Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanobiological bone reaction quantified by positron emission tomography.

Identifieur interne : 000449 ( PubMed/Curation ); précédent : 000448; suivant : 000450

Mechanobiological bone reaction quantified by positron emission tomography.

Auteurs : H. Suenaga [Japon] ; J. Chen [Australie] ; K. Yamaguchi [Japon] ; W. Li [Australie] ; K. Sasaki [Japon] ; M. Swain [Australie] ; Q. Li [Australie]

Source :

RBID : pubmed:25710952

Descripteurs français

English descriptors

Abstract

While nuclear medicine has been proven clinically effective for examination of the change in bone turnover as a result of stress injury, quantitative correlation between tracer uptake and mechanical stimulation in the human jawbone remains unclear. This study aimed to investigate the relationship between bone metabolism observed by 18F-fluoride positron emission tomography (PET) images and mechanical stimuli obtained by finite element analysis (FEA) in the residual ridge induced by the insertion of a removable partial denture (RPD). An 18F-fluoride PET/CT (computerized tomography) scan was performed to assess the change of bone metabolism in the residual ridge under the denture before and after RPD treatment. Corresponding patient-specific 3D finite element (FE) models were created from CT images. Boundary conditions were prescribed by the modeling of condylar contacts, and muscular forces were derived from the occlusal forces measured in vivo to generate mechanobiological reactions. Different mechanobiological stimuli, e.g., equivalent von Mises stress (VMS), equivalent strain (EQV), and strain energy density (SED), determined from nonlinear FEA, were quantified and compared with the standardized uptake values (SUVs) of PET. Application of increased occlusal force after RPD insertion induced higher mechanical stimuli in the residual bone. Accordingly, SUV increased in the region of residual ridge with higher mechanical stimuli. Thus, with SUV, a clear correlation was observed with VMS and SED in the cancellous bone, especially after RPD insertion (R(2) > 0.8, P < 0.001). This study revealed a good correlation between bone metabolism and mechanical stimuli induced by RPD insertion. From this patient-specific study, it was shown that metabolic change detected by PET in the loaded bone, in a much shorter duration than conventional x-ray assessment, is associated with mechanical stimuli. The nondestructive nature of PET/CT scans and FEA could potentially provide a new method for clinical examination and monitoring of prosthetically driven bone remodeling.

