2) </oasis:entry>
<oasis:entry colname="4">−123(2) </oasis:entry>
<oasis:entry colname="5">−123(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wavelength/Å </oasis:entry>
<oasis:entry colname="2">0.71073 </oasis:entry>
<oasis:entry colname="3">0.71073 </oasis:entry>
<oasis:entry colname="4">0.71073 </oasis:entry>
<oasis:entry colname="5">0.71073 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">space group </oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">Pbca</italic>
</oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">Pbca</italic>
</oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">Pbca</italic>
</oasis:entry>
<oasis:entry colname="5">P1̄ </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">a</italic>
</oasis:entry>
<oasis:entry colname="2">14.90(2) </oasis:entry>
<oasis:entry colname="3">15.586(4) </oasis:entry>
<oasis:entry colname="4">15.560(5) </oasis:entry>
<oasis:entry colname="5">10.631(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">b</italic>
</oasis:entry>
<oasis:entry colname="2">16.834(9) </oasis:entry>
<oasis:entry colname="3">16.593(4) </oasis:entry>
<oasis:entry colname="4">16.571(4) </oasis:entry>
<oasis:entry colname="5">10.968(3) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">c</italic>
</oasis:entry>
<oasis:entry colname="2">24.025(13) </oasis:entry>
<oasis:entry colname="3">22.303(7) </oasis:entry>
<oasis:entry colname="4">22.319(6)  </oasis:entry>
<oasis:entry colname="5">16.225(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">α/deg </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">94.62(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">β/deg </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">96.77(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">γ/deg </oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4"></oasis:entry>
<oasis:entry colname="5">106.06(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">V</italic>
<sup>3</sup>
</oasis:entry>
<oasis:entry colname="2">6026(1) </oasis:entry>
<oasis:entry colname="3">5768(2) </oasis:entry>
<oasis:entry colname="4">5755(3) </oasis:entry>
<oasis:entry colname="5">1792.6(5) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">Z</italic>
</oasis:entry>
<oasis:entry colname="2">2 </oasis:entry>
<oasis:entry colname="3">8 </oasis:entry>
<oasis:entry colname="4">8 </oasis:entry>
<oasis:entry colname="5">2 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">
<italic toggle="yes">d</italic>
 (calcd)/Mg·m
<sup>-3</sup>
</oasis:entry>
<oasis:entry colname="2">1.27 </oasis:entry>
<oasis:entry colname="3">1.350 </oasis:entry>
<oasis:entry colname="4">1.556 </oasis:entry>
<oasis:entry colname="5">1.44 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">abs coeff/mm
<sup>-</sup>
</oasis:entry>
<oasis:entry colname="2">0.56 </oasis:entry>
<oasis:entry colname="3">0.61 </oasis:entry>
<oasis:entry colname="4">4.017 </oasis:entry>
<oasis:entry colname="5">3.240 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">R indices [
<italic toggle="yes">I </italic>
> 2σ(
<italic toggle="yes">I</italic>
)]
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.099, </oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.0605, </oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.0526, </oasis:entry>
<oasis:entry colname="5">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.0426, </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">wR</italic>
<sub>2</sub>
 = 0.125 </oasis:entry>
<oasis:entry colname="3">
<italic toggle="yes">Rw</italic>
 = 0.0654 </oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">wR</italic>
<sub>2</sub>
 = 0.1215 </oasis:entry>
<oasis:entry colname="5">
<italic toggle="yes">Rw</italic>
 = 0.0500 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">R indices (all data − for</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.151, </oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">R</italic>
<sub>1</sub>
 = 0.0734,  </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">refinement on 
<italic toggle="yes">F</italic>
<sup>2</sup>
 only)
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="2">
<italic toggle="yes">wR</italic>
<sub>2</sub>
 = 0.161 </oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry colname="4">
<italic toggle="yes">wR</italic>
<sub>2</sub>
 = 0.1446 </oasis:entry>
<oasis:entry colname="5"></oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
<italic toggle="yes">R</italic>
<sub>1</sub>
= ∑||
<italic toggle="yes">F</italic>
<sub>o</sub>
| − |
<italic toggle="yes">F</italic>
<sub>c</sub>
||/∑|
<italic toggle="yes">F</italic>
<sub>o</sub>
|;
<italic toggle="yes">wR</italic>
<sub>2</sub>
= √{∑
<italic toggle="yes">w </italic>
(
<italic toggle="yes">F</italic>
<sub>o</sub>
<sup>2</sup>
<italic toggle="yes">F</italic>
<sub>c</sub>
<sup>2</sup>
)
<sup>2</sup>
/∑(
<italic toggle="yes">w</italic>
(
<italic toggle="yes">F</italic>
<sub>o</sub>
<sup>2</sup>
)
<sup>2</sup>
};
<italic toggle="yes">R</italic>
<sub>w</sub>
= √{∑
<italic toggle="yes">w </italic>
(|
<italic toggle="yes">F</italic>
<sub>o</sub>
| − |
<italic toggle="yes">F</italic>
<sub>c</sub>
|)
<sup>2</sup>
/∑(
<italic toggle="yes">w</italic>
|
<italic toggle="yes">F</italic>
<sub>o</sub>
|
<sup>2</sup>
}.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>The crystal of
<bold>1 </bold>
was a very weak diffractor with mean
<italic toggle="yes">I</italic>
/σ = 4.79, and hence data were collected only to θ
<sub>max</sub>
= 22.5°. The refinement proceeded satisfactorily on 3467 data with (
<italic toggle="yes">I</italic>
/σ) > 0 subject to similarity restraints on the C(quaternary)−C(methyl) distances for the
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu group C(24)−C(28) and general vibrational restraints on the displacement parameters of the non-H atoms. For all four structures, H atoms bound to carbon were placed in calculated positions and refined in riding models. For
<bold>1</bold>
the H atoms attached to N(2) and N(4) were located from difference maps and were positionally refined subject to similarity restraints on the N−H distances. The largest peaks and holes in the final Fourier difference syntheses of the tantalum structures
<bold>3</bold>
and
<bold>4 </bold>
lie less than ca. 1 Å from Ta(1); for
<bold>1</bold>
the largest peaks were located at 1.54 and 1.40 Å from V(1) and Cl(1), respectively. In all three structures these final peaks and holes are attibuted to residual absorption artifacts. </p>
<p>Crystallographic calculations were performed using SIR92,
<xref rid="ic0102541b00025" ref-type="bibr"></xref>
SHELXS-96,
<xref rid="ic0102541b00026" ref-type="bibr"></xref>
SHELXL-96,
<xref rid="ic0102541b00027" ref-type="bibr"></xref>
or CRYSTALS.
<xref rid="ic0102541b00028" ref-type="bibr"></xref>
A full listing of atomic coordinates, bond lengths and angles, and displacement parameters for
<bold>1</bold>
<bold>4</bold>
have been deposited at the Cambridge Crystallographic Data Center. See Notice to Authors, Issue No. 1. </p>
</sec>
<sec id="d7e3457">
<title>Results and Discussion</title>
<p>Initial efforts focused on attempts to prepare vanadium(V) complexes of diamido-pyridine ligands N
<sub>2</sub>
N
<sub>py</sub>
or N‘
<sub>2</sub>
N
<sub>py</sub>
by reaction of the previously described arylimido complex [V(NAr)Cl
<sub>3</sub>
(THF)]
<sup>23</sup>
with M
<sub>2</sub>
N
<sub>2</sub>
N
<sub>py</sub>
or M
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
(M = H or Li). Reactions with dilithium derivatives of the diamido-pyridines gave uncharacterized mixtures, and only the reaction of [V(NAr)Cl
<sub>3</sub>
(THF)] with the ligand precursor H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
in cold Et
<sub>2</sub>
O in the presence of Et
<sub>3</sub>
N gave any isolable product at all (eq 1). Under these conditions the vanadium(IV) compound [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
)] [
<bold>1</bold>
, H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
= MeC(2-C
<sub>5</sub>
H
<sub>4</sub>
N)(CH
<sub>2</sub>
NHSiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)(CH
<sub>2</sub>
NH
<sub>2</sub>
)] can be isolated in 12% yield. Attempts to identify any other metal-containing products of this reaction were unsuccessful. Nonetheless, the compound
<bold>1</bold>
was reproducibly generated, either as red-brown crystals or as a red-brown powder, in similar yields.
<fig id="ic0102541f2" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="ic0102541f2.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The solid-state X-ray structure of [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
)] (
<bold>1</bold>
) is shown in Figures
<xref rid="ic0102541f00001"></xref>
a and
<xref rid="ic0102541f00001"></xref>
b; selected bond lengths and angles are presented in Table
<xref rid="ic0102541t00002"></xref>
. The crystal of
<bold>1 </bold>
was a very weak diffractor but nonethless a full anisotropic refinement of all non-H atoms was possible (subject to vibrational restraints). The H atoms bound the amino nitrogens N(2) and N(4) were located from Fourier difference syntheses and positionally refined.
