Serveur d'exploration sur la grippe au Canada

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.

Identifieur interne : 000537 ( Main/Exploration ); précédent : 000536; suivant : 000538

Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.

Auteurs : O. Sharomi [Canada] ; C N Podder ; A B Gumel ; S M Mahmud ; E. Rubinstein

Source :

RBID : pubmed:20379852

Descripteurs français

English descriptors

Abstract

The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.

DOI: 10.1007/s11538-010-9538-z
PubMed: 20379852


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.</title>
<author>
<name sortKey="Sharomi, O" sort="Sharomi, O" uniqKey="Sharomi O" first="O" last="Sharomi">O. Sharomi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Podder, C N" sort="Podder, C N" uniqKey="Podder C" first="C N" last="Podder">C N Podder</name>
</author>
<author>
<name sortKey="Gumel, A B" sort="Gumel, A B" uniqKey="Gumel A" first="A B" last="Gumel">A B Gumel</name>
</author>
<author>
<name sortKey="Mahmud, S M" sort="Mahmud, S M" uniqKey="Mahmud S" first="S M" last="Mahmud">S M Mahmud</name>
</author>
<author>
<name sortKey="Rubinstein, E" sort="Rubinstein, E" uniqKey="Rubinstein E" first="E" last="Rubinstein">E. Rubinstein</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20379852</idno>
<idno type="pmid">20379852</idno>
<idno type="doi">10.1007/s11538-010-9538-z</idno>
<idno type="wicri:Area/Main/Corpus">000663</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000663</idno>
<idno type="wicri:Area/Main/Curation">000663</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000663</idno>
<idno type="wicri:Area/Main/Exploration">000663</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.</title>
<author>
<name sortKey="Sharomi, O" sort="Sharomi, O" uniqKey="Sharomi O" first="O" last="Sharomi">O. Sharomi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2</wicri:regionArea>
<orgName type="university">Université du Manitoba</orgName>
<placeName>
<settlement type="city">Winnipeg</settlement>
<region type="state">Manitoba</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Podder, C N" sort="Podder, C N" uniqKey="Podder C" first="C N" last="Podder">C N Podder</name>
</author>
<author>
<name sortKey="Gumel, A B" sort="Gumel, A B" uniqKey="Gumel A" first="A B" last="Gumel">A B Gumel</name>
</author>
<author>
<name sortKey="Mahmud, S M" sort="Mahmud, S M" uniqKey="Mahmud S" first="S M" last="Mahmud">S M Mahmud</name>
</author>
<author>
<name sortKey="Rubinstein, E" sort="Rubinstein, E" uniqKey="Rubinstein E" first="E" last="Rubinstein">E. Rubinstein</name>
</author>
</analytic>
<series>
<title level="j">Bulletin of mathematical biology</title>
<idno type="eISSN">1522-9602</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (therapeutic use)</term>
<term>Computer Simulation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Influenza A Virus, H1N1 Subtype (MeSH)</term>
<term>Influenza Vaccines (therapeutic use)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (transmission)</term>
<term>Influenza, Human (virology)</term>
<term>Manitoba (epidemiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Pandemics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiviraux (usage thérapeutique)</term>
<term>Grippe humaine (prévention et contrôle)</term>
<term>Grippe humaine (transmission)</term>
<term>Grippe humaine (virologie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains (MeSH)</term>
<term>Manitoba (épidémiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
<term>Sous-type H1N1 du virus de la grippe A (MeSH)</term>
<term>Vaccins antigrippaux (usage thérapeutique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Manitoba</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antiviraux</term>
<term>Grippe humaine</term>
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Manitoba</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Models, Biological</term>
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Pandémies</term>
<term>Simulation numérique</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20379852</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>03</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-9602</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>73</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Bulletin of mathematical biology</Title>
<ISOAbbreviation>Bull. Math. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.</ArticleTitle>
<Pagination>
<MedlinePgn>515-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11538-010-9538-z</ELocationID>
<Abstract>
<AbstractText>The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sharomi</LastName>
<ForeName>O</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Podder</LastName>
<ForeName>C N</ForeName>
<Initials>CN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gumel</LastName>
<ForeName>A B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mahmud</LastName>
<ForeName>S M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rubinstein</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Bull Math Biol</MedlineTA>
<NlmUniqueID>0401404</NlmUniqueID>
<ISSNLinking>0092-8240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="Y">Influenza A Virus, H1N1 Subtype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008350" MajorTopicYN="N" Type="Geographic">Manitoba</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20379852</ArticleId>
<ArticleId IdType="doi">10.1007/s11538-010-9538-z</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Manitoba</li>
</region>
<settlement>
<li>Winnipeg</li>
</settlement>
<orgName>
<li>Université du Manitoba</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gumel, A B" sort="Gumel, A B" uniqKey="Gumel A" first="A B" last="Gumel">A B Gumel</name>
<name sortKey="Mahmud, S M" sort="Mahmud, S M" uniqKey="Mahmud S" first="S M" last="Mahmud">S M Mahmud</name>
<name sortKey="Podder, C N" sort="Podder, C N" uniqKey="Podder C" first="C N" last="Podder">C N Podder</name>
<name sortKey="Rubinstein, E" sort="Rubinstein, E" uniqKey="Rubinstein E" first="E" last="Rubinstein">E. Rubinstein</name>
</noCountry>
<country name="Canada">
<region name="Manitoba">
<name sortKey="Sharomi, O" sort="Sharomi, O" uniqKey="Sharomi O" first="O" last="Sharomi">O. Sharomi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/GrippeCanadaV4/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000537 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000537 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    GrippeCanadaV4
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20379852
   |texte=   Modelling the transmission dynamics and control of the novel 2009 swine influenza (H1N1) pandemic.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20379852" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV4 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Sat Aug 8 18:52:12 2020. Site generation: Sat Feb 13 16:40:04 2021