DOI: 10.1177/0022034515573271
PubMed: 25710952

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25710952

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanobiological bone reaction quantified by positron emission tomography.</title>
<author>
<name sortKey="Suenaga, H" sort="Suenaga, H" uniqKey="Suenaga H" first="H" last="Suenaga">H. Suenaga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, J" sort="Chen, J" uniqKey="Chen J" first="J" last="Chen">J. Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yamaguchi, K" sort="Yamaguchi, K" uniqKey="Yamaguchi K" first="K" last="Yamaguchi">K. Yamaguchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, Sendai Kousei Hospital, Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Radiology, Sendai Kousei Hospital, Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, W" sort="Li, W" uniqKey="Li W" first="W" last="Li">W. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sasaki, K" sort="Sasaki, K" uniqKey="Sasaki K" first="K" last="Sasaki">K. Sasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Swain, M" sort="Swain, M" uniqKey="Swain M" first="M" last="Swain">M. Swain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Dentistry, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Dentistry, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Q" sort="Li, Q" uniqKey="Li Q" first="Q" last="Li">Q. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia qing.li@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25710952</idno>
<idno type="pmid">25710952</idno>
<idno type="doi">10.1177/0022034515573271</idno>
<idno type="wicri:Area/PubMed/Corpus">000449</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000449</idno>
<idno type="wicri:Area/PubMed/Curation">000449</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000449</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanobiological bone reaction quantified by positron emission tomography.</title>
<author>
<name sortKey="Suenaga, H" sort="Suenaga, H" uniqKey="Suenaga H" first="H" last="Suenaga">H. Suenaga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, J" sort="Chen, J" uniqKey="Chen J" first="J" last="Chen">J. Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yamaguchi, K" sort="Yamaguchi, K" uniqKey="Yamaguchi K" first="K" last="Yamaguchi">K. Yamaguchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, Sendai Kousei Hospital, Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Radiology, Sendai Kousei Hospital, Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, W" sort="Li, W" uniqKey="Li W" first="W" last="Li">W. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sasaki, K" sort="Sasaki, K" uniqKey="Sasaki K" first="K" last="Sasaki">K. Sasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry Sendai, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry Sendai</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Swain, M" sort="Swain, M" uniqKey="Swain M" first="M" last="Swain">M. Swain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Dentistry, The University of Sydney, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Dentistry, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Q" sort="Li, Q" uniqKey="Li Q" first="Q" last="Li">Q. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia qing.li@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of dental research</title>
<idno type="eISSN">1544-0591</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Biomechanical Phenomena</term>
<term>Bite Force</term>
<term>Dental Arch (diagnostic imaging)</term>
<term>Dental Arch (metabolism)</term>
<term>Denture, Partial, Removable</term>
<term>Elastic Modulus</term>
<term>Female</term>
<term>Finite Element Analysis</term>
<term>Fluorine Radioisotopes</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted (methods)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Jaw, Edentulous, Partially (diagnostic imaging)</term>
<term>Jaw, Edentulous, Partially (metabolism)</term>
<term>Mandible (diagnostic imaging)</term>
<term>Mandible (metabolism)</term>
<term>Mandibular Condyle (physiology)</term>
<term>Masticatory Muscles (physiology)</term>
<term>Multimodal Imaging (methods)</term>
<term>Positron-Emission Tomography (methods)</term>
<term>Radiopharmaceuticals</term>
<term>Stress, Mechanical</term>
<term>Tomography, X-Ray Computed (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Arcade dentaire (imagerie diagnostique)</term>
<term>Arcade dentaire (métabolisme)</term>
<term>Condyle mandibulaire (physiologie)</term>
<term>Contrainte mécanique</term>
<term>Femelle</term>
<term>Force occlusale</term>
<term>Humains</term>
<term>Imagerie multimodale ()</term>
<term>Imagerie tridimensionnelle ()</term>
<term>Mandibule (imagerie diagnostique)</term>
<term>Mandibule (métabolisme)</term>
<term>Module d'élasticité</term>
<term>Muscles masticateurs (physiologie)</term>
<term>Mâchoire partiellement édentée (imagerie diagnostique)</term>
<term>Mâchoire partiellement édentée (métabolisme)</term>
<term>Phénomènes biomécaniques</term>
<term>Prothèse dentaire partielle amovible</term>
<term>Radio-isotopes du fluor</term>
<term>Radiopharmaceutiques</term>
<term>Sujet âgé</term>
<term>Tomodensitométrie ()</term>
<term>Tomographie par émission de positons ()</term>
<term>Traitement d'image par ordinateur ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Fluorine Radioisotopes</term>
<term>Radiopharmaceuticals</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Dental Arch</term>
<term>Jaw, Edentulous, Partially</term>
<term>Mandible</term>
</keywords>
<keywords scheme="MESH" qualifier="imagerie diagnostique" xml:lang="fr">
<term>Arcade dentaire</term>
<term>Mandibule</term>
<term>Mâchoire partiellement édentée</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dental Arch</term>
<term>Jaw, Edentulous, Partially</term>
<term>Mandible</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Processing, Computer-Assisted</term>
<term>Imaging, Three-Dimensional</term>
<term>Multimodal Imaging</term>
<term>Positron-Emission Tomography</term>
<term>Tomography, X-Ray Computed</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arcade dentaire</term>
<term>Mandibule</term>
<term>Mâchoire partiellement édentée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Condyle mandibulaire</term>
<term>Muscles masticateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mandibular Condyle</term>
<term>Masticatory Muscles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Biomechanical Phenomena</term>
<term>Bite Force</term>
<term>Denture, Partial, Removable</term>
<term>Elastic Modulus</term>
<term>Female</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Contrainte mécanique</term>
<term>Femelle</term>
<term>Force occlusale</term>
<term>Humains</term>
<term>Imagerie multimodale</term>
<term>Imagerie tridimensionnelle</term>
<term>Module d'élasticité</term>
<term>Phénomènes biomécaniques</term>
<term>Prothèse dentaire partielle amovible</term>
<term>Radio-isotopes du fluor</term>
<term>Radiopharmaceutiques</term>
<term>Sujet âgé</term>
<term>Tomodensitométrie</term>
<term>Tomographie par émission de positons</term>
