Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study

Identifieur interne : 000A26 ( Istex/Checkpoint ); précédent : 000A25; suivant : 000A27

The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study

Auteurs : John F. Middleton ; David Ramsden

Source :

RBID : ISTEX:D3A4A73D27FCDF094F09335F6F4E14A95C2EE2B5

English descriptors

Abstract

Using the Mellor‐Yamada level II closure scheme, a numerical study is made of the bottom boundary layer on a uniform, stratified shelf with slope α. For constant interior along‐slope currents ug and molecular background diffusion, a new timescale for shutdown of bottom stress is derived for the downwelled layer as well as a new estimate for the maximum height of the upwelled layer, hU = (CD/fN)1/2ug(1 + S1/2)−1 where CD = 2.5 × 10−3 is a drag coefficient, f and N are the Coriolis and buoyancy frequencies, and S = (Nα/f)2 is the Burger number. The Richardson number is also shown to fix the thermal‐wind shear at the top of the upwelled layer to be approximately uz≃N(RiS)−1 , while within the layer, a depth‐averaged form of the geostrophic balance is shown to hold. In the case of large interior vertical diffusivities (10−4 m2s−1), the fluxes of momentum and buoyancy into the interior are quantified and shown to result in the arrest (enhancement) of shutdown in the upwelling (downwelling) boundary layers. Advective restratification of mixed water is not found to occur, and for an 8‐day periodic interior current ug(t), the thermal‐wind shear that remains during the downwelling and upwelling phases can result in a 1.2‐day lag of interior current with bottom stress. Bottom stress and the cross‐slope Ekman flux are found to be surprisingly symmetric during the upwelling and downwelling phases of the interior current. The lag with bottom stress and effects of shutdown are shown to persist in the presence of tidal currents and large background diffusion and may well be significant on the continental shelf.

Url:
DOI: 10.1029/96JC01272


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:D3A4A73D27FCDF094F09335F6F4E14A95C2EE2B5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study</title>
<author wicri:is="90%">
<name sortKey="Middleton, John F" sort="Middleton, John F" uniqKey="Middleton J" first="John F." last="Middleton">John F. Middleton</name>
</author>
<author wicri:is="90%">
<name sortKey="Ramsden, David" sort="Ramsden, David" uniqKey="Ramsden D" first="David" last="Ramsden">David Ramsden</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D3A4A73D27FCDF094F09335F6F4E14A95C2EE2B5</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1029/96JC01272</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-X128Q7SJ-J/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001460</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001460</idno>
<idno type="wicri:Area/Istex/Curation">001460</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A26</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study</title>
<author wicri:is="90%">
<name sortKey="Middleton, John F" sort="Middleton, John F" uniqKey="Middleton J" first="John F." last="Middleton">John F. Middleton</name>
</author>
<author wicri:is="90%">
<name sortKey="Ramsden, David" sort="Ramsden, David" uniqKey="Ramsden D" first="David" last="Ramsden">David Ramsden</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Oceans</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">101</biblScope>
<biblScope unit="issue">C8</biblScope>
<biblScope unit="page" from="18061">18061</biblScope>
<biblScope unit="page" to="18077">18077</biblScope>
<biblScope unit="page-count">17</biblScope>
<date type="published" when="1996-08-15">1996-08-15</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Additional feature</term>
<term>Advective restratification</term>
<term>Anomaly</term>
<term>Background diffusion</term>
<term>Benthic boundary layer</term>
<term>Bottom boundary</term>
<term>Bottom boundary layer</term>
<term>Bottom boundary layers</term>
<term>Bottom boundarylayers</term>
<term>Bottom stress</term>
<term>Bottom stresscan</term>
<term>Boundary</term>
<term>Boundary layer</term>
<term>Boundary layer height</term>
<term>Boundary layeris</term>
<term>Boundary layers</term>
<term>Boundarylayer</term>
<term>Bulk richardson number</term>
<term>Buoyancy</term>
<term>Buoyancy line</term>
<term>Case study</term>
<term>Closure scheme</term>
<term>Continental shelf</term>
<term>Diffusivities</term>
<term>Downwelled layer</term>
<term>Downwelling</term>
<term>Ekman</term>
<term>Ekman flux</term>
<term>Fiat shelf</term>
<term>Flat shelf</term>
<term>Fluid mech</term>
<term>Garrett</term>
<term>Givenby</term>
<term>Ground diffusion</term>
<term>Important consequence</term>
<term>Interior flow</term>
<term>Interior velocity</term>
<term>Layer</term>
<term>Layer evolution</term>
<term>Layer height</term>
<term>Length scale</term>
<term>Lentz</term>
<term>Maximum height</term>
<term>Middleton</term>
<term>Molecular background diffusion</term>
<term>Momentum anomaly</term>
<term>Numerical solutions</term>
<term>Numerical study</term>
<term>Oceanicbottom boundary layer</term>
<term>Period days</term>
<term>Perturbation</term>
<term>Phys</term>
<term>Ramsden</term>
<term>Real ocean</term>
<term>Residualmixed layer</term>
<term>Shear production</term>
<term>Shownin</term>
<term>Shownin figure</term>
<term>Shutdown</term>
<term>Sincethe</term>
<term>Solid line</term>
<term>Solid stress</term>
<term>Stratification</term>
<term>Stressand</term>
<term>Thermal wind</term>
<term>Thermal wind balance</term>
<term>Trowbridge</term>
<term>Turbulent</term>
<term>Turbulent boundary layer</term>
<term>Understandingthe dynamics</term>
<term>Upwelled</term>
<term>Upwelled layer</term>
<term>Upwelledlayer</term>
<term>Upwelling</term>
<term>Upwelling boundary layerfor</term>
<term>Weatherly</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Using the Mellor‐Yamada level II closure scheme, a numerical study is made of the bottom boundary layer on a uniform, stratified shelf with slope α. For constant interior along‐slope currents ug and molecular background diffusion, a new timescale for shutdown of bottom stress is derived for the downwelled layer as well as a new estimate for the maximum height of the upwelled layer, hU = (CD/fN)1/2ug(1 + S1/2)−1 where CD = 2.5 × 10−3 is a drag coefficient, f and N are the Coriolis and buoyancy frequencies, and S = (Nα/f)2 is the Burger number. The Richardson number is also shown to fix the thermal‐wind shear at the top of the upwelled layer to be approximately uz≃N(RiS)−1 , while within the layer, a depth‐averaged form of the geostrophic balance is shown to hold. In the case of large interior vertical diffusivities (10−4 m2s−1), the fluxes of momentum and buoyancy into the interior are quantified and shown to result in the arrest (enhancement) of shutdown in the upwelling (downwelling) boundary layers. Advective restratification of mixed water is not found to occur, and for an 8‐day periodic interior current ug(t), the thermal‐wind shear that remains during the downwelling and upwelling phases can result in a 1.2‐day lag of interior current with bottom stress. Bottom stress and the cross‐slope Ekman flux are found to be surprisingly symmetric during the upwelling and downwelling phases of the interior current. The lag with bottom stress and effects of shutdown are shown to persist in the presence of tidal currents and large background diffusion and may well be significant on the continental shelf.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Middleton, John F" sort="Middleton, John F" uniqKey="Middleton J" first="John F." last="Middleton">John F. Middleton</name>
<name sortKey="Ramsden, David" sort="Ramsden, David" uniqKey="Ramsden D" first="David" last="Ramsden">David Ramsden</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000A26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:D3A4A73D27FCDF094F09335F6F4E14A95C2EE2B5
   |texte=   The evolution of the bottom boundary layer on the sloping continental shelf: A numerical study
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021