Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An exploratory method for estimating the changing speed of epidemic waves from historical data

Identifieur interne : 000535 ( Istex/Corpus ); précédent : 000534; suivant : 000536

An exploratory method for estimating the changing speed of epidemic waves from historical data

Auteurs : Andrew D. Cliff ; Peter Haggett ; Matthew Smallman-Raynor

Source :

RBID : ISTEX:1555CBF8A217EDFEB52A8B2E163820A588129DD0

Abstract

Background Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified. Methods A robust measure of the spatial velocity, R0A, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76. Results The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H1N1 (1918–19), Asian influenza H2N2 (1957–58) and Hong Kong influenza H3N2 (1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence. Discussion The potential for using R0A in a real-time context is explored using French influenza data. Conclusions The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.

Url:
DOI: 10.1093/ije/dym240

Links to Exploration step

ISTEX:1555CBF8A217EDFEB52A8B2E163820A588129DD0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
<author>
<name sortKey="Cliff, Andrew D" sort="Cliff, Andrew D" uniqKey="Cliff A" first="Andrew D" last="Cliff">Andrew D. Cliff</name>
<affiliation>
<mods:affiliation>Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haggett, Peter" sort="Haggett, Peter" uniqKey="Haggett P" first="Peter" last="Haggett">Peter Haggett</name>
<affiliation>
<mods:affiliation>Institute for Advanced Studies, University of Bristol, BS8 1UR, Bristol, UK.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: p.haggett@bristol.ac.uk</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*Corresponding author. Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS8 1UR, UK. E-mail: p.haggett@bristol.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smallman Raynor, Matthew" sort="Smallman Raynor, Matthew" uniqKey="Smallman Raynor M" first="Matthew" last="Smallman-Raynor">Matthew Smallman-Raynor</name>
<affiliation>
<mods:affiliation>School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1555CBF8A217EDFEB52A8B2E163820A588129DD0</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1093/ije/dym240</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000535</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000535</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
<author>
<name sortKey="Cliff, Andrew D" sort="Cliff, Andrew D" uniqKey="Cliff A" first="Andrew D" last="Cliff">Andrew D. Cliff</name>
<affiliation>
<mods:affiliation>Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haggett, Peter" sort="Haggett, Peter" uniqKey="Haggett P" first="Peter" last="Haggett">Peter Haggett</name>
<affiliation>
<mods:affiliation>Institute for Advanced Studies, University of Bristol, BS8 1UR, Bristol, UK.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: p.haggett@bristol.ac.uk</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*Corresponding author. Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS8 1UR, UK. E-mail: p.haggett@bristol.ac.uk</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smallman Raynor, Matthew" sort="Smallman Raynor, Matthew" uniqKey="Smallman Raynor M" first="Matthew" last="Smallman-Raynor">Matthew Smallman-Raynor</name>
<affiliation>
<mods:affiliation>School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">International Journal of Epidemiology</title>
<idno type="ISSN">0300-5771</idno>
<idno type="eISSN">1464-3685</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="2008-02">2008</date>
<date type="e-published" when="2007-12-03">2007</date>
<biblScope unit="vol">37</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="106">106</biblScope>
<biblScope unit="page" to="112">112</biblScope>
</imprint>
<idno type="ISSN">0300-5771</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0300-5771</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Background Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified. Methods A robust measure of the spatial velocity, R0A, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76. Results The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H1N1 (1918–19), Asian influenza H2N2 (1957–58) and Hong Kong influenza H3N2 (1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence. Discussion The potential for using R0A in a real-time context is explored using French influenza data. Conclusions The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Andrew D Cliff</name>
<affiliations>
<json:string>Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter Haggett</name>
<affiliations>
<json:string>Institute for Advanced Studies, University of Bristol, BS8 1UR, Bristol, UK.</json:string>
<json:string>E-mail: p.haggett@bristol.ac.uk</json:string>
<json:string>*Corresponding author. Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS8 1UR, UK. E-mail: p.haggett@bristol.ac.uk</json:string>
</affiliations>
</json:item>
<json:item>
<name>Matthew Smallman-Raynor</name>
<affiliations>
<json:string>School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<value>Time series</value>
</json:item>
<json:item>
<value>exploratory data analysis</value>
</json:item>
<json:item>
<value>epidemic velocity</value>
</json:item>
<json:item>
<value>influenza</value>
</json:item>
<json:item>
<value>pandemics</value>
</json:item>
<json:item>
<value>Iceland</value>
</json:item>
</subject>
<articleId>
<json:string>dym240</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-BWWF214F-C</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Background Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified. Methods A robust measure of the spatial velocity, R0A, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76. Results The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H1N1 (1918–19), Asian influenza H2N2 (1957–58) and Hong Kong influenza H3N2 (1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence. Discussion The potential for using R0A in a real-time context is explored using French influenza data. Conclusions The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.</abstract>
<qualityIndicators>
<score>6.17</score>
<pdfWordCount>2983</pdfWordCount>
<pdfCharCount>18203</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>612 x 791 pts</pdfPageSize>
<pdfWordsPerPage>426</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>210</abstractWordCount>
<abstractCharCount>1355</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
<pmid>
<json:string>18056121</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal of Epidemiology</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0300-5771</json:string>
</issn>
<eissn>
<json:string>1464-3685</json:string>
</eissn>
<publisherId>
<json:string>ije</json:string>
</publisherId>
<volume>37</volume>
<issue>1</issue>
<pages>
<first>106</first>
<last>112</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Special Theme: Communicable Disease</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>from September 1 to August 31</json:string>
<json:string>1887</json:string>
<json:string>from January 1913 to December 1976</json:string>
<json:string>1975</json:string>
<json:string>1843</json:string>
<json:string>1913</json:string>
<json:string>1918</json:string>
<json:string>1907</json:string>
<json:string>2007-12-03</json:string>
<json:string>1976</json:string>
<json:string>1895</json:string>
<json:string>20th century</json:string>
<json:string>1932</json:string>
<json:string>1937</json:string>
<json:string>1915</json:string>
<json:string>1955</json:string>
<json:string>in the 21st century</json:string>
<json:string>1945</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Iceland Background In</json:string>
<json:string>Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS</json:string>
<json:string>National Archives</json:string>
<json:string>University of Nottingham</json:string>
<json:string>University of Cambridge</json:string>
<json:string>Institute for Advanced Studies, University of Bristol, BS</json:string>
<json:string>Department of Geography, Cambridge CB</json:string>
<json:string>Wellcome Trust</json:string>
</orgName>
<orgName_funder>