<term>Traitement d'image par ordinateur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While nuclear medicine has been proven clinically effective for examination of the change in bone turnover as a result of stress injury, quantitative correlation between tracer uptake and mechanical stimulation in the human jawbone remains unclear. This study aimed to investigate the relationship between bone metabolism observed by 18F-fluoride positron emission tomography (PET) images and mechanical stimuli obtained by finite element analysis (FEA) in the residual ridge induced by the insertion of a removable partial denture (RPD). An 18F-fluoride PET/CT (computerized tomography) scan was performed to assess the change of bone metabolism in the residual ridge under the denture before and after RPD treatment. Corresponding patient-specific 3D finite element (FE) models were created from CT images. Boundary conditions were prescribed by the modeling of condylar contacts, and muscular forces were derived from the occlusal forces measured in vivo to generate mechanobiological reactions. Different mechanobiological stimuli, e.g., equivalent von Mises stress (VMS), equivalent strain (EQV), and strain energy density (SED), determined from nonlinear FEA, were quantified and compared with the standardized uptake values (SUVs) of PET. Application of increased occlusal force after RPD insertion induced higher mechanical stimuli in the residual bone. Accordingly, SUV increased in the region of residual ridge with higher mechanical stimuli. Thus, with SUV, a clear correlation was observed with VMS and SED in the cancellous bone, especially after RPD insertion (R(2) > 0.8, P < 0.001). This study revealed a good correlation between bone metabolism and mechanical stimuli induced by RPD insertion. From this patient-specific study, it was shown that metabolic change detected by PET in the loaded bone, in a much shorter duration than conventional x-ray assessment, is associated with mechanical stimuli. The nondestructive nature of PET/CT scans and FEA could potentially provide a new method for clinical examination and monitoring of prosthetically driven bone remodeling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25710952</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1544-0591</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of dental research</Title>
<ISOAbbreviation>J. Dent. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanobiological bone reaction quantified by positron emission tomography.</ArticleTitle>
<Pagination>
<MedlinePgn>738-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1177/0022034515573271</ELocationID>
<Abstract>
<AbstractText>While nuclear medicine has been proven clinically effective for examination of the change in bone turnover as a result of stress injury, quantitative correlation between tracer uptake and mechanical stimulation in the human jawbone remains unclear. This study aimed to investigate the relationship between bone metabolism observed by 18F-fluoride positron emission tomography (PET) images and mechanical stimuli obtained by finite element analysis (FEA) in the residual ridge induced by the insertion of a removable partial denture (RPD). An 18F-fluoride PET/CT (computerized tomography) scan was performed to assess the change of bone metabolism in the residual ridge under the denture before and after RPD treatment. Corresponding patient-specific 3D finite element (FE) models were created from CT images. Boundary conditions were prescribed by the modeling of condylar contacts, and muscular forces were derived from the occlusal forces measured in vivo to generate mechanobiological reactions. Different mechanobiological stimuli, e.g., equivalent von Mises stress (VMS), equivalent strain (EQV), and strain energy density (SED), determined from nonlinear FEA, were quantified and compared with the standardized uptake values (SUVs) of PET. Application of increased occlusal force after RPD insertion induced higher mechanical stimuli in the residual bone. Accordingly, SUV increased in the region of residual ridge with higher mechanical stimuli. Thus, with SUV, a clear correlation was observed with VMS and SED in the cancellous bone, especially after RPD insertion (R(2) > 0.8, P < 0.001). This study revealed a good correlation between bone metabolism and mechanical stimuli induced by RPD insertion. From this patient-specific study, it was shown that metabolic change detected by PET in the loaded bone, in a much shorter duration than conventional x-ray assessment, is associated with mechanical stimuli. The nondestructive nature of PET/CT scans and FEA could potentially provide a new method for clinical examination and monitoring of prosthetically driven bone remodeling.</AbstractText>
<CopyrightInformation>© International & American Associations for Dental Research 2015.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suenaga</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Division of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yamaguchi</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Sendai Kousei Hospital, Sendai, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sasaki</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry Sendai, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swain</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Dentistry, The University of Sydney, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Q</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, Australia qing.li@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Dent Res</MedlineTA>
<NlmUniqueID>0354343</NlmUniqueID>
<ISSNLinking>0022-0345</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005462">Fluorine Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019275">Radiopharmaceuticals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>D</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001732" MajorTopicYN="N">Bite Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003724" MajorTopicYN="N">Dental Arch</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003832" MajorTopicYN="Y">Denture, Partial, Removable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055119" MajorTopicYN="N">Elastic Modulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020342" MajorTopicYN="N">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005462" MajorTopicYN="N">Fluorine Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021621" MajorTopicYN="N">Imaging, Three-Dimensional</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007576" MajorTopicYN="N">Jaw, Edentulous, Partially</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008334" MajorTopicYN="N">Mandible</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="Y">diagnostic imaging</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008335" MajorTopicYN="N">Mandibular Condyle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008410" MajorTopicYN="N">Masticatory Muscles</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064847" MajorTopicYN="N">Multimodal Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049268" MajorTopicYN="N">Positron-Emission Tomography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019275" MajorTopicYN="N">Radiopharmaceuticals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014057" MajorTopicYN="N">Tomography, X-Ray Computed</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bone remodeling</Keyword>
<Keyword MajorTopicYN="N">finite element analysis</Keyword>
<Keyword MajorTopicYN="N">mechanobiological phenomena</Keyword>
<Keyword MajorTopicYN="N">occlusal force</Keyword>
<Keyword MajorTopicYN="N">removable partial denture</Keyword>
<Keyword MajorTopicYN="N">sodium fluoride</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25710952</ArticleId>
<ArticleId IdType="pii">0022034515573271</ArticleId>
<ArticleId IdType="doi">10.1177/0022034515573271</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000449 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000449 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25710952
   |texte=   Mechanobiological bone reaction quantified by positron emission tomography.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25710952" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022