Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenomenological theory of superfluidity and superconductivity

Identifieur interne : 000628 ( Istex/Corpus ); précédent : 000627; suivant : 000629

Phenomenological theory of superfluidity and superconductivity

Auteurs : Mario Rabinowitz

Source :

RBID : ISTEX:3ED27D0D32322473E51C133F8BB99AD81939B261

English descriptors

Abstract

Abstract: Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperaturesT c of superfluid3He and4He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.T c for atomic H is estimated.T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.

Url:
DOI: 10.1007/BF00844979

Links to Exploration step

ISTEX:3ED27D0D32322473E51C133F8BB99AD81939B261

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenomenological theory of superfluidity and superconductivity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
<affiliation>
<mods:affiliation>Electric Power Research Institute, 94303, Palo Alto, California</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3ED27D0D32322473E51C133F8BB99AD81939B261</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1007/BF00844979</idno>
<idno type="url">https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000628</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Phenomenological theory of superfluidity and superconductivity</title>
<author>
<name sortKey="Rabinowitz, Mario" sort="Rabinowitz, Mario" uniqKey="Rabinowitz M" first="Mario" last="Rabinowitz">Mario Rabinowitz</name>
<affiliation>
<mods:affiliation>Electric Power Research Institute, 94303, Palo Alto, California</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal of Theoretical Physics</title>
<title level="j" type="abbrev">Int J Theor Phys</title>
<idno type="ISSN">0020-7748</idno>
<idno type="eISSN">1572-9575</idno>
<imprint>
<publisher>Kluwer Academic Publishers-Plenum Publishers</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-02-01">1994-02-01</date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="389">389</biblScope>
<biblScope unit="page" to="399">399</biblScope>
</imprint>
<idno type="ISSN">0020-7748</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0020-7748</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Angular momentum</term>
<term>Boson</term>
<term>Broglie wavelength</term>
<term>Coherence</term>
<term>Coherence length</term>
<term>Coherence lengths</term>
<term>Condensation temperature</term>
<term>Cooper pair</term>
<term>Cooper pairs</term>
<term>Different ways</term>
<term>Effective mass</term>
<term>Electron pairs</term>
<term>Energy level</term>
<term>Excellent agreement</term>
<term>Experimental range</term>
<term>Experimental value</term>
<term>Fermi</term>
<term>Fermi energy</term>
<term>Fermion</term>
<term>Ground state</term>
<term>Heavy fermion</term>
<term>International journal</term>
<term>Large number</term>
<term>Modern physics</term>
<term>Multiple occupancy</term>
<term>Number density</term>
<term>Pairing</term>
<term>Pairing mechanism</term>
<term>Phase space</term>
<term>Phenomenological theory</term>
<term>Physical review</term>
<term>Physical review letters</term>
<term>Rabinowitz</term>
<term>Simple terms</term>
<term>Simplest materials</term>
<term>Small number</term>
<term>Superconducting electrons</term>
<term>Superconductivity</term>
<term>Superconductors</term>
<term>Superfluid</term>
<term>Superfluid transition</term>
<term>Superfluid transition temperature</term>
<term>Superfluidity</term>
<term>Theoretical physics</term>
<term>Transition temperatures</term>
<term>Triplet state</term>
<term>Unorthodox superconductors</term>
<term>Wave function</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperaturesT c of superfluid3He and4He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.T c for atomic H is estimated.T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.</div>
</front>
</TEI>
<istex>
<corpusName>springer-journals</corpusName>
<keywords>
<teeft>
<json:string>rabinowitz</json:string>
<json:string>superconductivity</json:string>
<json:string>superconductors</json:string>
<json:string>superfluid</json:string>
<json:string>fermion</json:string>
<json:string>physical review</json:string>
<json:string>superfluidity</json:string>
<json:string>boson</json:string>
<json:string>fermi</json:string>
<json:string>pairing</json:string>
<json:string>number density</json:string>
<json:string>electron pairs</json:string>
<json:string>physical review letters</json:string>
<json:string>phenomenological theory</json:string>
<json:string>transition temperatures</json:string>
<json:string>coherence</json:string>
<json:string>international journal</json:string>
<json:string>excellent agreement</json:string>
<json:string>modern physics</json:string>
<json:string>broglie wavelength</json:string>
<json:string>theoretical physics</json:string>
<json:string>fermi energy</json:string>
<json:string>coherence lengths</json:string>
<json:string>triplet state</json:string>
<json:string>superfluid transition</json:string>
<json:string>pairing mechanism</json:string>
<json:string>phase space</json:string>
<json:string>simple terms</json:string>
<json:string>multiple occupancy</json:string>
<json:string>ground state</json:string>
<json:string>unorthodox superconductors</json:string>
<json:string>energy level</json:string>
