Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes

Identifieur interne : 000A09 ( Istex/Corpus ); précédent : 000A08; suivant : 000A10

Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes

Auteurs : Dongliang Wang ; W. K. Teo ; K. Li

Source :

RBID : ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A

English descriptors

Abstract

Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002

Url:
DOI: 10.1002/app.10966

Links to Exploration step

ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
<affiliation>
<mods:affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Institute of Material Science and Engineering, Singapore 119260</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Teo, W K" sort="Teo, W K" uniqKey="Teo W" first="W. K." last="Teo">W. K. Teo</name>
<affiliation>
<mods:affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: k.li@bath.ac.uk</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom===</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/app.10966</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A09</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<author>
<name sortKey="Wang, Dongliang" sort="Wang, Dongliang" uniqKey="Wang D" first="Dongliang" last="Wang">Dongliang Wang</name>
<affiliation>
<mods:affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current Address: Institute of Material Science and Engineering, Singapore 119260</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Teo, W K" sort="Teo, W K" uniqKey="Teo W" first="W. K." last="Teo">W. K. Teo</name>
<affiliation>
<mods:affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, K" sort="Li, K" uniqKey="Li K" first="K." last="Li">K. Li</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: k.li@bath.ac.uk</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom===</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="ISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<imprint>
<biblScope unit="vol">86</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="698">698</biblScope>
<biblScope unit="page" to="702">702</biblScope>
<biblScope unit="page-count">5</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002-10-17">2002-10-17</date>
</imprint>
<idno type="ISSN">0021-8995</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-8995</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Asymmetric</term>
<term>Asymmetric membrane</term>
<term>Asymmetric membranes</term>
<term>Bers</term>
<term>Capillary condensation</term>
<term>Capillary pressure</term>
<term>Dense membrane</term>
<term>High selectivity selectivity</term>
<term>Higher pressures</term>
<term>Higher selectivity</term>
<term>Hydrocarbon condensation</term>
<term>Increment</term>
<term>Inner diameter</term>
<term>Internal coagulant</term>
<term>Knudsen</term>
<term>Little effect</term>
<term>Membr</term>
<term>Membrane</term>
<term>Membrane selectivity</term>
<term>Nonporous</term>
<term>Nonporous part</term>
<term>Permeability</term>
<term>Permeability increment</term>
<term>Permeation</term>
<term>Permeation behavior</term>
<term>Permeation properties</term>
<term>Permeation rate</term>
<term>Polymer</term>
<term>Polymeric membranes</term>
<term>Pore</term>
<term>Pore length</term>
<term>Pore size</term>
<term>Porous part</term>
<term>Pressure difference</term>
<term>Pure gases</term>
<term>Schematic diagram</term>
<term>Selectivity</term>
<term>Small fraction</term>
<term>Surface porosity</term>
<term>Test module</term>
<term>Theoretical analysis</term>
<term>Viscous</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>permeation</json:string>
<json:string>permeability</json:string>
<json:string>selectivity</json:string>
<json:string>nonporous</json:string>
<json:string>nonporous part</json:string>
<json:string>asymmetric membrane</json:string>
<json:string>porous part</json:string>
<json:string>knudsen</json:string>
<json:string>bers</json:string>
<json:string>pore</json:string>
<json:string>polymeric membranes</json:string>
<json:string>membrane selectivity</json:string>
<json:string>membr</json:string>
<json:string>increment</json:string>
<json:string>pressure difference</json:string>
<json:string>asymmetric</json:string>
<json:string>membrane</json:string>
<json:string>small fraction</json:string>
<json:string>asymmetric membranes</json:string>
<json:string>higher selectivity</json:string>
<json:string>capillary condensation</json:string>
<json:string>capillary pressure</json:string>
<json:string>viscous</json:string>
<json:string>pore size</json:string>
<json:string>permeability increment</json:string>
<json:string>high selectivity selectivity</json:string>
<json:string>wiley periodicals</json:string>
<json:string>permeation behavior</json:string>
<json:string>internal coagulant</json:string>
<json:string>little effect</json:string>
<json:string>surface porosity</json:string>
<json:string>pore length</json:string>
<json:string>schematic diagram</json:string>
<json:string>permeation properties</json:string>
<json:string>inner diameter</json:string>
<json:string>test module</json:string>
<json:string>permeation rate</json:string>
<json:string>theoretical analysis</json:string>
<json:string>pure gases</json:string>
<json:string>higher pressures</json:string>