<fig id="ic0102541f00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Molecular structure plots of [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
)] (
<bold>1</bold>
) with carbon-bound H atoms omitted:  (a) view of the monomeric unit with displacement ellipsoids drawn at the 40% probability level and N-bound H atoms drawn as spheres of an arbitary radius; (b) ball-and-stick plot of the hydrogen-bonded dimer in which atoms carrying the suffix “A” are related to their counterparts by the symmetry operator [−
<italic toggle="yes">x</italic>
+ 1, −
<italic toggle="yes">y</italic>
, −
<italic toggle="yes">z</italic>
+ 2].</p>
</caption>
<graphic xlink:href="ic0102541f00001.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="ic0102541t00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Selected Bond Lengths (Å) and Angles (deg) for [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>P</sub>
<sub>y</sub>
)] (
<bold>1</bold>
)
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">distances</oasis:entry>
<oasis:entry namest="2" nameend="2"></oasis:entry>
<oasis:entry namest="3" nameend="3">angles</oasis:entry>
<oasis:entry namest="4" nameend="4"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−N(1) </oasis:entry>
<oasis:entry colname="2">1.685(8) </oasis:entry>
<oasis:entry colname="3">V(1)−N(1)−C(1) </oasis:entry>
<oasis:entry colname="4">173.2(8) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−N(2) </oasis:entry>
<oasis:entry colname="2">2.143(9) </oasis:entry>
<oasis:entry colname="3">N(1)−V(1)−N(2) </oasis:entry>
<oasis:entry colname="4">93.3(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−N(3) </oasis:entry>
<oasis:entry colname="2">2.136(9) </oasis:entry>
<oasis:entry colname="3">N(1)−V(1)−N(3) </oasis:entry>
<oasis:entry colname="4">96.9(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−N(4) </oasis:entry>
<oasis:entry colname="2">2.475(9) </oasis:entry>
<oasis:entry colname="3">N(1)−V(1)−N(4) </oasis:entry>
<oasis:entry colname="4">168.7(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−Cl(1) </oasis:entry>
<oasis:entry colname="2">2.374(4) </oasis:entry>
<oasis:entry colname="3">N(1)−V(1)−Cl(2) </oasis:entry>
<oasis:entry colname="4">97.9(3) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">V(1)−Cl(2) </oasis:entry>
<oasis:entry colname="2">2.416(4) </oasis:entry>
<oasis:entry colname="3">N(1)−V(1)−Cl(2) </oasis:entry>
<oasis:entry colname="4">99.3(3) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−C(1) </oasis:entry>
<oasis:entry colname="2">1.38(1) </oasis:entry>
<oasis:entry colname="3">N(2)−V(1)-N(3) </oasis:entry>
<oasis:entry colname="4">88.8(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Cl(2)···H(2A) </oasis:entry>
<oasis:entry colname="2">2.31(3) </oasis:entry>
<oasis:entry colname="3">Cl(1)−V(1)−Cl(2) </oasis:entry>
<oasis:entry colname="4">93.5(1) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">V(1)−Cl(2) ···H(2A) </oasis:entry>
<oasis:entry colname="4">132(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">N(2)−H(2)···Cl(2A) </oasis:entry>
<oasis:entry colname="4">169(7)</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Atoms carrying the suffix “A” are related to their counterparts by the symmetry operator [−
<italic toggle="yes">x</italic>
+ 1, −
<italic toggle="yes">y</italic>
, −
<italic toggle="yes">z</italic>
+ 2].</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>The X-ray structure of the monomeric unit of
<bold>1</bold>
(Figure
<xref rid="ic0102541f00001"></xref>
a) confirms how the H
<sub>2</sub>
N‘
<sub>2</sub>
N
<sub>py</sub>
ligand has been substantially altered, with one “arm” still bearing a SiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu substituent but with the other having lost this group which has been formally replaced by a hydrogen atom. Together with the presence of a V(IV) center in
<bold>1</bold>
, this feature is probably indicative of redox reactions taking place during the reaction. The remaining three coordination sites about vanadium are occupied by the arylimido ligand and by a pair of mutually cis disposed chloride ligands. The VN
<sub>(imide)</sub>
distance of 1.685(8) Å is typical for terminal vanadium arylimides (seven examples with VN distances ranging from 1.615 to 1.730 Å, average 1.693 Å),
<xref rid="ic0102541b00029" ref-type="bibr"></xref>
although it is slightly shorter than the typical range for specifically V(IV)N
<sub>(imide)</sub>
bonds (1.707−1.730 Å for three examples). The V−Cl bond distances are unremarkable. </p>
<p>As mentioned, the hydrogen atoms of the amine donors were located from Fourier difference maps. The V−N(2) bond distance of 2.143(9) Å is typical of V−N
<sub>(amine)</sub>
linkages, while the V−N(4) distance of 2.475(9) Å is unusually long, probably due to the strong
<italic toggle="yes">trans</italic>
-influence of the imido ligand and the large steric bulk of the dimethyl-
<italic toggle="yes">tert</italic>
-butylsilyl substituent. Interestingly, molecules of
<bold>1</bold>
form centrosymmetric, hydrogen-bonded dimers in the solid state, in the manner shown in Figure
<xref rid="ic0102541f00001"></xref>
b. The hydrogen bonds occur between Cl(2) and H(2A) and between H(2) and Cl(2A). Recent work by Brammer, Orpen, and co-workers has highlighted the widespread occurrence of such M-Cl···H−N bonds in the solid state,
<xref rid="ic0102541b00030" ref-type="bibr"></xref>
and the Cl(2)··· H(2A) distance of 2.31(3) Å is very close to the median value found for such contacts. It was not possible to establish if molecules of
<bold>1</bold>
possess a hydrogen-bonded structure in the solution state too since
<bold>1</bold>
is soluble only in donor solvents such as Et
<sub>2</sub>
O and thf, which would be expected to disrupt any weakly N−H···Cl bonded dimeric structure. </p>
<p>The solid-state structure found by X-ray crystallography is supported by elemental combustion analysis, IR, EPR and NMR spectroscopy, and mass spectromtery. In accordance with the d
<sup>1</sup>
metal center in
<bold>1</bold>
, no signals for the complex itself were visible in the
<sup>1</sup>
H NMR spectrum in the range +30 to −30 ppm.
<sup>1</sup>
H NMR studies of the reaction mixture nonetheless proved useful, showing signals assigned to ClSiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu, consistent with the loss of a SiMe
<sub>2</sub>
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu substituent from H
<sub>2</sub>
N
<sub>2</sub>
‘N
<sub>py</sub>
and of a chloride ligand from vanadium. The IR spectrum of
<bold>1</bold>
as a Nujol mull revealed three sharp peaks at 3349, 3236, and 3158 cm
<sup>-1</sup>
. Similar absorptions have not been observed in any other metal compound of the N
<sub>2</sub>
N
<sub>py</sub>
or N‘
<sub>2</sub>
N
<sub>py</sub>
ligands. These bands lie in the expected region for N−H stretches and are attributed to the amine hydrogen atoms. The room-temperature EPR spectrum of
<bold>1</bold>
in thf solution exhibits the expected eight (2
<italic toggle="yes">I</italic>
+ 1) peaks consistent with a metal-based electron coupling to a quadrupolar vanadium nucleus of nuclear spin
<italic toggle="yes">I</italic>
=
<sup>7</sup>
/
<sub>2</sub>
. With values of
<italic toggle="yes">g </italic>
= 1.982 and
<italic toggle="yes">A </italic>
= 90.9 G, the 298 K
<italic toggle="yes">g</italic>
-factor and hyperfine coupling parameter are in good agreement with literature values reported for other V(IV) compounds.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00031" ref-type="bibr"></xref>
<xref rid="ic0102541b00032" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00033" ref-type="bibr"></xref>
</named-content>
</p>
<p>Because of the low yields and ligand degradation associated with the formation of [V(NAr)Cl
<sub>2</sub>
(H
<sub>3</sub>
N‘N‘ ‘N
<sub>py</sub>
)] (
<bold>1</bold>
), we turned our attention to the synthesis of N
<sub>2</sub>
N
<sub>py</sub>
derivatives of the heavier Group 5 congeners. These metals are typically more resistant to redox processes in their M(V) oxidation states than is vanadium. High-yielding syntheses of Group 4 imido complexes of the N
<sub>2</sub>
N
<sub>py</sub>
(
<bold>I</bold>
and
<bold>II</bold>
, Chart
<xref rid="ic0102541c00001"></xref>
) and N
<sub>2</sub>
N
<sub>am</sub>
(
<bold>III</bold>
, Chart
<xref rid="ic0102541c00001"></xref>
) ligands were previously achieved from the reaction of metal imide-containing precursors and the dilithium compounds Li
<sub>2</sub>
N
<sub>2</sub>
N
<sub>py</sub>
or Li
<sub>2</sub>
N
<sub>2</sub>
N
<sub>am</sub>
.
<xref rid="ic0102541b00010" ref-type="bibr"></xref>
Similar routes have been employed in the present work starting from the known
<sup>21,22</sup>
imido-niobium and -tantalum compounds [M(NR)Cl
<sub>3</sub>
(py)
<sub>2</sub>
] (M = Nb or Ta, R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu or Ar) and Li
<sub>2</sub>
N
<sub>2</sub>
N
<sub>py</sub>
in cold benzene solution. The new compounds [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (M = Nb, R =
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu
<bold>2</bold>
; M = Ta, R = N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu
<bold>3</bold>
or Ar
<bold>4</bold>
) were isolated in fair to good yields, and the reactions are summarized in eq 2.
<fig id="ic0102541f3" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="ic0102541f3.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>All three compounds
<bold>2</bold>
<bold>4 </bold>
have been crystallographically characterized. For ease of comparison, views of the three structures are collected together in Figures
<xref rid="ic0102541f00002"></xref>
a−c; selected bond lengths and angles are compiled in Table
<xref rid="ic0102541t00003"></xref>
. We shall discussthe three structures together as they form a closely linked series in which the effects of changing the metal from Nb (in
<bold>2</bold>
) to Ta (in
<bold>3</bold>
), and then changing the imide N-substituent from
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu (in
<bold>3</bold>
) to Ar (in
<bold>4</bold>
), can be specifically traced.