<json:string>Wellcome Trust</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Matthew Smallman-Raynor</json:string>
<json:string>John Tukey</json:string>
<json:string>Profiles</json:string>
<json:string>Although</json:string>
</persName>
<placeName>
<json:string>Bristol</json:string>
<json:string>UK</json:string>
<json:string>Nottingham</json:string>
<json:string>Velocity</json:string>
<json:string>France</json:string>
<json:string>Iceland</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-BWWF214F-C</json:string>
</ark>
<categories>
<wos>
<json:string>1 - social science</json:string>
<json:string>2 - public, environmental & occupational health</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - public health & health services</json:string>
<json:string>3 - epidemiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Epidemiology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1093/ije/dym240</json:string>
</doi>
<id>1555CBF8A217EDFEB52A8B2E163820A588129DD0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2007; all rights reserved.</licence>
</availability>
<date when="2008-02">2008</date>
<date type="e-published" when="2007-12-03">2007</date>
<date type="Copyright" when="2007">2007</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
<author xml:id="author-0000">
<persName>
<surname>Cliff</surname>
<forename type="first">Andrew D</forename>
</persName>
<affiliation>
<orgName type="department">1Department of Geography</orgName>
<address>
<addrLine>University of Cambridge, Cambridge CB2 3EN, UK</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<surname>Haggett</surname>
<forename type="first">Peter</forename>
</persName>
<affiliation>
<orgName type="institution">2Institute for Advanced Studies</orgName>
<address>
<addrLine>University of Bristol, BS8 1UR, Bristol, UK</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
<email>p.haggett@bristol.ac.uk</email>
</author>
<author xml:id="author-0002">
<persName>
<surname>Smallman-Raynor</surname>
<forename type="first">Matthew</forename>
</persName>
<affiliation>
<orgName type="department">3School of Geography</orgName>
<address>
<addrLine>University of Nottingham, Nottingham NG7 2RD, UK</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<idno type="istex">1555CBF8A217EDFEB52A8B2E163820A588129DD0</idno>
<idno type="ark">ark:/67375/HXZ-BWWF214F-C</idno>
<idno type="DOI">10.1093/ije/dym240</idno>
<idno type="publisher-id">dym240</idno>
</analytic>
<monogr>
<title level="j" type="main">International Journal of Epidemiology</title>
<idno type="hwp">intjepid</idno>
<idno type="publisher-id">ije</idno>
<idno type="pISSN">0300-5771</idno>
<idno type="eISSN">1464-3685</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date when="2008-02">2008</date>
<date type="e-published" when="2007-12-03">2007</date>
<biblScope unit="vol">37</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="106">106</biblScope>
<biblScope unit="page" to="112">112</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-09">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>
<div>
<head>Background</head>
<p>Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified.</p>
</div>
<div>
<head>Methods</head>
<p>A robust measure of the spatial velocity,
<hi rend="italic">R</hi>
<hi rend="subscript">0</hi>
<hi rend="italic">
<hi rend="subscript">A</hi>
</hi>
, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76.</p>
</div>
<div>
<head>Results</head>
<p>The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H
<hi rend="subscript">1</hi>
N
<hi rend="subscript">1</hi>
(1918–19), Asian influenza H
<hi rend="subscript">2</hi>
N
<hi rend="subscript">2</hi>
(1957–58) and Hong Kong influenza H
<hi rend="subscript">3</hi>
N
<hi rend="subscript">2</hi>
(1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence.</p>
</div>
<div>
<head>Discussion</head>
<p>The potential for using
<hi rend="italic">R</hi>
<hi rend="subscript">0</hi>
<hi rend="italic">
<hi rend="subscript">A</hi>
</hi>
in a real-time context is explored using French influenza data.</p>
</div>
<div>
<head>Conclusions</head>
<p>The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.</p>
</div>
</p>
</abstract>
<textClass ana="subject">
<keywords scheme="subject">
<term>Special Theme: Communicable Disease</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords>
<term>Time series</term>
<term>exploratory data analysis</term>
<term>epidemic velocity</term>
<term>influenza</term>
<term>pandemics</term>
<term>Iceland</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-09" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">intjepid</journal-id>
<journal-id journal-id-type="publisher-id">ije</journal-id>
<journal-title>International Journal of Epidemiology</journal-title>
<issn pub-type="ppub">0300-5771</issn>
<issn pub-type="epub">1464-3685</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/ije/dym240</article-id>
<article-id pub-id-type="publisher-id">dym240</article-id>
<article-categories>
<subj-group>
<subject>Special Theme: Communicable Disease</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>An exploratory method for estimating the changing speed of epidemic waves from historical data</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cliff</surname>
<given-names>Andrew D</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Haggett</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Smallman-Raynor</surname>
<given-names>Matthew</given-names>
</name>
<xref ref-type="aff" rid="AFF3">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="AFF1">
<sup>1</sup>
Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.</aff>
<aff id="AFF2">
<sup>2</sup>
Institute for Advanced Studies, University of Bristol, BS8 1UR, Bristol, UK.</aff>
<aff id="AFF3">
<sup>3</sup>
School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.</aff>
<author-notes>
<corresp id="COR1">*Corresponding author. Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS8 1UR, UK. E-mail:
<email>p.haggett@bristol.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>3</day>
<month>12</month>
<year>2007</year>
</pub-date>
<volume>37</volume>
<issue>1</issue>
<fpage>106</fpage>
<lpage>112</lpage>
<history>
<date date-type="accepted">
<day>24</day>
<month>10</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2007; all rights reserved.</copyright-statement>
<copyright-year>2007</copyright-year>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified.</p>
</sec>
<sec>
<title>Methods</title>
<p>A robust measure of the spatial velocity,
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76.</p>
</sec>
<sec>
<title>Results</title>
<p>The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H
<sub>1</sub>
N
<sub>1</sub>
(1918–19), Asian influenza H
<sub>2</sub>
N
<sub>2</sub>
(1957–58) and Hong Kong influenza H
<sub>3</sub>
N
<sub>2</sub>
(1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence.</p>
</sec>
<sec>
<title>Discussion</title>
<p>The potential for using
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
in a real-time context is explored using French influenza data.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Time series</kwd>
<kwd>exploratory data analysis</kwd>
<kwd>epidemic velocity</kwd>
<kwd>influenza</kwd>
<kwd>pandemics</kwd>
<kwd>Iceland</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>In epidemiology, long-term morbidity series are of interest where there is a need to establish historical trends in disease incidence. But the longer the series, the less likely is the sensitivity and specificity of disease reporting to have remained constant over time. Over the long term, morbidity recording is likely to be biased with the degree of bias often unknown and non-constant. Even over the short term, it is not clear whether during a period of high-disease incidence (e.g. the peak of an influenza pandemic), cases are (i) over reported because of assumptions of the prevailing cause or (ii) under reported because reporting physicians are overwhelmed by more pressing clinical demands on time. Historical evidence points in both directions.</p>
<p>Epidemiology is not alone in trying to establish trends from data of uncertain accuracy; economists, in particular, have been plagued by trying to establish economic trends from historically variable sources.
