Serveur d'exploration sur la grippe au Canada

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal aggregation impacts on epidemiological simulations employing microcontact data.

Identifieur interne : 000425 ( Main/Exploration ); précédent : 000424; suivant : 000426

Temporal aggregation impacts on epidemiological simulations employing microcontact data.

Auteurs : Mohammad Hashemian [Canada] ; Weicheng Qian ; Kevin G. Stanley ; Nathaniel D. Osgood

Source :

RBID : pubmed:23153380

Descripteurs français

English descriptors

Abstract

BACKGROUND

Microcontact datasets gathered automatically by electronic devices have the potential augment the study of the spread of contagious disease by providing detailed representations of the study population's contact dynamics. However, the impact of data collection experimental design on the subsequent simulation studies has not been adequately addressed. In particular, the impact of study duration and contact dynamics data aggregation on the ultimate outcome of epidemiological models has not been studied in detail, leaving the potential for erroneous conclusions to be made based on simulation outcomes.

METHODS

We employ a previously published data set covering 36 participants for 92 days and a previously published agent-based H1N1 infection model to analyze the impact of contact dynamics representation on the simulated outcome of H1N1 transmission. We compared simulated attack rates resulting from the empirically recorded contact dynamics (ground truth), aggregated, typical day, and artificially generated synthetic networks.

RESULTS

No aggregation or sampling policy tested was able to reliably reproduce results from the ground-truth full dynamic network. For the population under study, typical day experimental designs - which extrapolate from data collected over a brief period - exhibited too high a variance to produce consistent results. Aggregated data representations systematically overestimated disease burden, and synthetic networks only reproduced the ground truth case when fitting errors systemically underestimated the total contact, compensating for the systemic overestimation from aggregation.

CONCLUSIONS

The interdepedendencies of contact dynamics and disease transmission require that detailed contact dynamics data be employed to secure high fidelity in simulation outcomes of disease burden in at least some populations. This finding serves as motivation for larger, longer and more socially diverse contact dynamics tracing experiments and as a caution to researchers employing calibrated aggregate synthetic representations of contact dynamics in simulation, as the calibration may underestimate disease parameters to compensate for the overestimation of disease burden imposed by the aggregate contact network representation.