<json:string>condensation temperature</json:string>
<json:string>superfluid transition temperature</json:string>
<json:string>cooper pairs</json:string>
<json:string>angular momentum</json:string>
<json:string>experimental value</json:string>
<json:string>small number</json:string>
<json:string>effective mass</json:string>
<json:string>cooper pair</json:string>
<json:string>wave function</json:string>
<json:string>coherence length</json:string>
<json:string>different ways</json:string>
<json:string>superconducting electrons</json:string>
<json:string>experimental range</json:string>
<json:string>heavy fermion</json:string>
<json:string>large number</json:string>
<json:string>simplest materials</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Mario Rabinowitz</name>
<affiliations>
<json:string>Electric Power Research Institute, 94303, Palo Alto, California</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00844979</json:string>
<json:string>Art10</json:string>
</articleId>
<arkIstex>ark:/67375/1BB-J248TTM5-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperaturesT c of superfluid3He and4He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.T c for atomic H is estimated.T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.</abstract>
<qualityIndicators>
<score>7.241</score>
<pdfWordCount>3753</pdfWordCount>
<pdfCharCount>20914</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>432 x 648 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>124</abstractWordCount>
<abstractCharCount>827</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Phenomenological theory of superfluidity and superconductivity</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal of Theoretical Physics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<issn>
<json:string>0020-7748</json:string>
</issn>
<eissn>
<json:string>1572-9575</json:string>
</eissn>
<journalId>
<json:string>10773</json:string>
</journalId>
<volume>33</volume>
<issue>2</issue>
<pages>
<first>389</first>
<last>399</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Physics, general</value>
</json:item>
<json:item>
<value>Quantum Physics</value>
</json:item>
<json:item>
<value>Mathematical and Computational Physics</value>
</json:item>
<json:item>
<value>Elementary Particles, Quantum Field Theory</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date></date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/1BB-J248TTM5-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - physics, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - nuclear & particles physics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Physics and Astronomy (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - General Mathematics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - physique</json:string>
<json:string>4 - etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1007/BF00844979</json:string>
</doi>
<id>3ED27D0D32322473E51C133F8BB99AD81939B261</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Phenomenological theory of superfluidity and superconductivity</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">Kluwer Academic Publishers-Plenum Publishers</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>
<p>Plenum Publishing Corporation, 1994</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>1993-04-08</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Phenomenological theory of superfluidity and superconductivity</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Mario</forename>
<surname>Rabinowitz</surname>
</persName>
<affiliation>Electric Power Research Institute, 94303, Palo Alto, California</affiliation>
</author>
<idno type="istex">3ED27D0D32322473E51C133F8BB99AD81939B261</idno>
<idno type="ark">ark:/67375/1BB-J248TTM5-Q</idno>
<idno type="DOI">10.1007/BF00844979</idno>
<idno type="article-id">BF00844979</idno>
<idno type="article-id">Art10</idno>
</analytic>
<monogr>
<title level="j">International Journal of Theoretical Physics</title>
<title level="j" type="abbrev">Int J Theor Phys</title>
<idno type="pISSN">0020-7748</idno>
<idno type="eISSN">1572-9575</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">16</idno>
<idno type="volume-issue-count">12</idno>
<imprint>
<publisher>Kluwer Academic Publishers-Plenum Publishers</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-02-01"></date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="389">389</biblScope>
<biblScope unit="page" to="399">399</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993-04-08</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperaturesT c of superfluid3He and4He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.T c for atomic H is estimated.T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Physics</head>
<item>
<term>Physics, general</term>
</item>
<item>
<term>Quantum Physics</term>
</item>
<item>
<term>Mathematical and Computational Physics</term>
</item>
<item>
<term>Elementary Particles, Quantum Field Theory</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1993-04-08">Created</change>
<change when="1994-02-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Kluwer Academic Publishers-Plenum Publishers</PublisherName>
<PublisherLocation>New York</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>10773</JournalID>