<xref ref-type="bibr" rid="B1">
<sup>1</sup>
</xref>
Among the many methods proposed to overcome this problem, the work of John Tukey has been particularly important in establishing robust methods [what he termed exploratory data analysis (EDA)] to work alongside classical statistical models.
<xref ref-type="bibr" rid="B2">
<sup>2</sup>
</xref>
</p>
<p>In this article we propose, in the Tukey tradition, a robust method for exploring the speed of epidemic waves from long-term morbidity data. The spatial velocity of epidemic waves across human populations has attracted considerable theoretical interest
<xref ref-type="bibr" rid="B3 B4 B5">
<sup>3–5</sup>
</xref>
and is a matter of practical public-health concern.
<xref ref-type="bibr" rid="B6">
<sup>6</sup>
</xref>
<xref ref-type="bibr" rid="B7">
<sup>,7</sup>
</xref>
The faster a wave of infection strikes a susceptible population, the less is the time available for implementing protective responses (e.g. isolation and vaccination). Velocity is thus particularly critical in the case of new diseases (e.g. SARS) or old diseases with changing characteristics (e.g. pandemic outbreaks of influenza where genetic shifts in the causative A virus mean that an infection is introduced into a population with little or no resistance to the new strain
<xref ref-type="bibr" rid="B8">
<sup>8</sup>
</xref>
<xref ref-type="bibr" rid="B9">
<sup>,9</sup>
</xref>
). Here, we explore the second case.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Sources of influenza morbidity data</title>
<p>Unusually among western countries, Iceland has since 1895 required direct notification of influenza cases by physicians.
<xref ref-type="bibr" rid="B10">
<sup>10</sup>
</xref>
This concern for data collection stems from the island's early history that was marked by disastrous externally introduced epidemics, including the 1843 influenza outbreak that, although lasting only 2 months, doubled the expected death rate for the year.
<xref ref-type="bibr" rid="B11">
<sup>11</sup>
</xref>
Annual totals and other summary data have been published in that country's annual public health reports (Heilbrigðisskýrslur) since that date with, for influenza, national monthly time series available from 1913 (
<xref ref-type="fig" rid="F1">Figure 1</xref>
a). Physicians’ commentaries on the local course of the disease are still kept in manuscript form in the National Archives in Reykjavík. Of exceptional interest is the 61-year period spanning the middle of the 20th century from 1915 (
<xref ref-type="fig" rid="F1">Figure 1</xref>
b). For these years, monthly data are broken down to a local level for some 50 medical districts (
<xref ref-type="fig" rid="F1">Figure 1</xref>
c). This allows mapping of ways in which the disease spread around the island (
<xref ref-type="fig" rid="F1">Figure 1</xref>
d), along with the calculation of general estimates of its changing spatial and temporal velocity over the period.
<fig id="F1">
<label>
<bold>Figure 1</bold>
</label>
<caption>
<p>Reported influenza morbidity in Iceland. (a) Monthly records for total reported influenza cases from January 1913 to December 1976. (b) Monthly record of the number of Icelandic medical districts reporting one or more cases of influenza, January 1915 to December 1976. (c) Map of boundaries of Icelandic medical districts for the year 1945. (d) Cumulative total of reported monthly influenza cases for each Icelandic medical district in the period January 1915 to December 1976. Circles are drawn proportional to the cumulative number of cases but note the special position of the capital city, Reykjavík. All influenza data are based on Heilbrigðisskýrslur (Public Health in Iceland)</p>
</caption>
<graphic xlink:href="dym240f1"></graphic>
</fig>
</p>
<p>The intricate spatial infrastructure of medical districts allows the local spread of the disease to be monitored across the island. This spatial network is, however, unstable over time as district boundaries have been modified to reflect changes in population and medical provision. Major changes to the 1907 medical district boundaries, current at the beginning of our study period, occurred in 1932, 1945 and 1955. We have therefore developed a standardized set of districts, based upon the 1945 configuration, which preserves spatial continuity over time (
<xref ref-type="fig" rid="F1">Figure 1</xref>
c).</p>
</sec>
<sec>
<title>Methods for estimating velocity</title>
<p>The velocity of an epidemic wave through a population can be measured in different ways.
<xref ref-type="bibr" rid="B12">
<sup>12</sup>
</xref>
<xref ref-type="bibr" rid="B13">
<sup>,13</sup>
</xref>
Here we propose a robust method that uses (i) the binary (presence/absence) of a reported disease rather than the actual number of reported cases, (ii) the spatial extent of the outbreak in terms of infected districts and (iii) the time taken in months from the start of an outbreak for a disease to reach each district.
<xref ref-type="bibr" rid="B14">
<sup>14</sup>
</xref>
</p>
<p>We term the month in which an influenza case is first recorded in a given district the leading edge (LE) of the outbreak in that district, and the last month of record as the following edge (FE). Standard statistical analysis of the distribution of the two edges enables us to define a time-weighted arithmetic mean,
<inline-formula>
<inline-graphic xlink:href="dym240i1"></inline-graphic>
</inline-formula>
and
<inline-formula>
<inline-graphic xlink:href="dym240i2"></inline-graphic>
</inline-formula>
for each edge. In this study, the first month of the influenza season (September) is coded as
<italic>t</italic>
= 1. The subsequent months of the season are then coded serially as
<italic>t</italic>
= 2,
<italic>t</italic>
= 3, …
<italic>t</italic>
=
<italic>T</italic>
, where
<italic>T</italic>
is the number of monthly periods from the beginning to the end of the season (i.e.
<italic>T</italic>
= 12 in our yearly cycle). For the LE, the equation is
<disp-formula id="M1">
<label>(1)</label>
<graphic xlink:href="dym240m1"></graphic>
</disp-formula>
where
<italic>N</italic>
is the total number of districts (50 in Iceland),
<italic>n
<sub>t</sub>
</italic>
is the number of districts whose LE occurred in month
<italic>t</italic>
and
<italic>N</italic>
= ∑
<italic>n</italic>
<sub>
<italic>t</italic>
</sub>
. The time-weighted mean is a useful measure of the velocity of the wave in terms of average time to district infection. A similar equation can be written for FE, and higher order moments can also be specified. To allow comparison between diseases with different wave characteristics, we convert these time-weighted means to a velocity ratio,
<italic>V</italic>
, (0 ≤
<italic>V</italic>
≤ 1),
<disp-formula id="M2">
<label>(2)</label>
<graphic xlink:href="dym240m2"></graphic>
</disp-formula>
where
<italic>D</italic>
is the duration of the wave (12 months in the case of our influenza seasons). A similar equation can be written for
<italic>V</italic>
<sub>FE</sub>
.</p>
<p>The basic reproduction number (or rate or ratio),
<italic>R</italic>
<sub>0</sub>
, is one of the most useful parameters used to characterize mathematically infectious disease processes.