<fig id="ic0102541f00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Displacement ellipsoid plots with hydrogen atoms are omitted and ellipsoids drawn at the 45% (
<bold>2</bold>
,
<bold>3</bold>
) or 35% (
<bold>4</bold>
) probability level:  (a) [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>2</bold>
); (b) [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>3</bold>
); (c) [Ta(NAr)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>4</bold>
).</p>
</caption>
<graphic xlink:href="ic0102541f00002.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="ic0102541t00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Selected Bond Lengths (Å) and Angles (deg) for [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>2</bold>
), [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>3</bold>
), and [Ta(NAr)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (
<bold>4</bold>
)</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">parameter</oasis:entry>
<oasis:entry namest="2" nameend="2">
<bold>2</bold>
 (M = Nb)</oasis:entry>
<oasis:entry namest="3" nameend="3">
<bold>3</bold>
 (M = Ta)</oasis:entry>
<oasis:entry namest="4" nameend="4">
<bold>4</bold>
 (M = Ta) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(1) </oasis:entry>
<oasis:entry colname="2">1.781(6) </oasis:entry>
<oasis:entry colname="3">1.793(7) </oasis:entry>
<oasis:entry colname="4">1.822(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(2) </oasis:entry>
<oasis:entry colname="2">2.040(6) </oasis:entry>
<oasis:entry colname="3">2.043(7) </oasis:entry>
<oasis:entry colname="4">2.036(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(3) </oasis:entry>
<oasis:entry colname="2">2.044(6) </oasis:entry>
<oasis:entry colname="3">2.023(8) </oasis:entry>
<oasis:entry colname="4">2.004(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(4) </oasis:entry>
<oasis:entry colname="2">2.428(5) </oasis:entry>
<oasis:entry colname="3">2.409(7) </oasis:entry>
<oasis:entry colname="4">2.397(5) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(5) </oasis:entry>
<oasis:entry colname="2">2.407(6) </oasis:entry>
<oasis:entry colname="3">2.370(7) </oasis:entry>
<oasis:entry colname="4">2.356(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−Cl(1) </oasis:entry>
<oasis:entry colname="2">2.548(2) </oasis:entry>
<oasis:entry colname="3">2.518(2) </oasis:entry>
<oasis:entry colname="4">2.518(1) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−C(1) </oasis:entry>
<oasis:entry colname="2">1.464(9) </oasis:entry>
<oasis:entry colname="3">1.443(11) </oasis:entry>
<oasis:entry colname="4">1.372(7) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">M(1)−N(1)−C(1) </oasis:entry>
<oasis:entry colname="2">166.1(5) </oasis:entry>
<oasis:entry colname="3">167.3(6) </oasis:entry>
<oasis:entry colname="4">176.6(4) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−M(1)−N(2) </oasis:entry>
<oasis:entry colname="2">104.2(2) </oasis:entry>
<oasis:entry colname="3">104.2(3) </oasis:entry>
<oasis:entry colname="4">103.6(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−M(1)−N(3) </oasis:entry>
<oasis:entry colname="2">106.8(2) </oasis:entry>
<oasis:entry colname="3">107.8(3) </oasis:entry>
<oasis:entry colname="4">104.3(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−M(1)−N(4) </oasis:entry>
<oasis:entry colname="2">166.4(2) </oasis:entry>
<oasis:entry colname="3">166.3(3) </oasis:entry>
<oasis:entry colname="4">171.1(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−M(1)−N(5) </oasis:entry>
<oasis:entry colname="2">92.3(2) </oasis:entry>
<oasis:entry colname="3">92.9(3) </oasis:entry>
<oasis:entry colname="4">96.4(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(1)−M(1)−Cl(1) </oasis:entry>
<oasis:entry colname="2">91.8(2) </oasis:entry>
<oasis:entry colname="3">92.1(2) </oasis:entry>
<oasis:entry colname="4">94.7(1) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(2)−M(1)−N(3) </oasis:entry>
<oasis:entry colname="2">92.1(2) </oasis:entry>
<oasis:entry colname="3">91.9(3) </oasis:entry>
<oasis:entry colname="4">95.0(2) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N(5)−M(1)−Cl(1) </oasis:entry>
<oasis:entry colname="2">81.6(1) </oasis:entry>
<oasis:entry colname="3">82.38(17) </oasis:entry>
<oasis:entry colname="4">80.7(1) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">sum of the angles subtended at N(3) </oasis:entry>
<oasis:entry colname="2">358(1) </oasis:entry>
<oasis:entry colname="3">359(1) </oasis:entry>
<oasis:entry colname="4">360(1) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">sum of angles subtended at N(3) </oasis:entry>
<oasis:entry colname="2">355(1) </oasis:entry>
<oasis:entry colname="3">354(2) </oasis:entry>
<oasis:entry colname="4">359(1)</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
</table-wrap>
</p>
<p>The compounds
<bold>2</bold>
<bold>4</bold>
are the first crystallographically characterized examples of a terminal niobium or tantalum imides supported by a diamide ligand, although monoamide-supported examples such as [Nb(NAr)(NMe
<sub>2</sub>
)
<sub>3</sub>
]
<sup>34</sup>
and [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl{N(SiMe
<sub>3</sub>
)
<sub>2</sub>
}
<sub>2</sub>
]
<sup>35</sup>
are known. They all feature approximately octahedral metal centers with a near-linear organoimido ligand in one of the axial positions. The angles subtended at the imido nitrogen [166.1(5) ≤ C(1)−N
<sub>(imide)</sub>
−M ≤ 176.6(4)°] show that the imide can in principle act as four-electron donor.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00003" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00036" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00037" ref-type="bibr"></xref>
</named-content>
The N
<sub>2</sub>
N
<sub>py</sub>
ligand adopts a fac-κ
<sup>3</sup>
coordination mode as found in most of its transition metal imido complexes to date.
<xref rid="ic0102541b00008" ref-type="bibr"></xref>
The pyridyl moiety of N
<sub>2</sub>
N
<sub>py</sub>
lies approximately trans to the imido nitrogen, and the Cl and pyridine ligands occupy mutually cis, equatorial positions trans to the amide donors of N
<sub>2</sub>
N
<sub>py</sub>
. The angles subtended at the metal between the imido nitrogen N(1) and the donor atoms of the equatorial groups are all in excess of the theoretical 90° expected for a regular octahedral geometry. This is a typical consequence of the trans influence of ligands multiply bonded to transition metals, and the likely electronic and steric driving forces for such features have been dealt with in detail elsewhere.
<xref rid="ic0102541b00037" ref-type="bibr"></xref>
</p>
<p>At 1.781(6) Å, the NbN
<sub>(imide)</sub>
bond length in
<bold>2</bold>
is at the long end of the range for alkylimido linkages (range:  1.744(3)−1.789(4) Å for eight
<italic toggle="yes">tert</italic>
-butylimido complexes).
<named-content content-type="bibref-group">
<xref rid="ic0102541b00038" ref-type="bibr"></xref>
<xref rid="ic0102541b00039" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00040" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00041" ref-type="bibr"></xref>
</named-content>
The particularly long M=N
<sub>(imide)</sub>
bond in
<bold>2</bold>
(and also in
<bold>3</bold>
and
<bold>4</bold>
see below) is probably a result both of the steric pressure between the imido
<italic toggle="yes">tert</italic>
-butyl group and the amido trimethylsilyl substituents cis to it and of the presence of strong σ- and π-donor amides in the equatorial positions. The Nb−Cl bond length of 2.548(2) Å is also unusually long, such bonds more commonly lying in the range 2.35−2.45 Å.
<xref rid="ic0102541b00029" ref-type="bibr"></xref>
This presumably reflects a mixture of steric crowding effects and the strong trans influence of the strongly σ- and π-donating N
<sub>2</sub>
N
<sub>py</sub>
amide nitrogen donors. Comparison of the Nb−N
<sub>(pyridine)</sub>
and Nb−N
<sub>(pyridyl)</sub>
bond lengths indicates that the pyridine ligand is marginally more tightly bound to the metal than the N
<sub>2</sub>
N
<sub>py</sub>
pyridyl group and, all other factors aside, is consistent with the characteristic trans-bond lengthening effect of imido ligands.
<xref rid="ic0102541b00037" ref-type="bibr"></xref>
</p>
<p>Nearly all of the bond lengths and angles for complex
<bold>3</bold>
are identical within experimental error to those of
<bold>2</bold>
, as would be expected from the essentially idential atomic and ionic radii of Nb and Ta.
<xref rid="ic0102541b00042" ref-type="bibr"></xref>
The most notable differences exist in the relative bond lengths of M−N
<sub>(pyridyl)</sub>
[2.409(7) Å] and M−N
<sub>(pyridine)</sub>
[2.370(7) Å], the pyridine ligand in this compound being noticeably more tightly bound to the metal than the N
<sub>2</sub>
N
<sub>py</sub>
pyridyl group. The long M−Cl bond distance of 2.548(2) Å in
<bold>2</bold>
is shortened to 2.518(2) Å in
<bold>3</bold>
, although this still remains very long for a terminal Ta−Cl bond, typical values lying nearer to 2.40 Å.
<xref rid="ic0102541b00029" ref-type="bibr"></xref>
The TaN
<sub>(imide)</sub>
bond distance of 1.793(7) Å is among the longest recorded for a tantalum terminal
<italic toggle="yes">tert</italic>
-butylimide, previous examples ranging from 1.61(3) Å to 1.78(2) Å.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00035" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00041" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00043" ref-type="bibr"></xref>
<xref rid="ic0102541b00044" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00045" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00046" ref-type="bibr"></xref>
</named-content>
</p>
<p>The same structural motif as in compounds
<bold>2</bold>
and
<bold>3</bold>
appears in [Ta(NAr)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>4</bold>
). The TaN
<sub>(imide)</sub>
bond length of 1.822(4) Å is relatively long compared to those of many other tantalum terminal arylimides, the TaN bond lengths of which take values of less than 1.80 Å (1.769(5)-1.799(2) Å for nine examples).
<named-content content-type="bibref-group">
<xref rid="ic0102541b00034" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00038" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00047" ref-type="bibr"></xref>
<xref rid="ic0102541b00048" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00049" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="ic0102541b00050" ref-type="bibr"></xref>
</named-content>
As in the tantalum
<italic toggle="yes">tert</italic>
-butylimido compound
<bold>3</bold>
, the pyridine ligand is more tightly bound to the metal center than the N
<sub>2</sub>
N
<sub>py</sub>
pyridyl group. There is a lengthening of the TaNAr bond in
<bold>4</bold>
compared to TaN
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu in
<bold>3</bold>
. With the bulky
<italic toggle="yes">iso</italic>
-propyl ortho-substituents on Ar there is probably a steric origin (at least in part) for this observation. However, a recent comparison of homologous
<italic toggle="yes">tert</italic>
-butyl and aryl-imido complexes have shown that the MN
<sub>(imide)</sub>
distances in the latter group are, on average, significantly longer and the electronic origins of this have been elucidated.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00037" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00051" ref-type="bibr"></xref>
</named-content>
There is a general shortening of the other Ta-ligand distances, consistent with the reduced general labilizing effect of arylimides compared to
<italic toggle="yes">tert</italic>
-butylimides as previously recognized.