<json:string>hydrocarbon condensation</json:string>
<json:string>dense membrane</json:string>
<json:string>polymer</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Dongliang Wang</name>
<affiliations>
<json:string>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</json:string>
<json:string>Current Address: Institute of Material Science and Engineering, Singapore 119260</json:string>
</affiliations>
</json:item>
<json:item>
<name>W. K. Teo</name>
<affiliations>
<json:string>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Li</name>
<affiliations>
<json:string>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom</json:string>
<json:string>E-mail: k.li@bath.ac.uk</json:string>
<json:string>Correspondence address: Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom===</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>membranes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vapor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>separation</value>
</json:item>
</subject>
<articleId>
<json:string>APP10966</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-VS28ZWX7-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</abstract>
<qualityIndicators>
<score>6.698</score>
<pdfWordCount>2190</pdfWordCount>
<pdfCharCount>13017</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>5</pdfPageCount>
<pdfPageSize>614 x 795 pts</pdfPageSize>
<pdfWordsPerPage>438</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>209</abstractWordCount>
<abstractCharCount>1403</abstractCharCount>
<keywordCount>3</keywordCount>
</qualityIndicators>
<title>Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Applied Polymer Science</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-4628</json:string>
</doi>
<issn>
<json:string>0021-8995</json:string>
</issn>
<eissn>
<json:string>1097-4628</json:string>
</eissn>
<publisherId>
<json:string>APP</json:string>
</publisherId>
<volume>86</volume>
<issue>3</issue>
<pages>
<first>698</first>
<last>702</last>
<total>5</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2002</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Institute of Material Science and Engineering, Singapore</json:string>
<json:string>Wiley Periodicals, Inc.</json:string>
<json:string>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA</json:string>
<json:string>National University</json:string>
<json:string>United Kingdom Received</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>K. Li</json:string>
</persName>
<placeName>
<json:string>Singapore</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Barbari et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-VS28ZWX7-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - polymer science</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - polymers</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Polymers and Plastics</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Surfaces, Coatings and Films</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - General Chemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1002/app.10966</json:string>
</doi>
<id>B422F874ADF3C61B45D4099222E66DE9E5A13A7A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<title level="a" type="short" xml:lang="en">Permeation Through PEI Membranes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 2002 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2002-10-17"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
<title level="a" type="short" xml:lang="en">Permeation Through PEI Membranes</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Dongliang</forename>
<surname>Wang</surname>
</persName>
<affiliation>
<orgName type="division">Department of Chemical and Environmental Engineering</orgName>
<orgName type="institution">National University of Singapore</orgName>
<address>
<addrLine>10 Kent Ridge Crescent</addrLine>
<addrLine>Singapore, 9260</addrLine>
<country key="SG" xml:lang="en">SINGAPORE</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Institute of Material Science and Engineering</orgName>
<address>
<addrLine>Singapore 119260</addrLine>
<country key="SG" xml:lang="en">SINGAPORE</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">W. K.</forename>
<surname>Teo</surname>
</persName>
<affiliation>
<orgName type="division">Department of Chemical and Environmental Engineering</orgName>
<orgName type="institution">National University of Singapore</orgName>
<address>
<addrLine>10 Kent Ridge Crescent</addrLine>
<addrLine>Singapore, 9260</addrLine>
<country key="SG" xml:lang="en">SINGAPORE</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">K.</forename>
<surname>Li</surname>
</persName>
<email>k.li@bath.ac.uk</email>
<affiliation>
<orgName type="division">Department of Chemical Engineering</orgName>
<orgName type="institution">University of Bath</orgName>
<address>
<addrLine>Claverton Down</addrLine>
<addrLine>Bath, BA2 7AY, United Kingdom</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<idno type="istex">B422F874ADF3C61B45D4099222E66DE9E5A13A7A</idno>
<idno type="ark">ark:/67375/WNG-VS28ZWX7-5</idno>
<idno type="DOI">10.1002/app.10966</idno>
<idno type="unit">APP10966</idno>
<idno type="toTypesetVersion">file:APP.APP10966.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Applied Polymer Science</title>