DOI: 10.1186/1472-6947-12-132
PubMed: 23153380
PubMed Central: PMC3575321


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal aggregation impacts on epidemiological simulations employing microcontact data.</title>
<author>
<name sortKey="Hashemian, Mohammad" sort="Hashemian, Mohammad" uniqKey="Hashemian M" first="Mohammad" last="Hashemian">Mohammad Hashemian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan</wicri:regionArea>
<wicri:noRegion>Saskatchewan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Weicheng" sort="Qian, Weicheng" uniqKey="Qian W" first="Weicheng" last="Qian">Weicheng Qian</name>
</author>
<author>
<name sortKey="Stanley, Kevin G" sort="Stanley, Kevin G" uniqKey="Stanley K" first="Kevin G" last="Stanley">Kevin G. Stanley</name>
</author>
<author>
<name sortKey="Osgood, Nathaniel D" sort="Osgood, Nathaniel D" uniqKey="Osgood N" first="Nathaniel D" last="Osgood">Nathaniel D. Osgood</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23153380</idno>
<idno type="pmid">23153380</idno>
<idno type="doi">10.1186/1472-6947-12-132</idno>
<idno type="pmc">PMC3575321</idno>
<idno type="wicri:Area/Main/Corpus">000406</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000406</idno>
<idno type="wicri:Area/Main/Curation">000406</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000406</idno>
<idno type="wicri:Area/Main/Exploration">000406</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal aggregation impacts on epidemiological simulations employing microcontact data.</title>
<author>
<name sortKey="Hashemian, Mohammad" sort="Hashemian, Mohammad" uniqKey="Hashemian M" first="Mohammad" last="Hashemian">Mohammad Hashemian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan</wicri:regionArea>
<wicri:noRegion>Saskatchewan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Weicheng" sort="Qian, Weicheng" uniqKey="Qian W" first="Weicheng" last="Qian">Weicheng Qian</name>
</author>
<author>
<name sortKey="Stanley, Kevin G" sort="Stanley, Kevin G" uniqKey="Stanley K" first="Kevin G" last="Stanley">Kevin G. Stanley</name>
</author>
<author>
<name sortKey="Osgood, Nathaniel D" sort="Osgood, Nathaniel D" uniqKey="Osgood N" first="Nathaniel D" last="Osgood">Nathaniel D. Osgood</name>
</author>
</analytic>
<series>
<title level="j">BMC medical informatics and decision making</title>
<idno type="eISSN">1472-6947</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Contact Tracing (methods)</term>
<term>Contact Tracing (statistics & numerical data)</term>
<term>Epidemiologic Studies (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Influenza A Virus, H1N1 Subtype (isolation & purification)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (transmission)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Pilot Projects (MeSH)</term>
<term>Population Surveillance (methods)</term>
<term>Saskatchewan (epidemiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Grippe humaine (transmission)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Projets pilotes (MeSH)</term>
<term>Saskatchewan (épidémiologie)</term>
<term>Sous-type H1N1 du virus de la grippe A (isolement et purification)</term>
<term>Surveillance de la population (méthodes)</term>
<term>Traçage des contacts (méthodes)</term>
<term>Traçage des contacts (statistiques et données numériques)</term>
<term>Études épidémiologiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Saskatchewan</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Contact Tracing</term>
<term>Population Surveillance</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de la population</term>
<term>Traçage des contacts</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Contact Tracing</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Traçage des contacts</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Saskatchewan</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Epidemiologic Studies</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Pilot Projects</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Projets pilotes</term>
<term>Études épidémiologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Microcontact datasets gathered automatically by electronic devices have the potential augment the study of the spread of contagious disease by providing detailed representations of the study population's contact dynamics. However, the impact of data collection experimental design on the subsequent simulation studies has not been adequately addressed. In particular, the impact of study duration and contact dynamics data aggregation on the ultimate outcome of epidemiological models has not been studied in detail, leaving the potential for erroneous conclusions to be made based on simulation outcomes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We employ a previously published data set covering 36 participants for 92 days and a previously published agent-based H1N1 infection model to analyze the impact of contact dynamics representation on the simulated outcome of H1N1 transmission. We compared simulated attack rates resulting from the empirically recorded contact dynamics (ground truth), aggregated, typical day, and artificially generated synthetic networks.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>No aggregation or sampling policy tested was able to reliably reproduce results from the ground-truth full dynamic network. For the population under study, typical day experimental designs - which extrapolate from data collected over a brief period - exhibited too high a variance to produce consistent results. Aggregated data representations systematically overestimated disease burden, and synthetic networks only reproduced the ground truth case when fitting errors systemically underestimated the total contact, compensating for the systemic overestimation from aggregation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The interdepedendencies of contact dynamics and disease transmission require that detailed contact dynamics data be employed to secure high fidelity in simulation outcomes of disease burden in at least some populations. This finding serves as motivation for larger, longer and more socially diverse contact dynamics tracing experiments and as a caution to researchers employing calibrated aggregate synthetic representations of contact dynamics in simulation, as the calibration may underestimate disease parameters to compensate for the overestimation of disease burden imposed by the aggregate contact network representation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23153380</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6947</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC medical informatics and decision making</Title>