<italic>R</italic>
<sub>0</sub>
is defined as the ratio between an infection rate (
<italic>β</italic>
) and a recovery rate (
<italic>γ</italic>
):
<disp-formula id="M3">
<label>(3)</label>
<graphic xlink:href="dym240m3"></graphic>
</disp-formula>
</p>
<p>In terms of cases,
<italic>R</italic>
<sub>0</sub>
is the average number of secondary infections produced when one infected individual is introduced into a host virgin population. Methods for estimating the basic reproduction number for infectious diseases are given by Dietz,
<xref ref-type="bibr" rid="B15">
<sup>15</sup>
</xref>
and an example of their use appears in the work by Watts.
<xref ref-type="bibr" rid="B16">
<sup>16</sup>
</xref>
</p>
<p>If we consider the two-phase shifts from susceptible to infective status (
<italic>S</italic>
<italic>I</italic>
) and from infective to recovered status (
<italic>I</italic>
<italic>R</italic>
) when an infectious disease arrives in an area, this raises the prospect of defining a spatial version of
<italic>R</italic>
<sub>0</sub>
. In spatial terms,
<italic>A</italic>
, the spatial reproduction number,
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
, is the average number of secondary districts produced from one infected district in a virgin area. In a given study area, the integral
<italic>S
<sub>A</sub>
</italic>
(the proportion of the study area at risk of infection) is given by:
<disp-formula id="M4">
<label>(4)</label>
<graphic xlink:href="dym240m4"></graphic>
</disp-formula>
while the proportion of the area that is infected (the infected areas integral) is
<disp-formula id="M5">
<label>(5)</label>
<graphic xlink:href="dym240m5"></graphic>
</disp-formula>
</p>
<p>The recovered areas integral,
<italic>R
<sub>A</sub>
</italic>
, is
<disp-formula id="M6">
<label>(6)</label>
<graphic xlink:href="dym240m6"></graphic>
</disp-formula>
</p>
<p>All three integrals are dimensionless numbers with values in the range (0, 1).</p>
<p>The integral
<italic>S
<sub>A</sub>
</italic>
has parallels to β in that a small value indicates a very rapid spread while the integral
<italic>R
<sub>A</sub>
</italic>
has parallels to γ in that a small value indicates a very rapid recovery. Since both terms are inversely related to their power, we suggest that their complement might be substituted in estimating a spatial version of
<italic>R</italic>
<sub>0</sub>
, namely
<disp-formula id="M7">
<label>(7)</label>
<graphic xlink:href="dym240m7"></graphic>
</disp-formula>
</p>
<p>Such a spatial reproduction number would measure the propensity of an infected district to spawn other infected districts in later time periods. In effect it provides an indicator of the tendency of an infected district to produce secondaries. Values over unity imply a tendency to spread and calibrate the velocity of such spread (the larger the value, the greater the rate of spread).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>Over the whole 61 years studied, Iceland's doctors reported 530 276 cases of influenza, half of them from Reykjavík and the immediate surrounding areas (
<xref ref-type="fig" rid="F1">Figure 1</xref>
d). Although reported cases are likely to be under estimates, the broad shape of outbreaks in both space and time is readily discernible. The distribution throughout the year shows clear peaks in March–April with the low periods in August–September, a pattern typical of many northern latitude countries. For Iceland we have thus used, as our temporal unit, an influenza season running from September 1 to August 31 of the following year.</p>
<p>For Iceland as a whole, the time series of both edges is shown in
<xref ref-type="fig" rid="F2">Figure 2</xref>
a. The equations used to estimate their values are given in the ‘Methods’ section of the article [equation (
<xref ref-type="disp-formula" rid="M1">1</xref>
)]. Despite marked year to year variation, the average trend shown by the linear regression line for the LE is distinctly upward implying that waves have speeded up over time, i.e. influenza waves moved around the island faster at the end than at the beginning of the study period. In contrast the position of the FE when influenza incidence ceased in any influenza season has remained essentially unchanged. This implies that the duration of reported influenza incidence grew slowly longer, from around 2.5 months in 1915–16 to nearly 4.0 months in 1975–76 (
<xref ref-type="fig" rid="F2">Figure 2</xref>
b).
<fig id="F2">
<label>
<bold>Figure 2</bold>
</label>
<caption>
<p>Velocity of epidemic waves in Iceland for the influenza seasons 1915–16 to 1975–76. (a) Velocities of the LE (solid lines) and FE (pecked lines) are shown as velocity ratios,
<italic>V</italic>
<sub>LE</sub>
and
<italic>V</italic>
<sub>FE</sub>
, where
<italic>V</italic>
is in the range, 0 ≤
<italic>V</italic>
≤ 1. The larger the value of
<italic>V</italic>
, the faster is the edge. (b) The widening time gap between the two edges illustrated in (a) is confirmed in this graph that plots the average duration of each district's epidemic wave in months. In both (a) and (b) the trend lines were determined by OLS linear regression</p>
</caption>
<graphic xlink:href="dym240f2"></graphic>
</fig>
</p>
<p>Three of the 61 seasons studied were associated with pandemics of influenza A (the Spanish, Asian and Hong Kong pandemics).
<xref ref-type="fig" rid="F3">Figure 3</xref>
uses data on the spatial extent of influenza in each season to plot the position of the pandemic front with reference to the three seasons which immediately preceded or followed it. In the Spanish and Asian pandemics the front stands out clearly but in the third (
<xref ref-type="fig" rid="F3">Figure 3</xref>
c) the Hong Kong front appears to spread over two seasons, supporting Viboud's
<xref ref-type="bibr" rid="B17">
<sup>17</sup>
</xref>
concept that it was a ‘smoldering’ pandemic.