<named-content content-type="bibref-group">
<xref rid="ic0102541b00037" ref-type="bibr"></xref>
,
<xref rid="ic0102541b00051" ref-type="bibr"></xref>
</named-content>
</p>
<p>In the three compounds
<bold>2</bold>
<bold>4</bold>
the N
<sub>2</sub>
N
<sub>py</sub>
amide donor nitrogens N(2) and N(3) are effectively planar [354(2) ≤ {sum of the angles subtended at N(2,3)} ≤ 360(1)°] and so are presumably sp
<sup>2</sup>
hybridized. Each amide nitrogen can therefore in principle donate 3 electrons to the metal center, depending on the orientation of the amide nitrogen 2p π-donor orbital and the availability of the
<italic toggle="yes">n</italic>
d (
<italic toggle="yes">n</italic>
= 4 or 5) π-acceptor orbitals at metal. For all the compounds the trigonal plane defined by the atoms bonded to each amide nitrogen is twisted by between 46 and 61° out of coplanarity with the best-fit equatorial plane around M as defined by the atoms {N(2), N(3), N(5), Cl(1)}. The effect is to bring the SiMe
<sub>3</sub>
groups out of this equatorial plane and “up” toward the imido ligands. By comparison, the equivalent planes around the amide donors in the five-coordinate Group 4 complexes [M(NR)(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>I</bold>
, Chart
<xref rid="ic0102541c00001"></xref>
) are much more coplanar.
<xref rid="ic0102541b00014" ref-type="bibr"></xref>
Specifically for M = Zr and R = Ar the least squares planes around the amide nitrogens are angled at only 22.4° and 27.5° from the least-squares equatorial plane around Zr. </p>
<p>There are plausible steric and electronic reasons for the orientation of the amido nitrogen substituents and lone pairs, both operating in the same direction (i.e., that observed in the three crystal structures). On steric grounds one might expect the bulky SiMe
<sub>3</sub>
groups to move out of the equatorial plane to minimize unfavorable interactions with the Cl and pyridine ligands. Presumably there is a limit to how far the SiMe
<sub>3</sub>
groups will be able to rotate before steric interactions with the imido N-substituents inhibit further movemement. Indeed the amido groups in
<bold>4</bold>
(with the bulkiest imido N-substituent) are rotated by only 46° and 49° out of the equatorial plane around Ta, as might be expected according to steric arguments. </p>
<p>The electronic preferences for rotation of the amide groups can be visualized with reference to Figure
<xref rid="ic0102541f00003"></xref>
which highlights the various metal and nitrogen d
<sub>π</sub>
and p
<sub>π</sub>
acceptor/donor orbitals. The complexes are taken as being (more or less) oriented with the metal−ligand bonds along Cartesian coordinates and the MN
<sub>(imide)</sub>
vector as being coincident with the
<italic toggle="yes">z</italic>
axis. In this arrangement there are three σ nonbonding
<italic toggle="yes">n</italic>
d atomic orbitals at the metal center available for d
<sub>π</sub>
−p
<sub>π</sub>
interactions (Figure
<xref rid="ic0102541f00003"></xref>
,
<bold>E</bold>
,
<bold>F</bold>
, and
<bold>G</bold>
). These are the t
<sub>2g</sub>
set of orbitals in regular O
<sub>h</sub>
symmetry, namely the
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">xz</italic>
),
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">yz</italic>
), and
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">xy</italic>
) in the C
<sub>1</sub>
symmetry of
<bold>2</bold>
<bold>4</bold>
. The metal
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">xz</italic>
) and
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">yz</italic>
) orbitals will be used for interactions with the 2p(
<italic toggle="yes">x</italic>
) and 2p(
<italic toggle="yes">y</italic>
) π-donor orbitals (
<bold>C</bold>
and
<bold>D</bold>
in Figure
<xref rid="ic0102541f00003"></xref>
) of the imido ligand (the shorter MN
<sub>(imide)</sub>
versus M−N
<sub>(amide)</sub>
bond length means that d
<sub>π</sub>
−p
<sub>π</sub>
interactions of the former should take precedent on overlap grounds
<xref rid="ic0102541b00052" ref-type="bibr"></xref>
). Therefore in the molecules
<bold>2</bold>
<bold>4</bold>
only the metal
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">xy</italic>
) is available for N
<sub>(amide)</sub>
→M π-donation, and for this to occur the appropriate amide p
<sub>π</sub>
lone pair donor orbital combination (
<bold>A</bold>
in Figure
<xref rid="ic0102541f00003"></xref>
) clearly should lie in the
<italic toggle="yes">x</italic>
<italic toggle="yes"></italic>
<italic toggle="yes">y</italic>
(equatorial) plane (note that the anti-symmetric donor orbital linear combination
<bold>B</bold>
has a node passing through M and so
<bold>B</bold>
will represent a ligand-based nonbonding orbital). Rotating the amido groups (i.e., the trigonal planes containing the amido nitrogens) out of the equatorial plane will progressively bring the lone pairs into alignment with the remaining
<italic toggle="yes">n</italic>
d(
<italic toggle="yes">xy</italic>
) π-acceptor orbital, thus providing an electronic driving force for the features observed in the crystal structures if
<bold>2</bold>
<bold>4</bold>
. It is clear from this description that the amide nitrogens can act at best as only net 2 electron donors (rather than as 3 electron donors which is in principle possible according to their formal sp
<sup>2</sup>
hybridization) to the metal center, which in turn possesses a formal valence electron count of 18. A recent computational analysis of the metal−nitrogen bonding in related ene-diamido d
<sup>0</sup>
metal complexes concurs with the bonding scheme described here for
<bold>2</bold>
<bold>4</bold>
.
<xref rid="ic0102541b00053" ref-type="bibr"></xref>
<fig id="ic0102541f00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Linear combinations of amide 2p
<sub>π</sub>
-donor orbitals (
<bold>A</bold>
,
<bold>B</bold>
), imide 2p
<sub>π</sub>
-donor orbitals (
<bold>C</bold>
,
<bold>D</bold>
) and metal based
<italic toggle="yes">n</italic>
d
<sub>π</sub>
(“t
<sub>2g</sub>
”) orbitals (
<bold>E</bold>
,
<bold>F</bold>
,
<bold>G</bold>
) for [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>2</bold>
<bold>4</bold>
) with the orientation of the amide 2p
<sub>π</sub>
donors idealized to lie in the equatorial plane.</p>
</caption>
<graphic xlink:href="ic0102541f00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The compounds
<bold>2</bold>
<bold>4</bold>
have been further characterized by combustion elemental analysis and IR and NMR spectroscopy. The low temperature (218−223 K) NMR spectra are consistent with the solid-state structures shown in Figure
<xref rid="ic0102541f00002"></xref>
. In the
<sup>1</sup>
H NMR spectra the SiMe
<sub>3</sub>
groups trans to Cl and pyridine, respectively, appear as two individual singlets, while the CH
<sub>2</sub>
group protons appear as two pairs of mutually coupled doublets. These features are consistent with the absence of a molecular mirror plane in the ground-state structures. The shifts for the ortho (H
<sup>6</sup>
) protons of the N
<sub>2</sub>
N
<sub>py</sub>
pyridyl fragment are consistent with this group being coordinated in solution. All three compounds are fluxional at room temperature in solution. By way of example, the spectra of only [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>2</bold>
) will be specifically discussed here. </p>
<p>On warming an NMR sample of
<bold>2</bold>
in CD
<sub>2</sub>
Cl
<sub>2</sub>
from 218 to 268 K the two SiMe
<sub>3</sub>
group singlets initially broaden and coalesce, and the two pairs of doublets (at 218 K) for the two sets of diasterotopic CH
<sub>2</sub>
groups of N
<sub>2</sub>
N
<sub>py</sub>
broaden and give rise to one pair of mutually coupled doublets (integrating as 2 × 2H). In the fast exchange limit the
<sup>1</sup>
H and
<sup>13</sup>
C NMR spectra of
<bold>2</bold>
(and also of
<bold>3</bold>
and
<bold>4</bold>
) are consistent with the molecule possessing effective
<italic toggle="yes">C</italic>
<sub>s</sub>
symmetry with a mirror plane (on the NMR time scale) passing through the imido, M, and pyridyl groups. A likely mechanism for the exchange process is shown in eq 3. We propose that pyridine dissociates to form C
<sub>s</sub>
-symmetric [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)] in which the SiMe
<sub>3</sub>
and CH
<sub>2</sub>
groups can become equivalent; re-coordination of pyridine can occur to give either the initial diasteromer or the mirror image (at right in eq 3), the latter effecting the SiMe
<sub>3</sub>
and CH
<sub>2</sub>
group exchange implied by the variable temperature NMR spectra. The monomeric, trigonal bipyramidal structures assumed for the intermediates [M(NR)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)] (with the imido group in the equatorial plane) are based on the known structures of the isoelectronic Group 4 complexes
<bold>I</bold>
(Chart
<xref rid="ic0102541c00001"></xref>
) as well as for the isolated intermediate [Nb(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)] (
<bold>5</bold>
see Equation 4). However, the current results do not conclusively rule out an alternative intermediate with the chloride ligand in the equatorial plane and the imido group trans to pyridyl.
<fig id="ic0102541f4" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="ic0102541f4.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The compound
<bold>5</bold>
was obtained by careful high-vacuum (10
<sup>-6</sup>
mbar) tube sublimation of
<bold>2</bold>
, and the orientation of the imido group with respect to the other ligands was confirmed by nOe (nuclear Overhauser effect) NMR experiments. Thus irradiation of the
<italic toggle="yes">tert</italic>
-butyl resonance of
<bold>5</bold>
gave a strong enhancement of the pyridyl group ortho-H (H
<sup>6</sup>
) resonance. This would only be expected if the N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu group were positioned cis to this moiety. The compound
<bold>5</bold>
is unstable in solution over 24 h, and we were not able to obtain diffraction quality crystals. Addition of pyridine to
<bold>5</bold>
reforms
<bold>2</bold>
, consistent with the former being a possible intermediate in the dynamic NMR spectra of
<bold>2</bold>
. The NMR spectra of
<bold>5</bold>
are fully consistent with the C
<sub>s</sub>
symmetric, trigonal bipyramidal structure shown in eq 4.