<ISOAbbreviation>BMC Med Inform Decis Mak</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal aggregation impacts on epidemiological simulations employing microcontact data.</ArticleTitle>
<Pagination>
<MedlinePgn>132</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1472-6947-12-132</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Microcontact datasets gathered automatically by electronic devices have the potential augment the study of the spread of contagious disease by providing detailed representations of the study population's contact dynamics. However, the impact of data collection experimental design on the subsequent simulation studies has not been adequately addressed. In particular, the impact of study duration and contact dynamics data aggregation on the ultimate outcome of epidemiological models has not been studied in detail, leaving the potential for erroneous conclusions to be made based on simulation outcomes.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We employ a previously published data set covering 36 participants for 92 days and a previously published agent-based H1N1 infection model to analyze the impact of contact dynamics representation on the simulated outcome of H1N1 transmission. We compared simulated attack rates resulting from the empirically recorded contact dynamics (ground truth), aggregated, typical day, and artificially generated synthetic networks.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">No aggregation or sampling policy tested was able to reliably reproduce results from the ground-truth full dynamic network. For the population under study, typical day experimental designs - which extrapolate from data collected over a brief period - exhibited too high a variance to produce consistent results. Aggregated data representations systematically overestimated disease burden, and synthetic networks only reproduced the ground truth case when fitting errors systemically underestimated the total contact, compensating for the systemic overestimation from aggregation.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The interdepedendencies of contact dynamics and disease transmission require that detailed contact dynamics data be employed to secure high fidelity in simulation outcomes of disease burden in at least some populations. This finding serves as motivation for larger, longer and more socially diverse contact dynamics tracing experiments and as a caution to researchers employing calibrated aggregate synthetic representations of contact dynamics in simulation, as the calibration may underestimate disease parameters to compensate for the overestimation of disease burden imposed by the aggregate contact network representation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hashemian</LastName>
<ForeName>Mohammad</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Weicheng</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stanley</LastName>
<ForeName>Kevin G</ForeName>
<Initials>KG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Osgood</LastName>
<ForeName>Nathaniel D</ForeName>
<Initials>ND</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Med Inform Decis Mak</MedlineTA>
<NlmUniqueID>101088682</NlmUniqueID>
<ISSNLinking>1472-6947</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016358" MajorTopicYN="N">Contact Tracing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016021" MajorTopicYN="Y">Epidemiologic Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010865" MajorTopicYN="N">Pilot Projects</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012525" MajorTopicYN="N" Type="Geographic">Saskatchewan</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23153380</ArticleId>
<ArticleId IdType="pii">1472-6947-12-132</ArticleId>
<ArticleId IdType="doi">10.1186/1472-6947-12-132</ArticleId>
<ArticleId IdType="pmc">PMC3575321</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2010;6(12):e1001021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2003 Dec 22;270(1533):2565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14728778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2005 Feb;67(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22020-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2011 Feb 21;271(1):166-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2010 Feb 9;182(2):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19959592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 19;327(5968):1018-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2010;10:320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21054897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Inform Decis Mak. 2012;12:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22551391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2008 Sep 6;5(26):1001-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18319209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Jul;21(7):394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2008 Mar 25;5(3):e74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2011;9:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2005 Sep 22;2(4):295-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16849187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12241447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jun 4;393(6684):440-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9623998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2006 Oct;203(2):301-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Osgood, Nathaniel D" sort="Osgood, Nathaniel D" uniqKey="Osgood N" first="Nathaniel D" last="Osgood">Nathaniel D. Osgood</name>
<name sortKey="Qian, Weicheng" sort="Qian, Weicheng" uniqKey="Qian W" first="Weicheng" last="Qian">Weicheng Qian</name>
<name sortKey="Stanley, Kevin G" sort="Stanley, Kevin G" uniqKey="Stanley K" first="Kevin G" last="Stanley">Kevin G. Stanley</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Hashemian, Mohammad" sort="Hashemian, Mohammad" uniqKey="Hashemian M" first="Mohammad" last="Hashemian">Mohammad Hashemian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/GrippeCanadaV4/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000425 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000425 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    GrippeCanadaV4
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23153380
   |texte=   Temporal aggregation impacts on epidemiological simulations employing microcontact data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23153380" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV4 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Sat Aug 8 18:52:12 2020. Site generation: Sat Feb 13 16:40:04 2021