<fig id="F3">
<label>
<bold>Figure 3</bold>
</label>
<caption>
<p>Pandemic seasons in the Icelandic morbidity records. (a) Profiles showing the cumulative number (scaled to unity) of medical districts reporting influenza cases by month as a measure of the spatial extent of influenza in Iceland for the three shift seasons of 1918–19, 1957–58 and 1968–69. In each case the profile for the shift season is compared with the profiles of the three preceding and three following non-shift seasons. (b) Value of the spatial version of the basic reproduction ratio,
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
, for Iceland for the influenza seasons 1915–16 to 1975–76. Peaks are associated with the three viral shift years for influenza A (1918–19, 1957–58 and 1968–69) and for three other non-shift seasons (1927–28, 1943–44 and 1972–73)</p>
</caption>
<graphic xlink:href="dym240f3"></graphic>
</fig>
</p>
<p>Although pandemic years had large numbers of influenza cases, they were not the largest recorded over the period. The 1937–38 season had the largest number of cases (21 977) and the highest monthly rate and, as
<xref ref-type="fig" rid="F1">Figure 1</xref>
a shows, monthly case numbers in several inter-pandemic years exceeded those with pandemics. In
<xref ref-type="table" rid="T1">Table 1</xref>
we divided the 61 seasons into three groups: (a) pandemic (3), (b) high-intensity inter-pandemic (24), with case rates greater than the lowest pandemic season and (c) low-intensity inter-pandemic (34), with case rates lower than the lowest pandemic season. The average velocity of the LEs for the three groups is equal to (a) 2.83 months, (b) 5.53 months and (c) 6.03 months, respectively. This suggests that pandemic seasons have higher velocities than inter-pandemic years, and that this higher velocity is maintained even compared with inter-pandemic influenza seasons of similar intensity levels as pandemic seasons. Values for
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
were calculated for each influenza season (
<xref ref-type="fig" rid="F3">Figure 3</xref>
d) and for the three categories of influenza season, (a), (b) and (c), defined above. The same differentials were observed (
<xref ref-type="table" rid="T1">Table 1</xref>
).
<table-wrap id="T1">
<label>
<bold>Table 1</bold>
</label>
<caption>
<p>Characteristics of Iceland's 61 influenza waves, 1915–16 to 1975–76</p>
</caption>
<table frame="hsides">
<thead align="left">
<tr align="right">
<th>Type of influenza wave</th>
<th>Morbidity (mean cases/season)</th>
<th>Start
<inline-formula>
<inline-graphic xlink:href="dym240i1"></inline-graphic>
</inline-formula>
(mean in months)</th>
<th>Velocity (
<italic>V</italic>
<sub>LE</sub>
)</th>
<th>End
<inline-formula>
<inline-graphic xlink:href="dym240i2"></inline-graphic>
</inline-formula>
(mean in months)</th>
<th>Velocity (
<italic>V</italic>
<sub>FE</sub>
)</th>
<th>Duration (mean in months)</th>
<th>
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
(mean index)</th>
</tr>
</thead>
<tbody align="left">
<tr>
<td>Pandemic waves
<xref ref-type="table-fn" rid="TF1">
<sup>a</sup>
</xref>
(
<italic>n</italic>
= 3)</td>
<td align="right">11 027</td>
<td align="right">2.83</td>
<td align="right">0.76</td>
<td align="right">7.03</td>
<td align="right">0.41</td>
<td align="right">3.82</td>
<td align="right">1.48</td>
</tr>
<tr>
<td>Inter-pandemic waves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High intensity
<xref ref-type="table-fn" rid="TF2">
<sup>b</sup>
</xref>
(
<italic>n</italic>
= 24)</td>
<td align="right">10 113</td>
<td align="right">5.53</td>
<td align="right">0.54</td>
<td align="right">9.14</td>
<td align="right">0.24</td>
<td align="right">3.56</td>
<td align="right">0.84</td>
</tr>
<tr>
<td>Low intensity
<xref ref-type="table-fn" rid="TF3">
<sup>c</sup>
</xref>
(
<italic>n</italic>
= 34)</td>
<td align="right">2302</td>
<td align="right">6.03</td>
<td align="right">0.50</td>
<td align="right">9.04</td>
<td align="right">0.25</td>
<td align="right">3.10</td>
<td align="right">0.80</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TF1">
<p>
<sup>a</sup>
Three pandemic seasons of 1918–19 (Spanish influenza H
<sub>1</sub>
N
<sub>1</sub>
), 1957–58 (Asian influenza H
<sub>2</sub>
N
<sub>2</sub>
) and 1968–69 (Hong Kong influenza H
<sub>3</sub>
N
<sub>2</sub>
).</p>
</fn>
<fn id="TF2">
<p>
<sup>b</sup>
High intensity = cases per 100 000 population greater than the least intense pandemic wave.</p>
</fn>
<fn id="TF3">
<p>
<sup>c</sup>
Low intensity = cases per 100 000 population less than the least intense pandemic wave.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>The method described may be used with surveillance data in a real-time situation and, since it may be used to compare epidemic speeds from one country to another, may have an early warning potential. The parameters of the model given in
<xref ref-type="disp-formula" rid="M1 M2 M3 M4 M5 M6 M7">equations (1)–(7)</xref>
may be calculated for each month from the start of an outbreak and progressively re-calculated in each successive month (as fresh data becomes available) through to the end of the outbreak. An historical example of this method is shown in
<xref ref-type="fig" rid="F4">Figure 4</xref>
. Here monthly influenza data from France over the 103 years from 1887–88 to 1998–99 were studied, the 5 shift seasons identified and these compared with the 2 years that preceded and followed them.
<xref ref-type="fig" rid="F4">Figure 4</xref>
shows the spatial reproductive numbers (
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
) measured in real time from the start of each influenza season. The contrasting behaviour of
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
in shift and non-shift years suggest there may be a capability for the method to pick up unusual wave characteristics early in the course of an outbreak and alert other yet unaffected areas. Influenza and monthly data have been used here for ease of illustration; in principle the methods proposed could be used with a wide range of infectious diseases and for shorter (i.e. weekly or daily) reporting periods.