<fig id="ic0102541f5" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="ic0102541f5.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To characterize fully the fluxional processes for [M(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (M = Nb
<bold>2</bold>
or Ta
<bold>3</bold>
) we have determined the associated activation parameters from
<sup>1</sup>
H NMR line shape analyses for
<bold>3 </bold>
(in the slow exchange limit) and coalesence measurements (
<bold>2</bold>
and
<bold>3</bold>
) of the inequivalent SiMe
<sub>3</sub>
groups. The closely overlapping nature of the relevant signals for the arylimido analogue
<bold>4</bold>
prevented us from making a similar study of this system. The results are summarized in Table
<xref rid="ic0102541t00004"></xref>
, and Figure
<xref rid="ic0102541f00004"></xref>
shows an Eyring plot for SiMe
<sub>3</sub>
group exchange in
<bold>3</bold>
.
<fig id="ic0102541f00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Eyring plot for for SiMe
<sub>3</sub>
group exchange in [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>3</bold>
). Refer to the text and Table
<xref rid="ic0102541t00004"></xref>
for further details.</p>
</caption>
<graphic xlink:href="ic0102541f00004.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="ic0102541t00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Rate Constants and Activation Parameters for SiMe
<sub>3</sub>
Group Exchange in [M(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>P</sub>
<sub>y</sub>
)(py)] (M = Nb
<bold>2</bold>
or Ta
<bold>3</bold>
) (refer to the text for further details)</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="1">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">(a) Results for 
<bold>3</bold>
 from 
<sup>1</sup>
H NMR line shape analysis:</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">temperature (K)</oasis:entry>
<oasis:entry namest="2" nameend="2">avg corrected ν
<sub>1/2</sub>
 (Hz)</oasis:entry>
<oasis:entry namest="3" nameend="3">
<italic toggle="yes">k</italic>
<sub>obs</sub>
 (s
<sup>-1</sup>
)</oasis:entry>
<oasis:entry namest="4" nameend="4">
<italic toggle="yes">k</italic>
<sub>exch </sub>
(s
<sup>-1</sup>
) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">262 </oasis:entry>
<oasis:entry colname="2">0.48 </oasis:entry>
<oasis:entry colname="3">1.51 </oasis:entry>
<oasis:entry colname="4">3.02 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">267 </oasis:entry>
<oasis:entry colname="2">1.00 </oasis:entry>
<oasis:entry colname="3">3.14 </oasis:entry>
<oasis:entry colname="4">6.28 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">271 </oasis:entry>
<oasis:entry colname="2">2.08 </oasis:entry>
<oasis:entry colname="3">6.54 </oasis:entry>
<oasis:entry colname="4">13.1 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">275 </oasis:entry>
<oasis:entry colname="2">3.57 </oasis:entry>
<oasis:entry colname="3">11.2 </oasis:entry>
<oasis:entry colname="4">22.4 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">279 </oasis:entry>
<oasis:entry colname="2">6.30 </oasis:entry>
<oasis:entry colname="3">19.8 </oasis:entry>
<oasis:entry colname="4">39.6 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">283 </oasis:entry>
<oasis:entry colname="2">10.2 </oasis:entry>
<oasis:entry colname="3">32.0 </oasis:entry>
<oasis:entry colname="4">64.0 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">287 </oasis:entry>
<oasis:entry colname="2">17.0 </oasis:entry>
<oasis:entry colname="3">53.4 </oasis:entry>
<oasis:entry colname="4">107 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry namest="1" nameend="4">∴ Δ
<italic toggle="yes">H</italic>
<sup></sup>
 = 87.6 ± 2.3 kJ mol
<sup>-1</sup>
; Δ
<italic toggle="yes">S</italic>
<sup></sup>
 = 99 ± 10 J mol
<sup>-1 </sup>
K
<sup>-1</sup>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
<oasis:tgroup cols="1">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">(b) Gibbs free energies of activation for 
<bold>2</bold>
 and 
<bold>3</bold>
 at 268 and 300 K:</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
<oasis:tgroup cols="2">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">For 
<bold>2</bold>
: </oasis:entry>
<oasis:entry colname="2">Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(268 K)</sub>
 = 53.7 ± 1.0 kJ.mol
<sup>-1</sup>
 (from coalescence measurements) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">For 
<bold>3</bold>
: </oasis:entry>
<oasis:entry colname="2">Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(268 K)</sub>
 = 61.1 ± 2.5 kJ mol
<sup>-1</sup>
 (from Eyring plot Δ
<italic toggle="yes">H</italic>
<sup></sup>
 and Δ
<italic toggle="yes">S</italic>
<sup></sup>
 values) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(300 K)</sub>
 = 58.0 ± 2.5 kJ mol
<sup>-1</sup>
 (from Eyring plot Δ
<italic toggle="yes">H</italic>
<sup></sup>
 and Δ
<italic toggle="yes">S</italic>
<sup></sup>
 values) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(300 K)</sub>
 = 61.1 ± 1.0 kJ mol
<sup>-1</sup>
 (from coalescence measurements)</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
</table-wrap>
</p>
<p>Activation parameters for SiMe
<sub>3</sub>
group exchange [Ta(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] (
<bold>3</bold>
) were obtained from
<sup>1</sup>
H NMR spectra of
<bold>3</bold>
between 262 and 287 K in the slow exchange regime. Curve fitting of the SiMe
<sub>3</sub>
resonances afforded ν
<sub>1/2</sub>
(bandwidth at half-height) values, from which were subtracted the natural line widths as obtained at 218 K to give corrected ν
<sub>1/2</sub>
values. At each temperature, the first-order
<italic toggle="yes">k</italic>
<sub>obs</sub>
value was calculated from the average corrected ν
<sub>1/2</sub>
value (Table
<xref rid="ic0102541t00004"></xref>
) according to the expression
<italic toggle="yes">k</italic>
<sub>obs</sub>
= π·ν
<sub>1/2</sub>
. Taking chemical
<italic toggle="yes">exchange</italic>
rate constants (
<italic toggle="yes">k</italic>
<sub>exch</sub>
) as 2·
<italic toggle="yes">k</italic>
<sub>obs</sub>
<xref rid="ic0102541b00054" ref-type="bibr"></xref>
we obtained the activation parameters listed in Table
<xref rid="ic0102541t00004"></xref>
from the Eyring plot shown in Figure
<xref rid="ic0102541f00004"></xref>
. As a check of the reliability of the Δ
<italic toggle="yes">S</italic>
<sup></sup>
and Δ
<italic toggle="yes">H</italic>
<sup></sup>
values obtained from the line shape analysis, we extracted Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(300 K)</sub>
(Table
<xref rid="ic0102541t00004"></xref>
) from
<sup>1</sup>
H coalescence measurements for the SiMe
<sub>3</sub>
resonances (at 300 K) using the standard procedures.
<xref rid="ic0102541b00054" ref-type="bibr">54a</xref>
The value of Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(300 K)</sub>
from coalescence measurements (61.1 ± 1.0 kJ mol
<sup>-1</sup>
) compares very well with the value of Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(300 K)</sub>
(58.0 ± 2.5 kJ.mol
<sup>-1</sup>
) calculated from the Δ
<italic toggle="yes">S</italic>
<sup></sup>
and Δ
<italic toggle="yes">H</italic>
<sup></sup>
values from
<sup>1</sup>
H line shape analysis. The sign and magnitude of these parameters are consistent with the exchange mechanism shown in eq 4.
<xref rid="ic0102541b00055" ref-type="bibr"></xref>
</p>
<p>Table
<xref rid="ic0102541t00004"></xref>
also gives the Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(268K)</sub>
values for SiMe
<sub>3</sub>
group exchange for the niobium congener
<bold>2</bold>
; the corresponding value for
<bold>3</bold>
was calculated from the Δ
<italic toggle="yes">H</italic>
<sup></sup>
and Δ
<italic toggle="yes">S</italic>
<sup></sup>
data for comparison. The data clearly show that the activation free energy for [M(N
<italic toggle="yes">
<sup>t</sup>
</italic>
<sup></sup>
Bu)Cl(N
<sub>2</sub>
N
<sub>py</sub>
)(py)] with M = Ta (
<bold>3</bold>
, 61.1 ± 2.5 kJ mol
<sup>-1</sup>
) is higher than that for Nb (
<bold>2</bold>
, 53.7 ± 1.0 kJ mol
<sup>-1</sup>
). Assuming that the activation entropy
<italic toggle="yes">Δ</italic>
<italic toggle="yes">S</italic>
<sup></sup>
is more or less the same for the exchange processes in
<bold>2</bold>
and
<bold>3</bold>
, the differences in Δ
<italic toggle="yes">G</italic>
<sup></sup>
<sub>(268K)</sub>
values reflect differences in enthalpies of activation, Δ
<italic toggle="yes">H</italic>
<sup></sup>
. The increase in Δ
<italic toggle="yes">H</italic>
<sup></sup>
from M = Nb to Ta is consistent with the well-known increase in metal−ligand bond strengths down a transition metal triad.