<JournalPrintISSN>0020-7748</JournalPrintISSN>
<JournalElectronicISSN>1572-9575</JournalElectronicISSN>
<JournalTitle>International Journal of Theoretical Physics</JournalTitle>
<JournalAbbreviatedTitle>Int J Theor Phys</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Physics</JournalSubject>
<JournalSubject Type="Secondary">Physics, general</JournalSubject>
<JournalSubject Type="Secondary">Quantum Physics</JournalSubject>
<JournalSubject Type="Secondary">Mathematical and Computational Physics</JournalSubject>
<JournalSubject Type="Secondary">Elementary Particles, Quantum Field Theory</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>33</VolumeIDStart>
<VolumeIDEnd>33</VolumeIDEnd>
<VolumeIssueCount>12</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>2</IssueIDEnd>
<IssueArticleCount>16</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1994</Year>
<Month>2</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Plenum Publishing Corporation</CopyrightHolderName>
<CopyrightYear>1994</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art10">
<ArticleInfo Language="En" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00844979</ArticleID>
<ArticleDOI>10.1007/BF00844979</ArticleDOI>
<ArticleSequenceNumber>10</ArticleSequenceNumber>
<ArticleTitle Language="En">Phenomenological theory of superfluidity and superconductivity</ArticleTitle>
<ArticleFirstPage>389</ArticleFirstPage>
<ArticleLastPage>399</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>12</Month>
<Day>3</Day>
</RegistrationDate>
<Received>
<Year>1993</Year>
<Month>4</Month>
<Day>8</Day>
</Received>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Plenum Publishing Corporation</CopyrightHolderName>
<CopyrightYear>1994</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>10773</JournalID>
<VolumeIDStart>33</VolumeIDStart>
<VolumeIDEnd>33</VolumeIDEnd>
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>2</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Mario</GivenName>
<FamilyName>Rabinowitz</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>Electric Power Research Institute</OrgName>
<OrgAddress>
<Postcode>94303</Postcode>
<City>Palo Alto</City>
<State>California</State>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperatures
<Emphasis Type="Italic">T</Emphasis>
<Subscript>
<Emphasis Type="Italic">c</Emphasis>
</Subscript>
of superfluid
<Superscript>3</Superscript>
He and
<Superscript>4</Superscript>
He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.
<Emphasis Type="Italic">T</Emphasis>
<Subscript>
<Emphasis Type="Italic">c</Emphasis>
</Subscript>
for atomic H is estimated.
<Emphasis Type="Italic">T</Emphasis>
<Subscript>
<Emphasis Type="Italic">c</Emphasis>
</Subscript>
can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Phenomenological theory of superfluidity and superconductivity</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Phenomenological theory of superfluidity and superconductivity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Rabinowitz</namePart>
<affiliation>Electric Power Research Institute, 94303, Palo Alto, California</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Kluwer Academic Publishers-Plenum Publishers</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1993-04-08</dateCreated>
<dateIssued encoding="w3cdtf">1994-02-01</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperaturesT c of superfluid3He and4He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors.T c for atomic H is estimated.T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths.</abstract>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Theoretical Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int J Theor Phys</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">1994-02-01</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<subject>
<genre>Physics</genre>
<topic>Physics, general</topic>
<topic>Quantum Physics</topic>
<topic>Mathematical and Computational Physics</topic>
<topic>Elementary Particles, Quantum Field Theory</topic>
</subject>
<identifier type="ISSN">0020-7748</identifier>
<identifier type="eISSN">1572-9575</identifier>
<identifier type="JournalID">10773</identifier>
<identifier type="IssueArticleCount">16</identifier>
<identifier type="VolumeIssueCount">12</identifier>
<part>
<date>1994</date>
<detail type="volume">
<number>33</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>389</start>
<end>399</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Plenum Publishing Corporation, 1994</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">3ED27D0D32322473E51C133F8BB99AD81939B261</identifier>
<identifier type="ark">ark:/67375/1BB-J248TTM5-Q</identifier>
<identifier type="DOI">10.1007/BF00844979</identifier>
<identifier type="ArticleID">BF00844979</identifier>
<identifier type="ArticleID">Art10</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Plenum Publishing Corporation, 1994</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Plenum Publishing Corporation, 1994</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/1BB-J248TTM5-Q/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3ED27D0D32322473E51C133F8BB99AD81939B261
   |texte=   Phenomenological theory of superfluidity and superconductivity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021