<fig id="F4">
<label>
<bold>Figure 4</bold>
</label>
<caption>
<p>Extension of the method to French influenza records for the 103-year period, 1887–88 to 1998–99. Contrasts in the behaviour of
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
for shift seasons in contrast to non-shift seasons are shown when the parameter is measured in real-time (re-computing
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
month by month as new data arrive from the start of the influenza season)</p>
</caption>
<graphic xlink:href="dym240f4"></graphic>
</fig>
</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>The new measure of wave velocity applied to a 61-year run of influenza morbidity records shows that for Iceland (i) the onset of waves tended to speed up over the period 1914–75 and (ii) waves in three viral shift (pandemic) seasons spread faster than did other equally large waves in non-shift (inter-pandemic) seasons. In principle, the proposed measure of wave velocity should be applicable to other epidemiological time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available (notably France) and (ii) to other diseases within Iceland. If our findings are confirmed elsewhere, this may have wider implications for public health measures. It would suggest that any new influenza pandemic in the 21st century, whether emerging from avian influenza or other sources, is likely to appear earlier than normal in the influenza season and to spread spatially more rapidly than normal. Both conclusions underscore the role of surveillance and early virus watch identification.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>This work on Icelandic records has been supported by a History of Medicine grant from the Wellcome Trust.</p>
<p>
<bold>Conflicts of interest:</bold>
None declared.</p>
<p>
<boxed-text>
<title>
<bold>KEY MESSAGES</bold>
</title>
<p>
<list list-type="bullet">
<list-item>
<p>Although the accuracy and reliability of past epidemiological records are often poorly specified, their use in providing context for current outbreaks makes the search for robust methods for their analysis of value.</p>
</list-item>
<list-item>
<p>A robust measure of the spatial velocity,
<italic>R</italic>
<sub>0</sub>
<italic>
<sub>A</sub>
</italic>
, of epidemic waves from space-time series is proposed using binary data.</p>
</list-item>
<list-item>
<p>Application to historical records of influenza (Iceland, 1915–76) suggests increases in wave speed over the period studied and distinctive contrasts between pandemic and inter-pandemic periods.</p>
</list-item>
<list-item>
<p>The potential of the method for real-time applications is discussed.</p>
</list-item>
</list>
</p>
</boxed-text>
</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<label>1</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Morgenstern</surname>
<given-names>O</given-names>
</name>
</person-group>
<source>On the Accuracy of Economic Observations.</source>
<year>1963</year>
<publisher-loc>Princeton</publisher-loc>
<publisher-name>Princeton University Press</publisher-name>
</nlm-citation>
</ref>
<ref id="B2">
<label>2</label>
<nlm-citation citation-type="book">
<person-group person-group-type="editor">
<name>
<surname>Hoaglin</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Mosteller</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Tukey</surname>
<given-names>JW</given-names>
</name>
</person-group>
<source>Understanding Robust and Exploratory Data Analysis.</source>
<year>1983</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</nlm-citation>
</ref>
<ref id="B3">
<label>3</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abramson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kenkre</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Parmenter</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>Travelling waves of infections in the Hantavirus epidemics</article-title>
<source>Bull Math Biol</source>
<year>2003</year>
<volume>65</volume>
<fpage>519</fpage>
<lpage>34</lpage>
</nlm-citation>
</ref>
<ref id="B4">
<label>4</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grenfell</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Bjørnstad</surname>
<given-names>ON</given-names>
</name>
<name>
<surname>Kappey</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Travelling waves and spatial hierarchies in measles epidemics</article-title>
<source>Nature</source>
<year>2001</year>
<volume>414</volume>
<fpage>716</fpage>
<lpage>23</lpage>
</nlm-citation>
</ref>
<ref id="B5">
<label>5</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>X-Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Fisher waves in an epidemic model</article-title>
<source>Discret Contin Dyn S</source>
<year>2004</year>
<volume>4</volume>
<fpage>1117</fpage>
<lpage>28</lpage>
</nlm-citation>
</ref>
<ref id="B6">
<label>6</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meltzer</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Fukada</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The impact of pandemic influenza in the United States: priorities for intervention</article-title>
<source>Emerg Infect Dis</source>
<year>1999</year>
<volume>5</volume>
<fpage>659</fpage>
<lpage>71</lpage>
</nlm-citation>
</ref>
<ref id="B7">
<label>7</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fedson</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Pandemic influenza and global vaccine supply</article-title>
<source>Clin Infect Dis</source>
<year>2003</year>
<volume>36</volume>
<fpage>1552</fpage>
<lpage>61</lpage>
</nlm-citation>
</ref>
<ref id="B8">
<label>8</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hay</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Gregory</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>YP</given-names>
</name>
</person-group>
<article-title>The evolution of human influenza viruses</article-title>
<source>Philos Trans R Soc Lond B Biol Sci</source>
<year>2001</year>
<volume>356</volume>
<fpage>1861</fpage>
<lpage>70</lpage>
</nlm-citation>
</ref>
<ref id="B9">
<label>9</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Patterson</surname>
<given-names>KD</given-names>
</name>
</person-group>
<source>Pandemic Influenza, 1700–1900.</source>
<year>1986</year>
<publisher-loc>Totowa, NJ</publisher-loc>
<publisher-name>Rowman & Littlefield</publisher-name>
</nlm-citation>
</ref>
<ref id="B10">
<label>10</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Cliff</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Haggett</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ord</surname>
<given-names>JK</given-names>
</name>
</person-group>
<source>Spatial Aspects of Influenza Epidemics.</source>
<year>1986</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Pion</publisher-name>
</nlm-citation>
</ref>
<ref id="B11">
<label>11</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schleisner</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Vital statistics of Iceland</article-title>
<source>Q J Stat Soc Lond</source>
<year>1851</year>
<volume>14</volume>
<fpage>1</fpage>
<lpage>10</lpage>
</nlm-citation>
</ref>
<ref id="B12">
<label>12</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cliff</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Haggett</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Methods for the measurement of epidemic velocity from time-series data</article-title>
<source>Int J Epidemiol</source>
<year>1981</year>
<volume>11</volume>
<fpage>82</fpage>
<lpage>89</lpage>
</nlm-citation>
</ref>
<ref id="B13">
<label>13</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trevelyan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smallman-Raynor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cliff</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>The spatial dynamics of poliomyelitis in the United States: emergence to vaccine-induced retreat, 1910–1971</article-title>
<source>Ann Assoc Am Geogr</source>
<year>2005</year>
<volume>95</volume>
<fpage>269</fpage>
<lpage>93</lpage>
</nlm-citation>
</ref>
<ref id="B14">
<label>14</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cliff</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Haggett</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A swash-backwash model of the single epidemic wave</article-title>
<source>J Geogr Syst</source>
<year>2006</year>
<volume>8</volume>
<fpage>227</fpage>