<xref rid="ic0102541b00056" ref-type="bibr"></xref>
</p>
</sec>
<sec id="d7e5670">
<title>Conclusions</title>
<p>The diamido-pyridine ligands employed in this study provided the key to developing a new class of Group 5 imido complexes. While the synthesis of vanadium complexes was hampered by ligand degradation and redox side-reactions, a series of niobium and tantalum imido complexes was prepared and structurally characterized; the solution dynamics of the new complexes were fully analyzed, and one potential intermediate in these processes was isolated. Future studies on these systems will concentrate on the reaction chemistry supported by the new diamido-pyridine-imide ligand sets. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Dr. P. A. Cooke for help with the X-ray data collection. We also thank the Deutsche Forschungsgemeinschaft, the Engineering and Physical Sciences Research Council, the Leverhulme Trust, the Fonds der Chemischen Industrie, the Royal Society, the DAAD, and the British Council for financial support. </p>
</ack>
<notes notes-type="si">
<sec id="d7e5682">
<title>
<ext-link xlink:href="/doi/suppl/10.1021%2Fic0102541">Supporting Information Available</ext-link>
</title>
<p>X-ray crystallographic files in CIF format for the structure determinations of
<bold>1</bold>
,
<bold>2</bold>
,
<bold>3</bold>
, and
<bold>4</bold>
. This material is available free of charge via the Internet at
<uri xlink:href="http://pubs.acs.org">http://pubs.acs.org</uri>
. </p>
</sec>
</notes>
<ref-list>
<title>References</title>
<ref id="ic0102541b00001">
<mixed-citation>
<name name-style="western">
<surname>Nugent</surname>
<given-names>W. A.</given-names>
</name>
;
<name name-style="western">
<surname>Mayer</surname>
<given-names>J. M.</given-names>
</name>
<italic toggle="yes"> Metal</italic>
<italic toggle="yes"></italic>
<italic toggle="yes">Ligand Multiple Bonds</italic>
; Wiley-Interscience:  New York, 1988.</mixed-citation>
</ref>
<ref id="ic0102541b00002">
<mixed-citation>
<name name-style="western">
<surname>Chisholm</surname>
<given-names>M. H.</given-names>
</name>
;
<name name-style="western">
<surname>Rothwell</surname>
<given-names>I. P.</given-names>
</name>
<italic toggle="yes"> Comprehensive Coordination Chemistry</italic>
;
<name name-style="western">
<surname>Wilkinson</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>Gillard</surname>
<given-names>R. D.</given-names>
</name>
,
<name name-style="western">
<surname>McCleverty</surname>
<given-names>J. A.</given-names>
</name>
, Eds.; Pergamon Press:  Oxford, 1987; Vol. 2.</mixed-citation>
</ref>
<ref id="ic0102541b00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wigley</surname>
<given-names>D. E.</given-names>
</name>
<source>Prog. Inorg. Chem.</source>
<year>1994</year>
<volume>42</volume>
<fpage>239</fpage>
<pub-id pub-id-type="doi">10.1002/9780470166437.ch4</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Chem. Commun.</source>
<year>1997</year>
<fpage>2127</fpage>
<pub-id pub-id-type="doi">10.1039/a704194b</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sharp</surname>
<given-names>P. R.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>2000</year>
<fpage>2647</fpage>
<pub-id pub-id-type="doi">10.1039/b002556i</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00006">
<mixed-citation>For applications of imido complexes in olefin polymerisation catalysis see: 
<name name-style="western">
<surname>Coles</surname>
<given-names>M. P.</given-names>
</name>
;
<name name-style="western">
<surname>Dalby</surname>
<given-names>C. I.</given-names>
</name>
;
<name name-style="western">
<surname>Gibson</surname>
<given-names>V. C.</given-names>
</name>
;
<name name-style="western">
<surname>Clegg</surname>
<given-names>W.</given-names>
</name>
;
<name name-style="western">
<surname>Elsegood</surname>
<given-names>M. R. J.</given-names>
</name>
<italic toggle="yes"> J. </italic>
<italic toggle="yes">Chem. Soc., Chem. Commun.</italic>
<bold>1995</bold>
, 1709;
<name name-style="western">
<surname>Chan</surname>
<given-names>M. C. W.</given-names>
</name>
;
<name name-style="western">
<surname>Chew</surname>
<given-names>K. C.</given-names>
</name>
;
<name name-style="western">
<surname>Dalby</surname>
<given-names>C. I.</given-names>
</name>
;
<name name-style="western">
<surname>Gibson</surname>
<given-names>V. C.</given-names>
</name>
;
<name name-style="western">
<surname>Kohlmann</surname>
<given-names>A.</given-names>
</name>
;
<name name-style="western">
<surname>Little</surname>
<given-names>I. R.</given-names>
</name>
;
<name name-style="western">
<surname>Reed</surname>
<given-names>W.</given-names>
</name>
<italic toggle="yes">Chem. </italic>
<italic toggle="yes">Commun.</italic>
<bold>1998</bold>
, 1673.</mixed-citation>
</ref>
<ref id="ic0102541b00007">
<mixed-citation>For applications of imido complexes in ring opening metathesis polymerisation see: 
<name name-style="western">
<surname>Schrock</surname>
<given-names>R. R.</given-names>
</name>
<italic toggle="yes"> Acc. Chem. Res.</italic>
<bold>1990</bold>
,
<italic toggle="yes">23</italic>
, 158;
<name name-style="western">
<surname>Gibson</surname>
<given-names>V. C.</given-names>
</name>
<italic toggle="yes">Adv. Mater.</italic>
<bold>1994</bold>
,
<italic toggle="yes">6</italic>
, 37.
<pub-id pub-id-type="doi">10.1021/ar00173a007</pub-id>
</mixed-citation>
</ref>
<ref id="ic0102541b00008">
<mixed-citation>For a review of imido complexes with diamido-donor ligands see: 
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
;
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<italic toggle="yes"> Coord. Chem. Rev.</italic>
, in press. For a review of the chemistry of diamido-donor ligands in general see: 
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<italic toggle="yes">Chem. Commun.</italic>
<bold>2000</bold>
, 173.</mixed-citation>
</ref>
<ref id="ic0102541b00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Friedrich</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Schubart</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>Scowen</surname>
<given-names>I. J.</given-names>
</name>
<name name-style="western">
<surname>Edwards</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<source>Chem. Ber.</source>
<year>1997</year>
<volume>130</volume>
<fpage>1751</fpage>
<pub-id pub-id-type="doi">10.1002/cber.19971301208</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Galka</surname>
<given-names>C. H.</given-names>
</name>
<name name-style="western">
<surname>Trösch</surname>
<given-names>D. J. M.</given-names>
</name>
<name name-style="western">
<surname>Schubart</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>Radojevic</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Scowen</surname>
<given-names>I. J.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<source>Eur. J. Inorg. Chem.</source>
<year>2000</year>
<fpage>2577</fpage>
<pub-id pub-id-type="doi">10.1002/1099-0682(200012)2000:12%3C2577::AID-EJIC2577%3E3.0.CO;2-J</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cloke</surname>
<given-names>F. G. N.</given-names>
</name>
<name name-style="western">
<surname>Hitchcock</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Love</surname>
<given-names>J. B.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1995</year>
<fpage>25</fpage>
<pub-id pub-id-type="doi">10.1039/dt9950000025</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Clark</surname>
<given-names>H. C. S.</given-names>
</name>
<name name-style="western">
<surname>Cloke</surname>
<given-names>F. G. N.</given-names>
</name>
<name name-style="western">
<surname>Hitchcock</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Love</surname>
<given-names>J. B.</given-names>
</name>
<name name-style="western">
<surname>Wainwright</surname>
<given-names>A. P.</given-names>
</name>
<source>J. Organomet. Chem.</source>
<year>1995</year>
<volume>501</volume>
<fpage>333</fpage>
<pub-id pub-id-type="doi">10.1016/0022-328X(95)05708-W</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Blake</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Collier</surname>
<given-names>P. E.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Schubart</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Scowen</surname>
<given-names>I.</given-names>
</name>
<source>J. Chem. Commun.</source>
<year>1997</year>
<fpage>1555</fpage>
<pub-id pub-id-type="doi">10.1039/a703275g</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Blake</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Collier</surname>
<given-names>P. E.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>Lloyd</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Pugh</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Schubart</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Skinner</surname>
<given-names>M. E. G.</given-names>
</name>
<name name-style="western">
<surname>Trösch</surname>
<given-names>D. J. M.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>2001</year>
<volume>40</volume>
<fpage>870</fpage>
<pub-id pub-id-type="doi">10.1021/ic0005644</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Pugh</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Clark</surname>
<given-names>H. S. C.</given-names>
</name>
<name name-style="western">
<surname>Love</surname>
<given-names>J. B.</given-names>
</name>
<name name-style="western">
<surname>Blake</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Cloke</surname>
<given-names>F. G. N.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>2000</year>
<volume>39</volume>
<fpage>2001</fpage>
<pub-id pub-id-type="doi">10.1021/ic991014c</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bashall</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Collier</surname>
<given-names>P. E.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Trösch</surname>
<given-names>D. T.</given-names>
</name>
<source>Chem. Commun.</source>
<year>1998</year>
<fpage>2555</fpage>
<pub-id pub-id-type="doi">10.1039/a806936k</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cloke</surname>
<given-names>F. G. N.</given-names>
</name>
<name name-style="western">
<surname>Hitchcock</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>Nixon</surname>
<given-names>J. F.</given-names>
</name>
<name name-style="western">
<surname>Wilson</surname>
<given-names>D. J.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Chem. Commun.</source>
<year>1999</year>
<fpage>661</fpage>
<pub-id pub-id-type="doi">10.1039/a900648f</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Pugh</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Trösh</surname>
<given-names>D. J. M.</given-names>
</name>
<name name-style="western">
<surname>Wilson</surname>
<given-names>D. J.</given-names>
</name>
<name name-style="western">
<surname>Bashall</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Cloke</surname>
<given-names>F. G. N.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>Hitchcock</surname>
<given-names>P. B.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Nixon</surname>
<given-names>J. F.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Organometallics</source>
<year>2000</year>
<volume>19</volume>
<fpage>3205</fpage>
<pub-id pub-id-type="doi">10.1021/om000264u</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bashall</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Gade</surname>
<given-names>L. H.</given-names>
</name>
<name name-style="western">
<surname>McPartlin</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Pugh</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Radojevic</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Schubart</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Scowen</surname>