<title level="j" type="alt">JOURNAL OF APPLIED POLYMER SCIENCE</title>
<idno type="pISSN">0021-8995</idno>
<idno type="eISSN">1097-4628</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-4628</idno>
<idno type="book-part-DOI">10.1002/app.v86:3</idno>
<idno type="product">APP</idno>
<imprint>
<biblScope unit="vol">86</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="698">698</biblScope>
<biblScope unit="page" to="702">702</biblScope>
<biblScope unit="page-count">5</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002-10-17"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Permeation properties of pure H
<hi rend="subscript">2</hi>
, N
<hi rend="subscript">2</hi>
, CH
<hi rend="subscript">4</hi>
, C
<hi rend="subscript">2</hi>
H
<hi rend="subscript">6</hi>
, and C
<hi rend="subscript">3</hi>
H
<hi rend="subscript">8</hi>
through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a
<hi rend="italic">N</hi>
‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H
<hi rend="subscript">2</hi>
/N
<hi rend="subscript">2</hi>
selectivity >50 at 25°C). H
<hi rend="subscript">2</hi>
permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH
<hi rend="subscript">4</hi>
and N
<hi rend="subscript">2</hi>
, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H
<hi rend="subscript">2</hi>
, CH
<hi rend="subscript">4</hi>
, and N
<hi rend="subscript">2</hi>
. For C
<hi rend="subscript">2</hi>
H
<hi rend="subscript">6</hi>
and C
<hi rend="subscript">3</hi>
H
<hi rend="subscript">8</hi>
, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H
<hi rend="subscript">2</hi>
permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N
<hi rend="subscript">2</hi>
and CH
<hi rend="subscript">4</hi>
, whereas the permeability of C
<hi rend="subscript">2</hi>
H
<hi rend="subscript">6</hi>
and C
<hi rend="subscript">3</hi>
H
<hi rend="subscript">8</hi>
decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">membranes</term>
<term xml:id="kwd2">vapor</term>
<term xml:id="kwd3">separation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4628</doi>
<issn type="print">0021-8995</issn>
<issn type="electronic">1097-4628</issn>
<idGroup>
<id type="product" value="APP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF APPLIED POLYMER SCIENCE">Journal of Applied Polymer Science</title>
<title type="short">J. Appl. Polym. Sci.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/app.v86:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="86">86</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2002-10-17">17 October 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="220" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/app.10966</doi>
<idGroup>
<id type="unit" value="APP10966"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="5"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2002 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-06-29"></event>
<event type="manuscriptAccepted" date="2002-01-11"></event>
<event type="firstOnline" date="2002-08-07"></event>
<event type="publishedOnlineFinalForm" date="2002-08-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText mathml2tex" date="2010-03-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-24"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">698</numbering>
<numbering type="pageLast">702</numbering>
</numberingGroup>
<correspondenceTo>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:APP.APP10966.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="5"></count>
<count type="wordTotal" number="2748"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Permeation of H
<sub>2</sub>
, N
<sub>2</sub>
, CH
<sub>4</sub>
, C
<sub>2</sub>
H
<sub>6</sub>
, and C
<sub>3</sub>
H
<sub>8</sub>
through asymmetric polyetherimide hollow‐fiber membranes</title>
<title type="short" xml:lang="en">Permeation Through PEI Membranes</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" currentRef="#curr1">
<personName>
<givenNames>Dongliang</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>W. K.</givenNames>
<familyName>Teo</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2" corresponding="yes">
<personName>
<givenNames>K.</givenNames>
<familyName>Li</familyName>
</personName>
<contactDetails>
<email>k.li@bath.ac.uk</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="SG" type="organization">
<unparsedAffiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom</unparsedAffiliation>
</affiliation>
<affiliation xml:id="curr1" countryCode="SG">
<unparsedAffiliation>Institute of Material Science and Engineering, Singapore 119260</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">membranes</keyword>
<keyword xml:id="kwd2">vapor</keyword>
<keyword xml:id="kwd3">separation</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Permeation properties of pure H
<sub>2</sub>
, N
<sub>2</sub>
, CH
<sub>4</sub>
, C
<sub>2</sub>
H
<sub>6</sub>
, and C
<sub>3</sub>
H
<sub>8</sub>
through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a
<i>N</i>
‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H
<sub>2</sub>
/N
<sub>2</sub>
selectivity >50 at 25°C). H
<sub>2</sub>
permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH
<sub>4</sub>
and N
<sub>2</sub>
, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H