<lpage>52</lpage>
</nlm-citation>
</ref>
<ref id="B15">
<label>15</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>The estimation of the basic reproduction number for infectious diseases</article-title>
<source>Stat Methods Med Res</source>
<year>1993</year>
<volume>2</volume>
<fpage>23</fpage>
<lpage>41</lpage>
</nlm-citation>
</ref>
<ref id="B16">
<label>16</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watts</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Muhamad</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Medina</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Dodds</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Multiscale, resurgent epidemics in a hierarchical metapopulation model</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>1157</fpage>
<lpage>62</lpage>
</nlm-citation>
</ref>
<ref id="B17">
<label>17</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Grais</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Lafont</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic</article-title>
<source>J Infect Dis</source>
<year>2005</year>
<volume>192</volume>
<fpage>233</fpage>
<lpage>48</lpage>
</nlm-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>An exploratory method for estimating the changing speed of epidemic waves from historical data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew D</namePart>
<namePart type="family">Cliff</namePart>
<affiliation>Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="given">Peter</namePart>
<namePart type="family">Haggett</namePart>
<affiliation>Institute for Advanced Studies, University of Bristol, BS8 1UR, Bristol, UK.</affiliation>
<affiliation>E-mail: p.haggett@bristol.ac.uk</affiliation>
<affiliation>*Corresponding author. Institute for Advanced Studies, University of Bristol, Royal Fort House, Bristol BS8 1UR, UK. E-mail: p.haggett@bristol.ac.uk</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Smallman-Raynor</namePart>
<affiliation>School of Geography, University of Nottingham, Nottingham NG7 2RD, UK.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2008-02</dateIssued>
<dateCreated encoding="w3cdtf">2007-10-24</dateCreated>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<abstract>Background Historical data are necessary to establish long-term trends in disease incidence but pose analytical problems since their accuracy and reliability may be poorly specified. Methods A robust measure of the spatial velocity, R0A, of epidemic waves from space-time series is proposed using binary data. The method was applied to the historical records of influenza morbidity for the island of Iceland over a 61-year period of influenza seasons from 1915–16 to 1975–76. Results The onset of influenza waves tended to speed up over the period studied and the three pandemic waves associated with viral shifts in influenza A [Spanish influenza H1N1 (1918–19), Asian influenza H2N2 (1957–58) and Hong Kong influenza H3N2 (1968–69)] spread more rapidly around the island and struck earlier in the influenza season than did inter-pandemic waves, even when the latter were equally intensive as measured by total number of cases and case incidence. Discussion The potential for using R0A in a real-time context is explored using French influenza data. Conclusions The new measure of wave velocity appears to be applicable to those historical time series where breakdown into regional or local areas is available. The study is being extended to (i) other countries where similar influenza time series are available and (ii) to other diseases within Iceland.</abstract>
<subject>
<genre>keywords</genre>
<topic>Time series</topic>
<topic>exploratory data analysis</topic>
<topic>epidemic velocity</topic>
<topic>influenza</topic>
<topic>pandemics</topic>
<topic>Iceland</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Epidemiology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<topic>Special Theme: Communicable Disease</topic>
</subject>
<identifier type="ISSN">0300-5771</identifier>
<identifier type="eISSN">1464-3685</identifier>
<identifier type="PublisherID">ije</identifier>
<identifier type="PublisherID-hwp">intjepid</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>106</start>
<end>112</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B1">
<titleInfo>
<title>On the Accuracy of Economic Observations.</title>
</titleInfo>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Morgenstern</namePart>
</name>
<originInfo>
<publisher>Princeton University Press. </publisher>
<place>
<placeTerm type="text">Princeton</placeTerm>
</place>
</originInfo>
<genre>book</genre>
<note>MorgensternOOn the Accuracy of Economic Observations.1963PrincetonPrinceton University Press</note>
<part>
<date>1963</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B2">
<titleInfo>
<title>Understanding Robust and Exploratory Data Analysis.</title>
</titleInfo>
<name type="personal">
<namePart type="given">DC</namePart>
<namePart type="family">Hoaglin</namePart>
</name>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Mosteller</namePart>
</name>
<name type="personal">
<namePart type="given">JW</namePart>
<namePart type="family">Tukey</namePart>
</name>
<originInfo>
<publisher>Wiley. </publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
</originInfo>
<genre>book</genre>
<note>HoaglinDCMostellerFTukeyJWUnderstanding Robust and Exploratory Data Analysis.1983New YorkWiley</note>
<part>
<date>1983</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B3">
<titleInfo>
<title>Travelling waves of infections in the Hantavirus epidemics</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Abramson</namePart>
</name>
<name type="personal">
<namePart type="given">VM</namePart>
<namePart type="family">Kenkre</namePart>
</name>
<name type="personal">
<namePart type="given">TL</namePart>
<namePart type="family">Yates</namePart>
</name>
<name type="personal">
<namePart type="given">RR</namePart>
<namePart type="family">Parmenter</namePart>
</name>
<genre>journal</genre>
<note>AbramsonGKenkreVMYatesTLParmenterRRTravelling waves of infections in the Hantavirus epidemicsBull Math Biol20036551934</note>
<relatedItem type="host">
<titleInfo>
<title>Bull Math Biol</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<extent unit="pages">
<start>519</start>
<end>34</end>
<list>519-34</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B4">
<titleInfo>
<title>Travelling waves and spatial hierarchies in measles epidemics</title>
</titleInfo>
<name type="personal">
<namePart type="given">BT</namePart>
<namePart type="family">Grenfell</namePart>
</name>
<name type="personal">
<namePart type="given">ON</namePart>
<namePart type="family">Bjørnstad</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Kappey</namePart>
</name>
<genre>journal</genre>
<note>GrenfellBTBjørnstadONKappeyJTravelling waves and spatial hierarchies in measles epidemicsNature200141471623</note>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>414</number>
</detail>
<extent unit="pages">
<start>716</start>
<end>23</end>
<list>716-23</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B5">
<titleInfo>
<title>Fisher waves in an epidemic model</title>
</titleInfo>
<name type="personal">
<namePart type="given">X-Q</namePart>
<namePart type="family">Zhao</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Wang</namePart>
</name>
<genre>journal</genre>
<note>ZhaoX-QWangWFisher waves in an epidemic modelDiscret Contin Dyn S20044111728</note>
<relatedItem type="host">
<titleInfo>
<title>Discret Contin Dyn S</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1117</start>
<end>28</end>
<list>1117-28</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B6">
<titleInfo>
<title>The impact of pandemic influenza in the United States: priorities for intervention</title>
</titleInfo>
<name type="personal">
<namePart type="given">MI</namePart>
<namePart type="family">Meltzer</namePart>
</name>
<name type="personal">
<namePart type="given">NJ</namePart>
<namePart type="family">Cox</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Fukada</namePart>
</name>
<genre>journal</genre>
<note>MeltzerMICoxNJFukadaKThe impact of pandemic influenza in the United States: priorities for interventionEmerg Infect Dis1999565971</note>
<relatedItem type="host">
<titleInfo>
<title>Emerg Infect Dis</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>659</start>
<end>71</end>