<given-names>I. J.</given-names>
</name>
<name name-style="western">
<surname>Trösch</surname>
<given-names>D. J. M.</given-names>
</name>
<source>Organometallics</source>
<year>2000</year>
<volume>19</volume>
<fpage>4784</fpage>
<pub-id pub-id-type="doi">10.1021/om0005710</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Skinner</surname>
<given-names>M. E. G.</given-names>
</name>
<name name-style="western">
<surname>Cowhig</surname>
<given-names>D. A.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Chem. Commun.</source>
<year>2000</year>
<fpage>1167</fpage>
<pub-id pub-id-type="doi">10.1039/b002455o</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sundermeyer</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Putterlik</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Foth</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Field</surname>
<given-names>J. S.</given-names>
</name>
<name name-style="western">
<surname>Ramesar</surname>
<given-names>N.</given-names>
</name>
<source>Chem. Ber.</source>
<year>1994</year>
<volume>127</volume>
<fpage>1201</fpage>
<pub-id pub-id-type="doi">10.1002/cber.19941270705</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chao</surname>
<given-names>Y.-W.</given-names>
</name>
<name name-style="western">
<surname>Wexler</surname>
<given-names>P. A.</given-names>
</name>
<name name-style="western">
<surname>Wigley</surname>
<given-names>D. E.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>1989</year>
<volume>28</volume>
<fpage>3860</fpage>
<pub-id pub-id-type="doi">10.1021/ic00319a022</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Devore</surname>
<given-names>D. D.</given-names>
</name>
<name name-style="western">
<surname>Lichtenhan</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Takusagawa</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Maatta</surname>
<given-names>E. A.</given-names>
</name>
<source>J. Am. Chem. Soc.</source>
<year>1987</year>
<volume>109</volume>
<fpage>7408</fpage>
<pub-id pub-id-type="doi">10.1021/ja00258a026</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cosier</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Glazer</surname>
<given-names>A. M.</given-names>
</name>
<source>J. Appl. Crystallogr.</source>
<year>1986</year>
<volume>19</volume>
<fpage>105</fpage>
<pub-id pub-id-type="doi">10.1107/S0021889886089835</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Altomare</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Cascarano</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Giacovazzo</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Guagliardi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Burla</surname>
<given-names>M. C.</given-names>
</name>
<name name-style="western">
<surname>Polidori</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Camalli</surname>
<given-names>M.</given-names>
</name>
<source>J. Appl. Crystallogr.</source>
<year>1994</year>
<volume>27</volume>
<fpage>435</fpage>
<pub-id pub-id-type="doi">10.1107/S002188989400021X</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sheldrick</surname>
<given-names>G. M.</given-names>
</name>
<source>Acta Crystallogr., Sect. A</source>
<year>1990</year>
<volume>46</volume>
<fpage>467</fpage>
<pub-id pub-id-type="doi">10.1107/S0108767390000277</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00027">
<mixed-citation>
<name name-style="western">
<surname>Sheldrick</surname>
<given-names>G. M.</given-names>
</name>
<italic toggle="yes"> SHELXL-96</italic>
; Institut für Anorganische Chemie der Universität Göttingen:  Germany, 1996.</mixed-citation>
</ref>
<ref id="ic0102541b00028">
<mixed-citation>
<name name-style="western">
<surname>Watkin</surname>
<given-names>D. J.</given-names>
</name>
;
<name name-style="western">
<surname>Prout</surname>
<given-names>C. K.</given-names>
</name>
;
<name name-style="western">
<surname>Carruthers</surname>
<given-names>J. R.</given-names>
</name>
;
<name name-style="western">
<surname>Betteridge</surname>
<given-names>P. W.</given-names>
</name>
<italic toggle="yes"> CRYSTALS</italic>
, Issue 10; Chemical Crystallography Laboratory, University of Oxford:  Oxford, 1996.</mixed-citation>
</ref>
<ref id="ic0102541b00029">
<mixed-citation>
<name name-style="western">
<surname>Fletcher</surname>
<given-names>D. A.</given-names>
</name>
;
<name name-style="western">
<surname>McMeeking</surname>
<given-names>R. F.</given-names>
</name>
;
<name name-style="western">
<surname>Parkin</surname>
<given-names>D.</given-names>
</name>
“The United Kingdom Chemical Database Service”
<italic toggle="yes">J. Chem. Inf. Comput. Sci.</italic>
<bold>1996</bold>
,
<italic toggle="yes">36</italic>
, 746.
<name name-style="western">
<surname>Allen</surname>
<given-names>F. H.</given-names>
</name>
;
<name name-style="western">
<surname>Kennard</surname>
<given-names>O.</given-names>
</name>
<italic toggle="yes"> Chemical Design Automation News</italic>
<bold>1993</bold>
,
<italic toggle="yes">8</italic>
, 1&31.
<pub-id pub-id-type="doi">10.1021/ci960015+</pub-id>
</mixed-citation>
</ref>
<ref id="ic0102541b00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Aullón</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Bellamy</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Brammer</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Bruton</surname>
<given-names>E. A.</given-names>
</name>
<name name-style="western">
<surname>Orpen</surname>
<given-names>A. G.</given-names>
</name>
<source>Chem. Commun.</source>
<year>1998</year>
<fpage>653</fpage>
<pub-id pub-id-type="doi">10.1039/a709014e</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Dutta</surname>
<given-names>S. K.</given-names>
</name>
<name name-style="western">
<surname>Tiekink</surname>
<given-names>E. R. T.</given-names>
</name>
<name name-style="western">
<surname>Chaudhury</surname>
<given-names>M.</given-names>
</name>
<source>Polyhedron</source>
<year>1997</year>
<volume>16</volume>
<fpage>1863</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(96)00491-3</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wheeler</surname>
<given-names>D. E.</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>J.-F.</given-names>
</name>
<name name-style="western">
<surname>Maata</surname>
<given-names>E. A.</given-names>
</name>
<source>Polyhedron</source>
<year>1998</year>
<volume>17</volume>
<fpage>969</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(97)00222-2</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00033">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wen</surname>
<given-names>T.-B.</given-names>
</name>
<name name-style="western">
<surname>Shi</surname>
<given-names>J.-C.</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>X.</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>Z.-N.</given-names>
</name>
<name name-style="western">
<surname>Liu</surname>
<given-names>Q.-T.</given-names>
</name>
<name name-style="western">
<surname>Kang</surname>
<given-names>B.-S.</given-names>
</name>
<source>Polyhedron</source>
<year>1998</year>
<volume>17</volume>
<fpage>331</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(97)00295-7</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Herrmann</surname>
<given-names>W. A.</given-names>
</name>
<name name-style="western">
<surname>Baratta</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Herdtweck</surname>
<given-names>E.</given-names>
</name>
<source>J. Organomet. Chem.</source>
<year>1997</year>
<volume>541</volume>
<fpage>445</fpage>
<pub-id pub-id-type="doi">10.1016/S0022-328X(97)00121-6</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bradley</surname>
<given-names>D. C.</given-names>
</name>
<name name-style="western">
<surname>Hursthouse</surname>
<given-names>M. B.</given-names>
</name>
<name name-style="western">
<surname>Malik</surname>
<given-names>K. M. A.</given-names>
</name>
<name name-style="western">
<surname>Nielson</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Vuru</surname>
<given-names>G. B. C.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1984</year>
<fpage>1069</fpage>
<lpage>1072</lpage>
<pub-id pub-id-type="doi">10.1039/dt9840001069</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cundari</surname>
<given-names>T. R.</given-names>
</name>
<source>Chem. Rev.</source>
<year>2000</year>
<volume>100</volume>
<fpage>807</fpage>
<pub-id pub-id-type="doi">10.1021/cr980406i</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00037">
<element-citation publication-type="journal">
<comment>For leading references on the electron and structural effects of the trans infuence of multiply bonded ligands, and for a theoretical analysis of the bonding in tertbutyl- and aryl-imido transition metal complexes see: </comment>
<name name-style="western">
<surname>Kaltsoyannis</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1999</year>
<fpage>781</fpage>
<pub-id pub-id-type="doi">10.1039/a807136e</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Williams</surname>
<given-names>D. N.</given-names>
</name>
<name name-style="western">
<surname>Mitchell</surname>
<given-names>J. P.</given-names>
</name>
<name name-style="western">
<surname>Poole</surname>
<given-names>A. D.</given-names>
</name>
<name name-style="western">
<surname>Siemeling</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Clegg</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Hockless</surname>
<given-names>D. C. R.</given-names>
</name>
<name name-style="western">
<surname>O'Neil</surname>
<given-names>P. A.</given-names>
</name>
<name name-style="western">
<surname>Gibson</surname>
<given-names>V. C.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1992</year>
<fpage>739</fpage>
<pub-id pub-id-type="doi">10.1039/dt9920000739</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Green</surname>
<given-names>M. L. H.</given-names>
</name>
<name name-style="western">
<surname>Michaelidou</surname>
<given-names>D. M.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Suárez</surname>
<given-names>A. G.</given-names>
</name>
<name name-style="western">
<surname>Wong</surname>
<given-names>L.-L.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1993</year>
<fpage>1593</fpage>
<pub-id pub-id-type="doi">10.1039/dt9930001593</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stewart</surname>
<given-names>P. J.</given-names>
</name>
<name name-style="western">
<surname>Blake</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>1997</year>
<volume>36</volume>
<fpage>1982</fpage>
<pub-id pub-id-type="doi">10.1021/ic961391e</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bailey</surname>
<given-names>N. J.</given-names>
</name>
<name name-style="western">
<surname>Cooper</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Gailus</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Green</surname>
<given-names>M. L. H.</given-names>
</name>
<name name-style="western">
<surname>James</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Leech</surname>
<given-names>M. A.</given-names>
</name>
<source>J. Chem. Soc., Dalton Trans.</source>
<year>1997</year>
<fpage>3579</fpage>
<pub-id pub-id-type="doi">10.1039/a702758c</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00042">
<mixed-citation>
<name name-style="western">
<surname>Greenwood</surname>
<given-names>N. N.</given-names>
</name>
;
<name name-style="western">
<surname>Earnshaw</surname>
<given-names>A.</given-names>
</name>
<italic toggle="yes"> Chemistry of the Elements</italic>
; Pergamon Press:  Oxford, 1994; p 1141</mixed-citation>
</ref>
<ref id="ic0102541b00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nugent</surname>
<given-names>W. A.</given-names>
</name>