<sub>2</sub>
, CH
<sub>4</sub>
, and N
<sub>2</sub>
. For C
<sub>2</sub>
H
<sub>6</sub>
and C
<sub>3</sub>
H
<sub>8</sub>
, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H
<sub>2</sub>
permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N
<sub>2</sub>
and CH
<sub>4</sub>
, whereas the permeability of C
<sub>2</sub>
H
<sub>6</sub>
and C
<sub>3</sub>
H
<sub>8</sub>
decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Permeation Through PEI Membranes</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongliang</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</affiliation>
<affiliation>Current Address: Institute of Material Science and Engineering, Singapore 119260</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. K.</namePart>
<namePart type="family">Teo</namePart>
<affiliation>Department of Chemical and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 9260</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Li</namePart>
<affiliation>Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom</affiliation>
<affiliation>E-mail: k.li@bath.ac.uk</affiliation>
<affiliation>Correspondence address: Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-10-17</dateIssued>
<dateCaptured encoding="w3cdtf">2001-06-29</dateCaptured>
<dateValid encoding="w3cdtf">2002-01-11</dateValid>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">7</extent>
<extent unit="tables">0</extent>
<extent unit="references">5</extent>
<extent unit="words">2748</extent>
</physicalDescription>
<abstract lang="en">Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>membranes</topic>
<topic>vapor</topic>
<topic>separation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Applied Polymer Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Appl. Polym. Sci.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0021-8995</identifier>
<identifier type="eISSN">1097-4628</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4628</identifier>
<identifier type="PublisherID">APP</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>698</start>
<end>702</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit1">
<titleInfo>
<title>J Membr Sci</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">Koros, W. J.; Fleming, G. K. J Membr Sci 1993, 83, 1.</note>
<name type="personal">
<namePart type="given">W. J.</namePart>
<namePart type="family">Koros</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. K.</namePart>
<namePart type="family">Fleming</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>83</number>
</detail>
<extent unit="pages">
<start>1</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit2">
<titleInfo>
<title>J Membr Sci</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">Pesek, S. C.; Koros, W. J. J Membr Sci 1994, 88, 1.</note>
<name type="personal">
<namePart type="given">S. C.</namePart>
<namePart type="family">Pesek</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. J.</namePart>
<namePart type="family">Koros</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>88</number>
</detail>
<extent unit="pages">
<start>1</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit3">
<titleInfo>
<title>J Membr Sci</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">Wang, D.; Li, K.; Teo, W. K. J Membr Sci 1995, 105, 233.</note>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. K.</namePart>
<namePart type="family">Teo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>233</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit4">
<titleInfo>
<title>J Membr Sci</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">Barbari, T. A.; Koros, W. J.; Paul, D. R. J Membr Sci 1989, 42, 69.</note>
<name type="personal">
<namePart type="given">T. A.</namePart>
<namePart type="family">Barbari</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. J.</namePart>
<namePart type="family">Koros</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. R.</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<extent unit="pages">
<start>69</start>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit5">
<titleInfo>
<title>Carman, P. C.Flow of Gases Through Porous Media;Butterworths:London,1956.</title>
</titleInfo>
<note type="citation/reference">Carman, P. C. Flow of Gases Through Porous Media; Butterworths: London, 1956.</note>
<name type="personal">
<namePart type="given">P. C.</namePart>
<namePart type="family">Carman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>Butterworths</publisher>
<place>
<placeTerm type="text">London</placeTerm>
</place>
</originInfo>
<part>
<date>1956</date>
</part>
</relatedItem>
<identifier type="istex">B422F874ADF3C61B45D4099222E66DE9E5A13A7A</identifier>
<identifier type="ark">ark:/67375/WNG-VS28ZWX7-5</identifier>
<identifier type="DOI">10.1002/app.10966</identifier>
<identifier type="ArticleID">APP10966</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2002 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-13</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-VS28ZWX7-5/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B422F874ADF3C61B45D4099222E66DE9E5A13A7A
   |texte=   Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow‐fiber membranes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021