<list>659-71</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B7">
<titleInfo>
<title>Pandemic influenza and global vaccine supply</title>
</titleInfo>
<name type="personal">
<namePart type="given">DS</namePart>
<namePart type="family">Fedson</namePart>
</name>
<genre>journal</genre>
<note>FedsonDSPandemic influenza and global vaccine supplyClin Infect Dis200336155261</note>
<relatedItem type="host">
<titleInfo>
<title>Clin Infect Dis</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>1552</start>
<end>61</end>
<list>1552-61</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B8">
<titleInfo>
<title>The evolution of human influenza viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">AJ</namePart>
<namePart type="family">Hay</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Gregory</namePart>
</name>
<name type="personal">
<namePart type="given">AR</namePart>
<namePart type="family">Douglas</namePart>
</name>
<name type="personal">
<namePart type="given">YP</namePart>
<namePart type="family">Lin</namePart>
</name>
<genre>journal</genre>
<note>HayAJGregoryVDouglasARLinYPThe evolution of human influenza virusesPhilos Trans R Soc Lond B Biol Sci2001356186170</note>
<relatedItem type="host">
<titleInfo>
<title>Philos Trans R Soc Lond B Biol Sci</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>356</number>
</detail>
<extent unit="pages">
<start>1861</start>
<end>70</end>
<list>1861-70</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B9">
<titleInfo>
<title>Pandemic Influenza, 1700–1900.</title>
</titleInfo>
<name type="personal">
<namePart type="given">KD</namePart>
<namePart type="family">Patterson</namePart>
</name>
<originInfo>
<publisher>Rowman & Littlefield. </publisher>
<place>
<placeTerm type="text">Totowa, NJ</placeTerm>
</place>
</originInfo>
<genre>book</genre>
<note>PattersonKDPandemic Influenza, 1700–1900.1986Totowa, NJRowman & Littlefield</note>
<part>
<date>1986</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B10">
<titleInfo>
<title>Spatial Aspects of Influenza Epidemics.</title>
</titleInfo>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Cliff</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Haggett</namePart>
</name>
<name type="personal">
<namePart type="given">JK</namePart>
<namePart type="family">Ord</namePart>
</name>
<originInfo>
<publisher>Pion. </publisher>
<place>
<placeTerm type="text">London</placeTerm>
</place>
</originInfo>
<genre>book</genre>
<note>CliffADHaggettPOrdJKSpatial Aspects of Influenza Epidemics.1986LondonPion</note>
<part>
<date>1986</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B11">
<titleInfo>
<title>Vital statistics of Iceland</title>
</titleInfo>
<name type="personal">
<namePart type="given">PA</namePart>
<namePart type="family">Schleisner</namePart>
</name>
<genre>journal</genre>
<note>SchleisnerPAVital statistics of IcelandQ J Stat Soc Lond185114110</note>
<relatedItem type="host">
<titleInfo>
<title>Q J Stat Soc Lond</title>
</titleInfo>
<part>
<date>1851</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>10</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B12">
<titleInfo>
<title>Methods for the measurement of epidemic velocity from time-series data</title>
</titleInfo>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Cliff</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Haggett</namePart>
</name>
<genre>journal</genre>
<note>CliffADHaggettPMethods for the measurement of epidemic velocity from time-series dataInt J Epidemiol1981118289</note>
<relatedItem type="host">
<titleInfo>
<title>Int J Epidemiol</title>
</titleInfo>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>82</start>
<end>89</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B13">
<titleInfo>
<title>The spatial dynamics of poliomyelitis in the United States: emergence to vaccine-induced retreat, 1910–1971</title>
</titleInfo>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Trevelyan</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Smallman-Raynor</namePart>
</name>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Cliff</namePart>
</name>
<genre>journal</genre>
<note>TrevelyanBSmallman-RaynorMCliffADThe spatial dynamics of poliomyelitis in the United States: emergence to vaccine-induced retreat, 1910–1971Ann Assoc Am Geogr20059526993</note>
<relatedItem type="host">
<titleInfo>
<title>Ann Assoc Am Geogr</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>95</number>
</detail>
<extent unit="pages">
<start>269</start>
<end>93</end>
<list>269-93</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B14">
<titleInfo>
<title>A swash-backwash model of the single epidemic wave</title>
</titleInfo>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Cliff</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Haggett</namePart>
</name>
<genre>journal</genre>
<note>CliffADHaggettPA swash-backwash model of the single epidemic waveJ Geogr Syst2006822752</note>
<relatedItem type="host">
<titleInfo>
<title>J Geogr Syst</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>227</start>
<end>52</end>
<list>227-52</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B15">
<titleInfo>
<title>The estimation of the basic reproduction number for infectious diseases</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Dietz</namePart>
</name>
<genre>journal</genre>
<note>DietzKThe estimation of the basic reproduction number for infectious diseasesStat Methods Med Res199322341</note>
<relatedItem type="host">
<titleInfo>
<title>Stat Methods Med Res</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>41</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B16">
<titleInfo>
<title>Multiscale, resurgent epidemics in a hierarchical metapopulation model</title>
</titleInfo>
<name type="personal">
<namePart type="given">DS</namePart>
<namePart type="family">Watts</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Muhamad</namePart>
</name>
<name type="personal">
<namePart type="given">DC</namePart>
<namePart type="family">Medina</namePart>
</name>
<name type="personal">
<namePart type="given">PS</namePart>
<namePart type="family">Dodds</namePart>
</name>
<genre>journal</genre>
<note>WattsDSMuhamadRMedinaDCDoddsPSMultiscale, resurgent epidemics in a hierarchical metapopulation modelProc Natl Acad Sci USA2005102115762</note>
<relatedItem type="host">
<titleInfo>
<title>Proc Natl Acad Sci USA</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>102</number>
</detail>
<extent unit="pages">
<start>1157</start>
<end>62</end>
<list>1157-62</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B17">
<titleInfo>
<title>Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Viboud</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Grais</namePart>
</name>
<name type="personal">
<namePart type="given">BA</namePart>
<namePart type="family">Lafont</namePart>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Miller</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Simonsen</namePart>
</name>
<genre>journal</genre>
<note>ViboudCGraisRFLafontBAMillerMASimonsenLMultinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemicJ Infect Dis200519223348</note>
<relatedItem type="host">
<titleInfo>
<title>J Infect Dis</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>192</number>
</detail>
<extent unit="pages">
<start>233</start>
<end>48</end>
<list>233-48</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">1555CBF8A217EDFEB52A8B2E163820A588129DD0</identifier>
<identifier type="ark">ark:/67375/HXZ-BWWF214F-C</identifier>
<identifier type="DOI">10.1093/ije/dym240</identifier>
<identifier type="ArticleID">dym240</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2007; all rights reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.0) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-12-09</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/record.json</uri>
</json:item>
</metadata>
<covers>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/1555CBF8A217EDFEB52A8B2E163820A588129DD0/covers/tiff</uri>
</json:item>
</covers>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-BWWF214F-C/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000535 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000535 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1555CBF8A217EDFEB52A8B2E163820A588129DD0
   |texte=   An exploratory method for estimating the changing speed of epidemic waves from historical data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021