<name name-style="western">
<surname>Harlow</surname>
<given-names>R. L.</given-names>
</name>
<source>J. Chem. Soc., Chem. Commun.</source>
<year>1978</year>
<fpage>579</fpage>
<pub-id pub-id-type="doi">10.1039/c39780000579</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00044">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jones</surname>
<given-names>T. C.</given-names>
</name>
<name name-style="western">
<surname>Nielson</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Rickard</surname>
<given-names>C. E. F.</given-names>
</name>
<source>J. Chem. Soc., Chem. Commun.</source>
<year>1984</year>
<fpage>205</fpage>
<pub-id pub-id-type="doi">10.1039/c39840000205</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00045">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bates</surname>
<given-names>P. A.</given-names>
</name>
<name name-style="western">
<surname>Nielson</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Waters</surname>
<given-names>J. M.</given-names>
</name>
<source>Polyhedron</source>
<year>1985</year>
<volume>4</volume>
<fpage>1391</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(00)86969-7</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00046">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chamberlain</surname>
<given-names>L. R.</given-names>
</name>
<name name-style="western">
<surname>Steffey</surname>
<given-names>B. D.</given-names>
</name>
<name name-style="western">
<surname>Rothwell</surname>
<given-names>I. P.</given-names>
</name>
<name name-style="western">
<surname>Huffman</surname>
<given-names>J. C.</given-names>
</name>
<source>Polyhedron</source>
<year>1989</year>
<volume>8</volume>
<fpage>341</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(00)80424-6</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00047">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chao</surname>
<given-names>Y.-W.</given-names>
</name>
<name name-style="western">
<surname>Wexler</surname>
<given-names>P. A.</given-names>
</name>
<name name-style="western">
<surname>Wigley</surname>
<given-names>D. E.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>1989</year>
<volume>28</volume>
<fpage>3860</fpage>
<pub-id pub-id-type="doi">10.1021/ic00319a022</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00048">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Boncella</surname>
<given-names>J. M.</given-names>
</name>
<name name-style="western">
<surname>Cajigal</surname>
<given-names>M. L.</given-names>
</name>
<name name-style="western">
<surname>Gamble</surname>
<given-names>A. S.</given-names>
</name>
<name name-style="western">
<surname>Abboud</surname>
<given-names>K. A.</given-names>
</name>
<source>Polyhedron</source>
<year>1996</year>
<volume>15</volume>
<fpage>2071</fpage>
<pub-id pub-id-type="doi">10.1016/0277-5387(95)00468-8</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00049">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cotton</surname>
<given-names>F. A.</given-names>
</name>
<name name-style="western">
<surname>Daniels</surname>
<given-names>L. M.</given-names>
</name>
<name name-style="western">
<surname>Matonic</surname>
<given-names>J. H.</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name name-style="western">
<surname>Murillo</surname>
<given-names>C. A.</given-names>
</name>
<source>Polyhedron</source>
<year>1997</year>
<volume>16</volume>
<fpage>1177</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(96)00366-X</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00050">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Heinselman</surname>
<given-names>K. S.</given-names>
</name>
<name name-style="western">
<surname>Miskowski</surname>
<given-names>V. M.</given-names>
</name>
<name name-style="western">
<surname>Geib</surname>
<given-names>S. J.</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>L. C.</given-names>
</name>
<name name-style="western">
<surname>Hopkins</surname>
<given-names>M. D.</given-names>
</name>
<source>Inorg. Chem.</source>
<year>1997</year>
<volume>36</volume>
<fpage>5530</fpage>
<pub-id pub-id-type="doi">10.1021/ic970494+</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00051">
<mixed-citation>
<name name-style="western">
<surname>Blake</surname>
<given-names>A. J.</given-names>
</name>
;
<name name-style="western">
<surname>Collier</surname>
<given-names>P. E.</given-names>
</name>
;
<name name-style="western">
<surname>Dunn</surname>
<given-names>S. C.</given-names>
</name>
;
<name name-style="western">
<surname>Li</surname>
<given-names>W.-S.</given-names>
</name>
;
<name name-style="western">
<surname>Mountford</surname>
<given-names>P.</given-names>
</name>
; Shishkin., O. V.
<italic toggle="yes"> J. Chem. Soc., Dalton Trans.</italic>
<bold>1997</bold>
, 1549.
<pub-id pub-id-type="doi">10.1039/a607735h</pub-id>
</mixed-citation>
</ref>
<ref id="ic0102541b00052">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zambrano</surname>
<given-names>C. H.</given-names>
</name>
<name name-style="western">
<surname>Profilet</surname>
<given-names>R. D.</given-names>
</name>
<name name-style="western">
<surname>Hill</surname>
<given-names>J. E.</given-names>
</name>
<name name-style="western">
<surname>Fanwick</surname>
<given-names>P. E.</given-names>
</name>
<name name-style="western">
<surname>Rothwell</surname>
<given-names>I. P.</given-names>
</name>
<source>Polyhedron</source>
<year>1993</year>
<volume>12</volume>
<fpage>689</fpage>
<pub-id pub-id-type="doi">10.1016/S0277-5387(00)84987-6</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00053">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Galindo</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Ienco</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Mealli</surname>
<given-names>C.</given-names>
</name>
<source>New J. Chem.</source>
<year>2000</year>
<volume>24</volume>
<fpage>73</fpage>
<pub-id pub-id-type="doi">10.1039/a909433d</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00054">
<mixed-citation>(a)
<name name-style="western">
<surname>Sandström</surname>
<given-names>J.</given-names>
</name>
<italic toggle="yes"> Dynamic NMR Spectroscopy</italic>
; Academic Press:  London, 1992.</mixed-citation>
<element-citation publication-type="journal">
<label>b</label>
<name name-style="western">
<surname>Green</surname>
<given-names>M. L. H.</given-names>
</name>
<name name-style="western">
<surname>Wong</surname>
<given-names>L.-L.</given-names>
</name>
<name name-style="western">
<surname>Sella</surname>
<given-names>A.</given-names>
</name>
<source>Organometallics</source>
<year>1992</year>
<volume>11</volume>
<fpage>2660</fpage>
<pub-id pub-id-type="doi">10.1021/om00043a059</pub-id>
</element-citation>
</ref>
<ref id="ic0102541b00055">
<mixed-citation>
<name name-style="western">
<surname>Wilkins</surname>
<given-names>R. G.</given-names>
</name>
<italic toggle="yes"> Kinetics and Mechanism of Reactions of Transition Metal </italic>
<italic toggle="yes">Complexes</italic>
; VCH:  Weinheim, 1991.</mixed-citation>
</ref>
<ref id="ic0102541b00056">
<mixed-citation>
<name name-style="western">
<surname>Mingos</surname>
<given-names>D. M. P.</given-names>
</name>
<italic toggle="yes"> Essential Trends in Inorganic Chemistry</italic>
; Oxford University Press:  Oxford, 1998.</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands</title>
</titleInfo>
<name type="personal">
<namePart type="family">PUGH</namePart>
<namePart type="given">Stephen M.</namePart>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</affiliation>
<affiliation> University of Oxford.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">BLAKE</namePart>
<namePart type="given">Alexander J.</namePart>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</affiliation>
<affiliation> University of Nottingham.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GADE</namePart>
<namePart type="given">Lutz H.</namePart>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</affiliation>
<affiliation> Université Louis Pasteur.</affiliation>
<affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">MOUNTFORD</namePart>
<namePart type="given">Philip</namePart>
<affiliation>Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.,School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, U.K.,and Laboratoire de Chimie Organométallique et de Catalyse (CNRS UMR 7513), Institut Le Bel,Université Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France</affiliation>
<affiliation> University of Oxford.</affiliation>
<affiliation> To whom correspondence should be addressed. Lutz H. Gade e-mail: gade@chimie.u-strasbg.fr. Philip Mountford e-mail:  philip.mountford@chemistry.oxford.ac.uk. Fax:  +44 1865 272690</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2001-06-30</dateCreated>
<dateIssued encoding="w3cdtf">2001-07-30</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<abstract>Reaction of the vanadium(V) imide [V(NAr)Cl3(THF)] (Ar = 2,6-C6H3iPr2) with the diamino-pyridine derivative MeC(2-C5H4N)(CH2NHSiMe2tBu)2 (abbreviated as H2N‘2Npy) gave modest yields of the vanadium(IV) species [V(NAr)(H3N‘N‘ ‘Npy)Cl2] (1 where H3N‘N‘ ‘Npy = MeC(2- C5H4N)(CH2NH2)(CH2NHSiMe2tBu) in which the original H2N‘2Npy has effectively lost SiMe2tBu (as ClSiMe2tBu) and gained an H atom. Better behaved reactions were found between the heavier Group 5 metal complexes [M(NR)Cl3(py)2] (M = Nb or Ta, R = tBu or Ar) and the dilithium salt Li2[N2Npy] (where H2N2Npy = MeC(2-C5H4N)(CH2NHSiMe3)2), and these yielded the six-coordinate M(V) complexes [M(NR)Cl(N2Npy)(py)] (M = Nb, R = tBu 2; M = Ta, R = tBu 3 or Ar 4). The compounds 2−4 are fluxional in solution and undergo dynamic exchange processes via the corresponding five-coordinate homologues [M(NR)Cl(N2Npy)]. Activation parameters are reported for the complexes 2 and 3. In the case of 2, high vacuum tube sublimation afforded modest quantities of [Nb(NtBu)Cl(N2Npy)] (5). The X-ray crystal structures of the four compounds 1, 2, 3, and 4 are reported.</abstract>
<abstract type="short">New Group 5 imido complexes derived from the diamido-pyridine ligand MeC(2-C5H4N)(CH2CH2NSiMe3)2 (N2Npy) are described. Among those reported are products of the reactions of Li2[N2Npy] with [M(NR)Cl3(py)2] (M = Nb, Ta; R = tBu, Ar) which gave compounds of the type shown. The X-ray structures and solution dynamics of the new compounds are described.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Inorganic Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Inorg. Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0020-1669</identifier>
<identifier type="eISSN">1520-510X</identifier>
<identifier type="acspubs">ic</identifier>
<identifier type="coden">INOCAJ</identifier>
<identifier type="uri">pubs.acs.org/IC</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>40</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>3992</start>
<end>4001</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D6A7FC5D2E9DFB03A59535075204206D6A350B5F</identifier>
<identifier type="ark">ark:/67375/TPS-BHD9X61C-B</identifier>
<identifier type="DOI">10.1021/ic0102541</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2001 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">ACS</recordContentSource>
<recordOrigin>Copyright © 2001 American Chemical Society</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-BHD9X61C-B/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/D6A7FC5D2E9DFB03A59535075204206D6A350B5F/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001377 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001377 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D6A7FC5D2E9DFB03A59535075204206D6A350B5F
   |texte=   Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021